Multi-Agent Programming J

Brian Logan

School of Computer Science
University of Nottingham

Midlands Graduate School
8th — 12th April 2013

Multi-Agent Programming TR

Exercise: Programming a BDI

Exercise: Programming a BDI
vacuum cleaner

Brian Logan Multi-Agent Programming MGS 2013 1/21

Exercise: Programming a BDI vacuum cleaner
Outline

@ SimpleAPL: a simplified agent programming language
@ SimpleAPL syntax

@ exercise: writing a simple SimpleAPL program ...

Multi-Agent Programming TR

Exercise: Programming a BDI vacuum cleaner EESHuT{NN

SimpleAPL

Multi-Agent Programming TR

3APL/2APL

3APL (Dastani, van Riemsdijk, Dignum and Meyer: “A programming
language for cognitive agents: Goal directed 3APL" Proc. ProMAS
2003, LNCS 3067 (2004))
http://www.cs.uu.nl/3apl

2APL (Dastani: “2APL: A practical agent programming language”
JAAMAS 16(3) (2008))
http://www.cs.uu.nl/2apl

SimpleAPL is a fragment of Goal-directed 3APL and 2APL—(Alechina,
Dastani, Logan and Meyer: “A Logic of Agent Programs’, Proc. AAAI
2007 (2007))

Multi-Agent Programming TR

http://www.cs.uu.nl/3apl
http://www.cs.uu.nl/2apl

Sl
SimpleAPL

@ SimpleAPL allows the implementation of agents with beliefs, goals,
actions, plans, and planning rules

@ main features of 3APL/2APL not present in SimpleAPL are
o a first order language for beliefs and goals

e some actions, e.g., abstract plans, communication actions

e some rule types, e.g., rules for revising plans and goals and for
processing events

Multi-Agent Programming NES S A

Exercise: Programming a BDI vacuum cleaner EESHuT{NN

Example: robot vacuum cleaner

based on a simple agent described in Russell & Norvig (2003)
agent has to clean two rooms: rooml and room2

agent has sensors that tell it if a room is clean and whether its battery
is charged

vacuuming a room results in the room being clean and discharges the
agent's battery

agent can recharge its battery at a recharging station in room2

room 1 room 2

@&

charging station

Multi-Agent Programming NESEE b

Sl
SimpleAPL beliefs

@ the beliefs of a SimpleAPL agent represent its information about its
environment and itself

@ beliefs are represented by a set of positive literals
@ the initial beliefs of an agent are specified by its program

@ e.g., the agent may initially believe that it's in room1 and its battery is
charged:

Beliefs:
rooml, battery

Multi-Agent Programming NESEE 6

Sl
SimpleAPL goals

o the agent's goals represent situations the agent wants to realise (not
necessarily all at once)

@ goals are represented by a set of arbitrary literals
@ the initial goals of an agent are specified by its program

@ e.g., the agent may initially want to achieve a situation in which both
roomI and room?2 are clean

Goals:
cleanl, clean2

Multi-Agent Programming NESEE 7

Exercise: Programming a BDI vacuum cleaner EESHuT{NN

Declarative goals

@ the beliefs and goals of an agent are related to each other

o if an agent believes p, then it will not pursue p as a goal

e if an agent does not believe that p, it will not have —p as a goal

@ these relationships are enforced by the agent architecture

Multi-Agent Programming TR

Sl
SimpleAPL basic actions

@ basic actions specify the capabilities of the agent (what it can do
independent of any particular agent program)

@ 3 types of basic actions:
o belief test actions: test whether the agent has a given belief

e goal test actions: test whether the agent has a given goal

o belief update actions: “external” actions which change the agent's
beliefs

Multi-Agent Programming NESEE 0

Exercise: Programming a BDI vacuum cleaner EESHuT{NN

Belief and goal test actions

@ a belief test action ¢? tests whether a boolean belief expression ¢ is
entailed by the agent’'s beliefs, e.g.:

(room2 and -battery)?

tests whether the agent believes it is in room2 and its battery is not
charged

@ a goal test action 1! tests whether a disjunction of goals 1) is entailed
by the agent’s goals, e.g.:

clean?!

tests if the agent has a goal to clean room2

Multi-Agent Programming R

Exercise: Programming a BDI vacuum cleaner EESHuT{NN

Belief update actions

@ belief update actions change the beliefs (and goals) of the agent

@ a belief update action is specified in terms of its pre- and
postconditions (sets of literals), e.g.:

{room1, battery} suck {cleanl, -battery}

@ an action can be executed if one of its pre-conditions is entailed by the
agent's current beliefs

@ executing the action updates the agent's beliefs to make the
corresponding postcondition entailed by the agent's beliefs

Multi-Agent Programming R

Exercise: Programming a BDI vacuum cleaner EESHuT{NN

Belief and goal entailment

@ a belief query (a belief test action or an action precondition) is
entailed by the agent's belief base if

o all positive literals in the query are contained in the agent’s belief base,
and

o for every negative literal —p in the query, p is not in the belief base

e i.e., we use entailment under the closed world assumption

@ goal entailment corresponds to a formula being classically entailed by
one of the goals in the goal base

Multi-Agent Programming R

Sl
Belief and goal update

@ executing a belief update action

e adds all positive literals in the corresponding postcondition to the belief
base, and

o for every negative literal —p in the postcondition, p is removed from the
agent's belief base

@ goals which are achieved by the postcondition of an action are dropped

o for simplicity, we assume that the agent’s beliefs about its
environment are always correct and its actions in the environment are
always successful

Multi-Agent Programming Y

Sl
SimpleAPL plans

@ plans are sequences of basic actions composed by plan composition
operators:

e sequence: "7y ;7" (do my then m3)
o conditional choice: “if ¢ then {m;} else {m}"
e conditional iteration: “while ¢ do {7}"

@ e.g., the plan:

if rooml then {suck} else {movel; suck}

causes the agent to clean room1 if it's currently in roomI, otherwise it
first moves (left) to roomI and then cleans it

Multi-Agent Programming Y

Sl
SimpleAPL rules

@ planning goal rules are used for plan selection based on the agent's
current goals and beliefs

@ a planning goal rule k <+ 8|7 consists of three parts:
p g8 p

o k: an (optional) goal query which specifies which goal(s) the plan
achieves

o [3: a belief query which characterises the situation(s) in which it could
be a good idea to execute the plan

e 7: a plan

@ a rule can be applied if k is entailed by the agent's goals and (3 is
entailed by the agent's beliefs

@ applying the rule adds 7 to the agent's plans

Multi-Agent Programming Y

Sl
Example SimpleAPL PG rules

@ e.g., the PG rule

cleanl <- battery | if rooml then {suck}
else {movel; suck}

states that “if the agent's goal is to clean roomI and its battery is
charged, then the specified plan may be used to clean the room”

Multi-Agent Programming R

Sl
SimpleAPL BNF 1

(APL_Prog) := "BeliefUpdates:" (updatespecs)
| "Beliefs:" (pliterals)
| "Goals": (literals)
| "PG rules:" (pgrules)

(updatespecs) ::= [(updatespec) ("," (updatespec))* |
(updatespec) = "{" (literals) "}" (aliteral) "{"(literals)"}"
(pliterals) = [(pliteral) ("," (pliteral))*]

(literals) = [(literal) ("," (literal))*]

(plan) ::= (baction) | (segplan) | (ifplan) | (whileplan)

where (literal) ({pliteral)) denotes belief and goal literals (positive literals).

Multi-Agent Programming T

Sl
SimpleAPL BNF 2

(baction) = (aliteral) | (testbelief) | (testgoal)

(testbelief) = (bquery) "?"

(testgoal) = (gquery) "t"

(bquery) .= (literal) | (bquery) "and" (bquery) |
(bquery) "or" (bquery)

(gquery) = (literal) | (gquery) "oxr" (gquery)

(segplan) = (plan) ";" (plan)

(ifplan) = "if" (bquery) "then {" (plan) "}" ["else {" (plan) "}"]

(whileplany = "while" (bquery) "do {" (plan) "}"

(pgrules) = [(pgrule) ("," (pgrule))*]

(pgrule) = [(gquery)] "<-" (bquery) "|" (plan)

where (aliteral) denotes the name of a belief update action

Multi-Agent Programming Y

Exercise: Programming a BDI vacuum cleaner Exercise: write a SimpleAPL program to clean both rooms

Exercise: write a SimpleAPL program to clean both rooms

Multi-Agent Programming Y

Exercise: Programming a BDI vacuum cleaner Exercise: write a SimpleAPL program to clean both rooms
Hints

@ write a set of action specifications (pre- and postconditions) for belief
update actions actions, e.g., moveR, moveL, suck, charge

@ write a set of plans that will achieve the goals clean1, clean2

o write PG rules that select appropriate plans given the agent’s goals

Multi-Agent Programming Y

