
Multi-Agent Programming

Brian Logan

School of Computer Science
University of Nottingham

Midlands Graduate School
8th – 12th April 2013

Brian Logan Multi-Agent Programming MGS 2013 1 / 21



Exercise: Programming a BDI vacuum cleaner

Exercise: Programming a BDI
vacuum cleaner

Brian Logan Multi-Agent Programming MGS 2013 1 / 21



Exercise: Programming a BDI vacuum cleaner

Outline

SimpleAPL: a simplified agent programming language

SimpleAPL syntax

exercise: writing a simple SimpleAPL program . . .

Brian Logan Multi-Agent Programming MGS 2013 2 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL

Brian Logan Multi-Agent Programming MGS 2013 2 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

3APL/2APL

3APL (Dastani, van Riemsdijk, Dignum and Meyer: “A programming
language for cognitive agents: Goal directed 3APL” Proc. ProMAS
2003, LNCS 3067 (2004))
http://www.cs.uu.nl/3apl

2APL (Dastani: “2APL: A practical agent programming language”
JAAMAS 16(3) (2008))
http://www.cs.uu.nl/2apl

SimpleAPL is a fragment of Goal-directed 3APL and 2APL—(Alechina,
Dastani, Logan and Meyer: “A Logic of Agent Programs”, Proc. AAAI
2007 (2007))

Brian Logan Multi-Agent Programming MGS 2013 3 / 21

http://www.cs.uu.nl/3apl
http://www.cs.uu.nl/2apl


Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL

SimpleAPL allows the implementation of agents with beliefs, goals,
actions, plans, and planning rules

main features of 3APL/2APL not present in SimpleAPL are

a first order language for beliefs and goals

some actions, e.g., abstract plans, communication actions

some rule types, e.g., rules for revising plans and goals and for
processing events

Brian Logan Multi-Agent Programming MGS 2013 4 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

Example: robot vacuum cleaner

based on a simple agent described in Russell & Norvig (2003)

agent has to clean two rooms: room1 and room2

agent has sensors that tell it if a room is clean and whether its battery
is charged

vacuuming a room results in the room being clean and discharges the
agent’s battery

agent can recharge its battery at a recharging station in room2

room 1 room 2

charging station

Brian Logan Multi-Agent Programming MGS 2013 5 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL beliefs

the beliefs of a SimpleAPL agent represent its information about its
environment and itself

beliefs are represented by a set of positive literals

the initial beliefs of an agent are specified by its program

e.g., the agent may initially believe that it’s in room1 and its battery is
charged:

Beliefs:
room1, battery

Brian Logan Multi-Agent Programming MGS 2013 6 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL goals

the agent’s goals represent situations the agent wants to realise (not
necessarily all at once)

goals are represented by a set of arbitrary literals

the initial goals of an agent are specified by its program

e.g., the agent may initially want to achieve a situation in which both
room1 and room2 are clean

Goals:
clean1, clean2

Brian Logan Multi-Agent Programming MGS 2013 7 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

Declarative goals

the beliefs and goals of an agent are related to each other

if an agent believes p, then it will not pursue p as a goal

if an agent does not believe that p, it will not have−p as a goal

these relationships are enforced by the agent architecture

Brian Logan Multi-Agent Programming MGS 2013 8 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL basic actions

basic actions specify the capabilities of the agent (what it can do
independent of any particular agent program)

3 types of basic actions:

belief test actions: test whether the agent has a given belief

goal test actions: test whether the agent has a given goal

belief update actions: “external” actions which change the agent’s
beliefs

Brian Logan Multi-Agent Programming MGS 2013 9 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

Belief and goal test actions

a belief test action φ? tests whether a boolean belief expression φ is
entailed by the agent’s beliefs, e.g.:

(room2 and -battery)?

tests whether the agent believes it is in room2 and its battery is not
charged

a goal test action ψ! tests whether a disjunction of goals ψ is entailed
by the agent’s goals, e.g.:

clean2!

tests if the agent has a goal to clean room2

Brian Logan Multi-Agent Programming MGS 2013 10 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

Belief update actions

belief update actions change the beliefs (and goals) of the agent

a belief update action is specified in terms of its pre- and
postconditions (sets of literals), e.g.:

{room1, battery} suck {clean1, -battery}

an action can be executed if one of its pre-conditions is entailed by the
agent’s current beliefs

executing the action updates the agent’s beliefs to make the
corresponding postcondition entailed by the agent’s beliefs

Brian Logan Multi-Agent Programming MGS 2013 11 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

Belief and goal entailment

a belief query (a belief test action or an action precondition) is
entailed by the agent’s belief base if

all positive literals in the query are contained in the agent’s belief base,
and

for every negative literal−p in the query, p is not in the belief base

i.e., we use entailment under the closed world assumption

goal entailment corresponds to a formula being classically entailed by
one of the goals in the goal base

Brian Logan Multi-Agent Programming MGS 2013 12 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

Belief and goal update

executing a belief update action

adds all positive literals in the corresponding postcondition to the belief
base, and

for every negative literal−p in the postcondition, p is removed from the
agent’s belief base

goals which are achieved by the postcondition of an action are dropped

for simplicity, we assume that the agent’s beliefs about its
environment are always correct and its actions in the environment are
always successful

Brian Logan Multi-Agent Programming MGS 2013 13 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL plans

plans are sequences of basic actions composed by plan composition
operators:

sequence: “π1;π2” (do π1 then π2)

conditional choice: “if φ then {π1} else {π2}”

conditional iteration: “while φ do {π}”

e.g., the plan:

if room1 then {suck} else {moveL; suck}

causes the agent to clean room1 if it’s currently in room1, otherwise it
first moves (left) to room1 and then cleans it

Brian Logan Multi-Agent Programming MGS 2013 14 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL rules

planning goal rules are used for plan selection based on the agent’s
current goals and beliefs

a planning goal rule κ← β |π consists of three parts:

κ: an (optional) goal query which specifies which goal(s) the plan
achieves

β: a belief query which characterises the situation(s) in which it could
be a good idea to execute the plan

π: a plan

a rule can be applied if κ is entailed by the agent’s goals and β is
entailed by the agent’s beliefs

applying the rule adds π to the agent’s plans

Brian Logan Multi-Agent Programming MGS 2013 15 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

Example SimpleAPL PG rules

e.g., the PG rule

clean1 <- battery | if room1 then {suck}
else {moveL; suck}

states that “if the agent’s goal is to clean room1 and its battery is
charged, then the specified plan may be used to clean the room”

Brian Logan Multi-Agent Programming MGS 2013 16 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL BNF 1

〈APL_Prog〉 ::= "BeliefUpdates:" 〈updatespecs〉
| "Beliefs:" 〈pliterals〉
| "Goals": 〈literals〉
| "PG rules:" 〈pgrules〉

〈updatespecs〉 ::= [〈updatespec〉 ("," 〈updatespec〉)* ]
〈updatespec〉 ::= "{" 〈literals〉 "}" 〈aliteral〉 "{"〈literals〉"}"
〈pliterals〉 ::= [〈pliteral〉 ("," 〈pliteral〉)*]
〈literals〉 ::= [〈literal〉 ("," 〈literal〉)*]
〈plan〉 ::= 〈baction〉 | 〈seqplan〉 | 〈ifplan〉 | 〈whileplan〉

where 〈literal〉 (〈pliteral〉) denotes belief and goal literals (positive literals).

Brian Logan Multi-Agent Programming MGS 2013 17 / 21



Exercise: Programming a BDI vacuum cleaner SimpleAPL

SimpleAPL BNF 2

〈baction〉 ::= 〈aliteral〉 | 〈testbelief 〉 | 〈testgoal〉
〈testbelief 〉 ::= 〈bquery〉 "?"
〈testgoal〉 ::= 〈gquery〉 "!"
〈bquery〉 ::= 〈literal〉 | 〈bquery〉 "and" 〈bquery〉 |

〈bquery〉 "or" 〈bquery〉
〈gquery〉 ::= 〈literal〉 | 〈gquery〉 "or" 〈gquery〉
〈seqplan〉 ::= 〈plan〉 ";" 〈plan〉
〈ifplan〉 ::= "if" 〈bquery〉 "then {" 〈plan〉 "}" ["else {" 〈plan〉 "}"]
〈whileplan〉 ::= "while" 〈bquery〉 "do {" 〈plan〉 "}"
〈pgrules〉 ::= [〈pgrule〉 ("," 〈pgrule〉)* ]
〈pgrule〉 ::= [〈gquery〉] "<-" 〈bquery〉 "|" 〈plan〉

where 〈aliteral〉 denotes the name of a belief update action

Brian Logan Multi-Agent Programming MGS 2013 18 / 21



Exercise: Programming a BDI vacuum cleaner Exercise: write a SimpleAPL program to clean both rooms

Exercise: write a SimpleAPL program to clean both rooms

Brian Logan Multi-Agent Programming MGS 2013 18 / 21



Exercise: Programming a BDI vacuum cleaner Exercise: write a SimpleAPL program to clean both rooms

Hints

write a set of action specifications (pre- and postconditions) for belief
update actions actions, e.g., moveR, moveL, suck, charge

write a set of plans that will achieve the goals clean1, clean2

write PG rules that select appropriate plans given the agent’s goals

Brian Logan Multi-Agent Programming MGS 2013 19 / 21


