
Multi-Agent Programming

Brian Logan

School of Computer Science
University of Nottingham

Midlands Graduate School
8th – 12th April 2013

Brian Logan Multi-Agent Programming MGS 2013 1 / 39

Course Overview

Lecture 1: Programming agents
BDI model; PRS and other BDI languages

Lecture 2: Programming multi-agent systems
Coordination in MAS; agent communication languages &
protocols; programming with obligations and prohibitions

Lecture 3: Logics for MAS
LTL, CTL; Rao and Georgeff’s BDI logics; Coalition Logic,
ATL

Lecture 4: Verification of MAS
A tractable APL and BDI logic: SimpleAPL and PDL-APL

Brian Logan Multi-Agent Programming MGS 2013 2 / 39

Lecture 1: Programming agents

Lecture 1: Programming agents

Brian Logan Multi-Agent Programming MGS 2013 2 / 39

Lecture 1: Programming agents

Outline of this lecture

what is an agent

the belief-desire-intention (BDI) model of agency

why agents need special programming languages

elements of a BDI agent programming language

Brian Logan Multi-Agent Programming MGS 2013 3 / 39

Lecture 1: Programming agents What is an agent?

What is an agent?

Brian Logan Multi-Agent Programming MGS 2013 3 / 39

Lecture 1: Programming agents What is an agent?

Multi-agent programming

Multi-agent systems are a promising approach to constructing complex
software systems that are:

Open: agents dynamically enter and exit the system

Autonomous: agents pursue their own objectives

Encapsulated: internal state and operation of agents is not visible to
other agents (or the MAS)

Heterogeneous: agents can have different capabilities and be
implemented in different ways (e.g., different agent programming
languages)

Brian Logan Multi-Agent Programming MGS 2013 4 / 39

Lecture 1: Programming agents What is an agent?

Applications of (multi-)agent systems

autonomous vehicles, e.g., Google car, UAVs etc.

personal assistants, ambient intelligence

workflow & logistics, e.g., warehouse management, maintenance
scheduling

real-time control & decision support (process monitoring, disaster
management)

healthcare, e.g., care coordination, patient monitoring

power engineering, e.g., smart grids, VPPs

information integration, e.g., sensor networks

virtual environments, e.g., games, training, modelling and simulation

Brian Logan Multi-Agent Programming MGS 2013 5 / 39

Lecture 1: Programming agents What is an agent?

What is an agent?

Multi-agent systems are composed of agents

many definitions of ‘agent’ in the multi-agent systems literature — key
ideas include:

autonomy: an agent operates without the direct intervention of
humans or other agents

situatedness: an agent interacts with its environment (which may
contain other agents)

reactivity: an agent responds in a timely fashion to changes in its
environment

proactivity: an agent exhibits goal-directed behaviour

Brian Logan Multi-Agent Programming MGS 2013 6 / 39

Lecture 1: Programming agents What is an agent?

Shakey the robot (1966–1972)

Shakey was the first mobile
robot to reason about its actions

multiple sensors (TV camera, a
triangulating range finder, and
bump sensors)

connected to DEC PDP-10 and
PDP-15 computers via radio and
video links

programs for perception,
world-modeling, and acting
(simple motion, turning, and
route planning)

Brian Logan Multi-Agent Programming MGS 2013 7 / 39

Lecture 1: Programming agents What is an agent?

What is different about agents?

many complex computational systems exhibit some degree of
autonomy, situatedness, reactivity, and proactivity — how to decide
what’s ‘really’ an agent

an alternative way to think of agents is not in terms of their behaviour
but in terms of:

how they are characterised

how they are programmed

Brian Logan Multi-Agent Programming MGS 2013 8 / 39

Lecture 1: Programming agents What is an agent?

Agents as intentional systems

For the purposes of this course, an agent can be defined as:

Definition (Agent)

a computational system whose behaviour can be usefully characterised
in terms of propositional attitudes such as beliefs and goals; and

which is programmed in an agent programming language that makes
explicit use of propositional attitudes

Brian Logan Multi-Agent Programming MGS 2013 9 / 39

Lecture 1: Programming agents What is an agent?

Digression: ascribing propositional attitudes

not all agents represent beliefs and goals explicitly, even though they
act in a goal-directed manner

e.g., the behaviour of an agent may be controlled by a collection of
decision rules which simply respond to the agent’s current environment

however it can still be useful to view the agent as an intentional
system — that is we ascribe to it the beliefs and goals it ought to
have, given what we know of its environment, sensors and (putative)
desires (Dennett 1987, 1996)

e.g., an agent which avoids obstacles can be said to have a goal of
“avoiding collisions” even though this goal is not explicitly represented
in the agent

Brian Logan Multi-Agent Programming MGS 2013 10 / 39

Lecture 1: Programming agents What is an agent?

The intentional stance

Dennett (1987) calls this approach “adopting the intentional stance”

allows us to ascribe propositional attitudes to agents which do not
explicitly represent beliefs and goals

intentional stance is more likely to yield useful insights than a
description couched in terms of the low-level details of the the agent’s
implementation

we will focus on agent programming languages in which the agent’s
state contains explicit representations of propositional attitudes

Brian Logan Multi-Agent Programming MGS 2013 11 / 39

Lecture 1: Programming agents BDI model of agency

BDI model of agency

Brian Logan Multi-Agent Programming MGS 2013 11 / 39

Lecture 1: Programming agents BDI model of agency

The Belief Desire Intention model of agency

the belief–desire–intention model (Bratman 1987) stresses the
importance of committing to plans to limit the amount of time an
agent spends deliberating

desires (states the agent wants to bring about) and intentions (states
the agent has committed to bring about) are both pro-attitudes, but
intentions constrain future behaviour

commitment results in the temporal persistence of plans and future
plans being made on the assumption that current plans will persist

e.g., if I plan to attend MGS 2013, I will take this into account when
scheduling a research project meeting — I don’t (usually) reconsider
all my plans when a new task or opportunity presents itself

Brian Logan Multi-Agent Programming MGS 2013 12 / 39

Lecture 1: Programming agents BDI model of agency

What is an agent programming language?

most work in agent programming assumes that agents are not only
conceptualised in terms of beliefs, desires and intentions, but are also
implemented in terms of beliefs, desires and intentions

agent programming languages are designed to facilitate the
implementation of BDI agents:

programming constructs corresponding to beliefs, desires and intentions

agent architecture or interpreter which enforces relationships between
beliefs, desires and intentions and which causes the agent to choose
actions to achieve its goals based on its beliefs

Brian Logan Multi-Agent Programming MGS 2013 13 / 39

Lecture 1: Programming agents BDI model of agency

Why do we need agent programming languages?

it is possible to implement agents in any programming language (C,
Lisp, Prolog, Java, etc.)

there are also a wide range of agent toolkits such as JADE, which
provide basic facilities for representing agents

however general purpose programming languages (and the agent
toolkits based on them) don’t implement the semantics of the BDI
model of agency

in these languages & toolkits, the agent programmer is responsible for
implementing beliefs, desires and intentions more or less from scratch

Brian Logan Multi-Agent Programming MGS 2013 14 / 39

Lecture 1: Programming agents BDI model of agency

The BDI agent programming model

in contrast, agent programming languages (APLs) are defined in terms
of beliefs, desires and intentions

however most agent programming languages depart to some degree
from the BDI model of agency defined by Bratman et al.:

expressiveness of beliefs, goals and plans

relationship between desires and goals

relationship between goals and beliefs

commitment to and processing of intentions

Brian Logan Multi-Agent Programming MGS 2013 15 / 39

Lecture 1: Programming agents Procedural Reasoning System

Procedural Reasoning System

Brian Logan Multi-Agent Programming MGS 2013 15 / 39

Lecture 1: Programming agents Procedural Reasoning System

Procedural Reasoning System (PRS)

PRS is arguably the first implementation of a belief-desire-intention
architecture

”it should be possible to ascribe beliefs, goals and intentions to the
system and to interact with it in terms of these psychological
attitudes” (Georgeff & Ingrand 1988)

example applications include space shuttle fault diagnosis, controlling
a mobile robot, air traffic control, business process control etc.

very influential — many derivatives (PRS-CL, PRS-Lite, dMARS,
AgentSpeak(L), SPARK, Jason)

illustrates many of the key ideas in agent programming language
design

Brian Logan Multi-Agent Programming MGS 2013 16 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS design objectives

the system architecture should be both goal-directed and reactive

while working to attain specific goals the system should be able to
react appropriately to new situations in real time

it should be able to completely alter focus and goal priorities as
situations change

in addition it should be able to reflect on its own reasoning processes

it should be able to choose when to change goals, when to plan and
when to act and how to effectively use its deliberation capabilities

Brian Logan Multi-Agent Programming MGS 2013 17 / 39

Lecture 1: Programming agents Procedural Reasoning System

Flakey the robot (1992–1993)

Brian Logan Multi-Agent Programming MGS 2013 18 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS programs

a PRS program consists of beliefs, (top-level) goals, plans and
intentions

beliefs represent things which the agent believes are currently true
about the environment or itself

goals represent desired behaviours of the system expressed as
conditions over an interval of time, i.e., over a sequence of world states

plans (Knowledge Areas) are predefined sequences of actions and tests
which achieve a particular goal or react to a particular situation

intentions are plans which have been chosen for execution

Brian Logan Multi-Agent Programming MGS 2013 19 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS beliefs

beliefs can refer to both static and dynamic information

static information describes fixed properties of the application domain,
e.g., physical laws

dynamic information changes with time, e.g., current percepts and
conclusions derived by PRS

beliefs can also describe the internal state of PRS — meta-level beliefs
are used to describe the current goals and intentions of the agent, and
the plans being considered for execution etc.

meta-level beliefs play an important role in specifying the deliberation
(control) strategy of a PRS agent

Brian Logan Multi-Agent Programming MGS 2013 20 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS beliefs

the beliefs of a PRS agent consist of a set of state descriptions
describing what is believed to be true at the current instant

state description language is first order predicate calculus with the
usual connectives ∧, ∨ and ¬

state descriptions can contain variables (assumed to be universally
quantified)

e.g., in a ‘blocks world’ domain state description (on blockB blockA)
could represent the belief that blockA is on top of blockB

Brian Logan Multi-Agent Programming MGS 2013 21 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS goals

goals are specified as a combination of a goal operator applied to a
state description (possibly containing existentially quantified variables):

(!p) where p is a state description is true of a sequence of states if p is
true of the last state of the sequence, i.e, achievement goals

(?p) is true of a sequence of states if p is true of the first state in the
sequence, i.e., test goals

(#p) is true if p is preserved throughout the sequence of states
(corresponding to the execution of a plan), i.e., maintenance goals

behaviour descriptions can be combined using ∧ and ∨, e.g., (#p∧!q)
means maintain p until q becomes true

Brian Logan Multi-Agent Programming MGS 2013 22 / 39

Lecture 1: Programming agents Procedural Reasoning System

Blocks world

Brian Logan Multi-Agent Programming MGS 2013 23 / 39

Lecture 1: Programming agents Procedural Reasoning System

Example: blocks world goals

(! (on blockA blockB)) expresses an achievement goal of stacking
blockA on blockB

(∧ (! (on blockB blockC))(!(onblockA blockB))) expresses an
achievement goal of building a tower of blocks

(? (clear blockA)) expresses a test goal which tests whether there is a
block on blockA

(# (clear blockA)) expresses a maintenance goal of keeping blockA
clear

(∧ (# (clear blockA))(! (holding blockA))) expresses the goal of
keeping blockA clear until it has been picked up

Brian Logan Multi-Agent Programming MGS 2013 24 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS plans

a plan consists of an invocation condition and a body

the invocation condition specifies the situations in which the plan is
useful

the plan body specifies the steps of the plan

together the invocation condition and body express a declarative fact
about the results and utility of performing a sequence of actions in a
given situation

Brian Logan Multi-Agent Programming MGS 2013 25 / 39

Lecture 1: Programming agents Procedural Reasoning System

Plan invocation

the invocation condition consists of a trigger and a context

the trigger is a logical expression describing the events that must
occur for the plan to be applicable, e.g.,

change in system goals (goal-directed invocation)

change in the system beliefs (data-directed or reactive invocation)

the context is a logical expression specifying the conditions that must
be true of the current state for the plan to be applicable

Brian Logan Multi-Agent Programming MGS 2013 26 / 39

Lecture 1: Programming agents Procedural Reasoning System

Plan body

the body of a plan is a graph in which each edge is labelled with a
(sub)goal to be achieved

each step in a plan therefore involves the achievement of a subgoal

allows the selection of the most appropriate means of achieving the
subgoal in the current situation

some plans have no bodies — such primitive plans are associated with
an action (implemented in Lisp) that is directly performable by the
system

the execution of any plan ultimately reduces to the execution of a
sequence of primitive plans

Brian Logan Multi-Agent Programming MGS 2013 27 / 39

Lecture 1: Programming agents Procedural Reasoning System

Plan execution

execution begins at the start node, and proceeds by following edges
through the graph until a finish node (a node with no outgoing edges)
is reached

to traverse an edge, either the associated goal must already have been
achieved, or a plan must be executed which achieves the goal

execution is nondeterministic — if PRS fails to traverse an edge from
some node, other edges from that node (if any) may be tried

if PRS fails to traverse any of the edges from a node, the plan fails

a plan achieves a goal if its execution results in a behaviour that
satisfies the goal description

Brian Logan Multi-Agent Programming MGS 2013 28 / 39

Lecture 1: Programming agents Procedural Reasoning System

Example blocks world plan

trigger:
(!(on $x $y))

context:
(¬(holding $z))

start

s1

(! (clear $y))

s2

(! (clear $x))

s3

(! (pickup $x))

s4

(! (stack $x $y))

Brian Logan Multi-Agent Programming MGS 2013 29 / 39

Lecture 1: Programming agents Procedural Reasoning System

Example computer repair plan

trigger:
(!(working -computer $c))

context:
(?(¬(burning -smell $c)))

start

s1

(? (power-on $c))

s2

(? (¬ (power-on $c)))

s4

(! (plug-in $c))

s5

s6

(! (call-technician $c))

s3

(! (reboot $c))

(? (power-on $c)) (? (¬ (power-on $c)))

Brian Logan Multi-Agent Programming MGS 2013 30 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS intentions

the intention structure contains all tasks chosen for execution, either
now or at some future time

each intention consists of a single top-level plan (invoked by a
top-level goal or belief) together with all the sub-plans that have been
invoked to achieve sub-goals of a parent plan

intentions may be active (executable) or suspended (waiting for some
condition to become true)

e.g., an intention may suspend while a move action is being executed

allows PRS to remain responsive while performing time consuming
actions or deliberating

Brian Logan Multi-Agent Programming MGS 2013 31 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS interpreter

the program of a PRS agent is executed by the PRS interpreter

the interpreter operates in cycles — at each cycle new beliefs (from
sensors or concluded by a plan) and goals (top-level goals from users
or subgoals generated by a plan) can trigger plans

the context of triggered plans is matched (unified) against the current
beliefs and goals to determine which plans are applicable

one or more applicable plans is chosen for execution by placing it on
the intention structure

interpreter then chooses an active intention and executes the next step
in the associated plan

Brian Logan Multi-Agent Programming MGS 2013 32 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS architecture

goals

beliefs

plan library

intentions

interpreter

World

U
s
e
r

Brian Logan Multi-Agent Programming MGS 2013 33 / 39

Lecture 1: Programming agents Procedural Reasoning System

PRS deliberation

the default PRS interpreter cycle can be extended using metalevel
plans

metalevel plans encode methods for, e.g., choosing among multiple,
applicable plans, determining how to achieve a conjunction or
disjunction of goals, deciding which intention to execute next etc.

metalevel plans are triggered by changes in the system’s metalevel
beliefs about system’s current beliefs, goals, intentions and applicable
plans

applicable metalevel plans give rise to further metalevel beliefs and
reflection continues until a single plan can be chosen and intended

e.g., intention structure may contain a suspended object level plan
which has posted a subgoal and a metalevel plan to decide how to
accomplish the subgoal

Brian Logan Multi-Agent Programming MGS 2013 34 / 39

Lecture 1: Programming agents Procedural Reasoning System

Proactivity and reactivity

unless a new goal or belief activates a new plan, PRS will attempt to
execute any intentions it has already decided upon — i.e, it commits
to its intentions in Bratman’s sense

however new beliefs (resulting from plan execution or changes in the
environment) and goals (resulting from user requests) will cause PRS
to reassess its current intentions, and perhaps choose to work on
something else

PRS can even modify its own reasoning process — e.g., it may decide
that, given the current situation, it has no time for further deliberation
and must act immediately

Brian Logan Multi-Agent Programming MGS 2013 35 / 39

Lecture 1: Programming agents Procedural Reasoning System

Reasoning in PRS

the design of PRS represents a trade-off between expressiveness and
tractability

reasoning in PRS means the selection and execution of appropriate
plans to achieve the agent’s goals, given its current beliefs

no built-in support for logical inference (though this can be
programmed using plans)

a key objective was support for the development of real-time systems
— all the basic steps of the interpreter are guaranteed to terminate in
finite time

Brian Logan Multi-Agent Programming MGS 2013 36 / 39

Lecture 1: Programming agents Procedural Reasoning System

The legacy of PRS

1990: AGENT-0 (Shoham)

1993: PLACA (Thomas; AGENT-0 extension with plans)

1996: PRS-Lite (Meyers)

1996: AgentSpeak(L) (Rao; inspired by PRS)

1996: Golog (Reiter, Levesque, Lesperance)

1997: 3APL (Hindriks et al.)

1998: ConGolog (De Giacomo, Levesque, Lesperance)

2000: JACK (Busetta, Howden, Ronnquist, Hodgson)

2000: GOAL (Hindriks et al.)

2002: Jason (Bordini, Hubner; implementation of AgentSpeak)

2004: SPARK (Morley, Meyers; PRS-Lite revisited)

2008: 2APL (successor to 3APL)
Brian Logan Multi-Agent Programming MGS 2013 37 / 39

Lecture 1: Programming agents Procedural Reasoning System

Key language features

AGENT-0: Speech acts

AgentSpeak(L): Events & intentions

Golog: Action theories

3APL: Rules for adopting, revising and dropping goals & plans

JACK: Java integration

Jason: AgentSpeak + communication, belief actions, atomic
plans

2APL: Events, modules, . . .

Brian Logan Multi-Agent Programming MGS 2013 38 / 39

Lecture 1: Programming agents Procedural Reasoning System

Summary

BDI agents are programmed in terms of beliefs, goals, plans and
intentions

agent interpreter or deliberation cycle enforces relationships between
beliefs, goals and intentions and causes the agent to choose plans to
achieve its goals based on its beliefs

BDI languages are typically very high-level: e.g., logic-based, with
well-defined operational semantics

however most agent programming languages depart to some degree
from the BDI model of agency defined by Bratman et al.

Brian Logan Multi-Agent Programming MGS 2013 39 / 39

Lecture 1: Programming agents Procedural Reasoning System

The next lecture

Programming multi-agent systems

Brian Logan Multi-Agent Programming MGS 2013 40 / 39

	Lecture 1: Programming agents
	What is an agent?
	BDI model of agency
	Procedural Reasoning System

