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What will you get out of this?
• An introduction to symmetric monoidal categories and diagrammatic reasoning, an important tool in  

• quantum computing and quantum information (Abramsky, Coecke, Pavlovic, Duncan, Kissinger, …) 

• asynchronous circuits (Ghica) 

• signal flow graphs (Bonchi, S., Zanasi) 

• linear time-invariant dynamical systems (Baez, Erbele, Fong, Rapisarda, S.) 

• A different way to think about several concepts of linear algebra! 

• linear algebra is everywhere (quantum, machine learning, systems and control theory, graph theory, …)

• a different language means different ways to think about applications, and it is sometimes more efficient 
than the classical concepts of matrices, bases, etc. 

• a nice calculus for recurrence relations 

• An introduction to several algebraic structures that are quite common in computational models 

• e.g. monoids, comonoids, Frobenius monoids, bimonoids, Hopf algebras, …



More generally:  
resource sensitive syntax

• Ordinary, tree-like syntax, together with its operations (tuples, 
substitution) is good in situations where all operations have a coarity 1 

• i.e. operations of the form Xn → X 

• This often goes together with the implicit assumption that the 
resources in X are copyable and discardable 

• In many situations (e.g. quantum, many kinds of circuits) we have to 
be more careful with resources — here tree-like syntax can unnatural 

• the language of symmetric monoidal categories provides the 
algebra for this syntax 

• the language of string diagrams provides a nice notation



Plan
• Lecture 1 - String diagrams and symmetric 

monoidal categories

• Lecture 2 - Resource-sensitive algebraic theories 

• Lecture 3 - Interacting Hopf monoids and 
graphical linear algebra 

• Lecture 4 - Signal Flow Graphs and recurrence 
relations



Lecture 1
String diagrams and symmetric monoidal categories



� - stacking one on top of 
the other

=�

=�

associative but 
not commutative

; - plugging the first into 
the second

; =

; =

associative but 
not commutative

“stacking things and plugging them together”



Combining operations

�( ) ; �( ) =

� � =;( ( ))



Plan
• algebra of magic Lego

• categories 

• monoidal categories 

• string diagrams 

• symmetric monoidal categories



A simple type system
: (2, 2) : (4, 4) : (2, 0)

X : (k, l) Y : (m,n)
X�Y : (k+m, l+n)

X : (k, l) Y : (l,m)
X;Y : (k,m)

number of holes number of studs



The magic in magic Lego
X : (k, l) Y : (m,n)
X�Y : (k+m, l+n)

� =

X : (k, l) Y : (l,m)
X;Y : (k,m)

; = ?

; =

Pieces stretch and shrink as needed — the only important 
thing is the type (number of holes, number of studs)



The mathematics of magic Lego

• “stacking things on top of each other” and 
“plugging things together” are very common 
operations in science and mathematics 

• the mathematical structure that’s behind these 
operations is called a (strict) monoidal category

• let’s start with categories…



Plan
• algebra of magic Lego 

• categories

• monoidal categories 

• string diagrams 

• symmetric monoidal categories



Categories

• A category C, seen as a mathematical structure, 
consists of two sets: objects and arrows  

• think of objects as types 

• think of arrows as operations 

• every arrow C has two associated objects k, m, 
called domain and codomain, written C : k → m



• Every object has an identity arrow (think of this as  
a trivial “do-nothing” operation)

Ik : k → k 



Operations on arrows

• There is a partial operator on arrows ; called 
composition

C : k → l      D: l → m
C ; D : k → m

— like the plugging in magic Lego



Associativity

• Composition is associative, i.e.

C : k → l D : l → m E : m → n 
(C ; D) ; E = C ; (D ; E) : k → n



Composing identities

• Composing with identity arrows on both sides does 
not change the arrow, i.e.

C : m → n
Im ; C = C = C ; In



Examples of (small) 
categories

• 0 - the empty category 

• 1 - the category with one object * and one arrow 

• Exercise: check that everything works 

• 2 - the category with objects {0,1}, one non-identity arrow 0 → 1. 

• Exercise: check that everything works 

• Any preorder is a category with  

• objects the elements of X, and at most one arrow between any 2 objects: 
x→y iff x≤y. 

• conversely, any category with at most one arrow from any object to another 
is a preorder.



Examples of (big) 
categories

• Set  

• Objects: sets  

• Arrows: functions 

• Setf
  

• Objects: finite sets  

• Arrows: functions 

• Rel

• Objects: sets  

• Arrows: relations

• Mon

• Objects: monoids  

• Arrows: homomorphisms 

• Top

• Objects: topological spaces  

• Arrows: continuous functions 

• Cat

• Objects: categories  

• Arrows: functors



Plan
• algebra of magic Lego 

• categories 

• monoidal categories

• string diagrams 

• symmetric monoidal categories



In the spirit of HOTT
• A 2-category has 

• objects “0-cells” 

• arrows “1-cells” 

• 2-cells (arrows between arrows) 

• so that (1 and 2) composition is associative and has identities 

• e.g. Topological space: objects = points, arrows = paths, 2-cells = 
homotopies 

• two different ways of composing 2-cells! 

• A (strict) monoidal category is a 2-category with one object



Monoidal categories
• A (strict) monoidal category C, seen as a mathematical 

structure, consists of two sets: objects and arrows  

• think of objects as (products of) types 

• think of arrows as operations 

• every arrow C has two associated objects k, m, 
called domain and codomain, written C : k → m 

• there is an associative operation on objects ⊕ called 
monoidal product

(k ⊕ m) ⊕ n = k ⊕ (m ⊕ n) 



• Every object has an identity arrow (think of this as  
a trivial “do-nothing” operation) 

• There is an identity object I for monoidal product 
(think of this as a unit type). This makes the set of 
object a monoid.

Ik : k → k 

k ⊕ I = I ⊕ k = k



Operations on arrows
• There is a partial operation or arrows ; called 

composition

• There is a total operation on arrows ⊕ (abusing notation) 
also called monoidal product. 

C : k → l      D: l → m
C ; D : k → m

— like the plugging in magic Lego

C : k → l      D: m → n
C ⊕ D : k ⊕ m → l ⊕ n

— like the stacking in magic Lego



Associativity
• Composition is associative, i.e. 

• Monoidal product is associative, also on arrows, i.e.

C : k → l D : l → m E : m → n 
(C ; D) ; E = C ; (D ; E) : k → n

C : m → n D : m’ → n’ E : m’’ → n’’ 
(C ⊕ D) ⊕ E = C ⊕ (D ⊕ E) : m⊕m’⊕m’’ → n⊕n’⊕n’’



Monoidal product and functoriality
• The monoidal product is actually a functor, a morphism of categories 

• Functors consist of two functions, one each for objects and arrows, 
and preserve domains and codomains (c.f. morphism of digraphs)

• as well as composition and identities

F: X → Y

C : m → n
F(C) : F(m) → F(n)

F(C ; D)  = F(C) ; F(D)  F(Ik)  = IF(k)  



How is monoidal product a functor?
• A monoid is a set M equipped with a function 

• … with a unit element, satisfying associativity  

• Similarly, a strict monoidal category is a category C 
equipped with a functor 

• … with a unit object, satisfying associativity

⋅ : M × M → M

⊕ : C × C → C

(M×M is the cartesian product of sets)

(C×C is the cartesian product of categories)



• Suppose that C and D are categories. How do we 
define of the cartesian product C×D of C and D? 

• What are the objects? 

• What are the arrows? 

• How does composition work? 

• What are the identity arrows?

Exercise



Monoidal product and composition

• Suppose that A can be composed with C, and B 
can be composed with D. Then since ⊕, being a 
functor, preserves composition, we have:

⊕(A;B, C;D) =  ⊕( (A,C) ; (B,D) ) = ⊕(A,C) ; ⊕(B,D)

i.e.

(A ; B) ⊕ (C ; D) = (A ⊕ C) ; (B ⊕ D)

This equation is sometimes called “middle-four interchange”



Exercise

• Suppose that A: p →q and B: r → s. Show that 

( A ⊕ Ir ) ; (Iq ⊕ B) = A ⊕ B = (Ip ⊕ B) ; (A ⊕ Is)



Composing identities

• Since ⊕ must preserve identities, we also require

⊕(I(m,n)) = ⊕(Im, In) = Im⊕n i.e.

Im ⊕ In = Im⊕n 

C: m → n
Im ; C = C = C ; In

• Composing with identity arrows on both sides does 
not change the arrow, i.e.



Examples of monoidal categories
• Setf with × (cartesian product) or with + (disjoint union) as monoidal product 

• it’s not quite strict… e.g. monoidal product is not associative on the nose 

• it is a (non-strict) monoidal category, where associativity is up to coherent isomorphism 

• F - the strict monoidal version of Setf

• Objects: finite ordinals m := {1,2,…,m}  

• Arrows: functions 

• Monoidal product 1: on objects m + n := m + n 

• what is the monoidal identity object? 

• how to define monoidal product on morphisms? 

• Monoidal product 2: on objects m × n := m × n 

• what is the monoidal identity object? 

• how to define monoidal product on morphisms?



Magic Lego

• Is a monoidal category with 

• Objects: natural numbers (keeping track of 
numbers of holes and studs) 

• Arrows: lego constructions



Plan
• algebra of magic Lego 

• categories 

• monoidal categories 

• string diagrams

• symmetric monoidal categories



String diagrams
• A graphical notation for the arrows of monoidal 

categories 

• We have been writing C: m → n 

• We will now draw 

C
m n



Composition

C : k → l      D: l → m
C ; D : k → m

C
k l

D
m



Monoidal product
C : k → l      D: m → n
C ⊕ D : k ⊕ m → l ⊕ n

C
k l

m
D

n



Perks of the notation I

C : k → l D : l → m E : m → n 
(C ; D) ; E = C ; (D ; E) : k → n

k l mC D E n



Perks of the notation II
C : m → n D : m’ → n’ E : m’’ → n’’ 

(C ⊕ D) ⊕ E = C ⊕ (D ⊕ E) : m ⊕ m’⊕ m’’ → n ⊕ n’⊕ n’’

C

D

E

m

m'

m''

n

n'

n''



Perks of the notation III

(A ; B) ⊕ (C ; D) = (A ⊕ C) ; (B ⊕ D)

A B

C D



Diagrammatic reasoning I
• Identity on m is simply drawn as a wire

Stretching

m

C : m → n
Im ; C = C = C ; In

= C =C Cm n m n m n



Diagrammatic reasoning II

( A ⊕ Ir ) ; (Iq ⊕ B) = A ⊕ B = (Ip ⊕ B) ; (A ⊕ Is)

Sliding

A

B

= =

A

B

A

B

p q

r s

p q

r s

p q

r s



General story
• A strict monoidal category is the same thing as a 2-category with one 

object, a particularly simple kind of higher category  

• string diagrams are a kind of graph theoretical dual, i.e. 

• zero dimensional things (objects) become two dimensional things  

• one dimensional things (arrows in a 2-cat = objects in a strict 
monoidal cat) stay as one dimensional things — wires 

• two dimensional things (2-cells in a 2-cat = arrows in a strict 
monoidal cat) become zero dimensional things (points, or boxes 
as we have been drawing) 

• See Globular (Vicary, Kissinger, Bar): http://globular.science

http://globular.science


Plan
• algebra of magic Lego 

• categories 

• monoidal categories 

• string diagrams 

• symmetric monoidal categories



Symmetric monoidal categories
• When wiring things up using the algebra of 

connecting and stacking, we often want to permute 
the wires 

• Mathematically, this means moving from monoidal 
categories to symmetric monoidal categories 

• In a symmetric monoidal category, for any two objects 
m, n, there is a symmetry, or twist 

twm,n: m⊕n → n⊕m



Example - Crema di Mascarpone
Crack Egg

egg
yolk

white

Whisk

white

white

whisked whites

yolk

yolk

sugar

Beat
yolky paste

yolky paste

mascarpone

Stir
thick paste

whisked whites

thick paste

Fold
crema di mascarpone

Crack Egg
egg

white

yolk

Crack Egg
egg

white

yolk
Beat

Whisk
whisked whites

thick
paste

mascarpone

Stir

crema di 
mascarpone

sugar

Fold

yolky
paste

(C � C � id2) ; (id� tw � id3) ; (W �B � id) ; (id� S) ; F



Natural transformations
• We have seen categories, and functors: morphisms between categories 

• A natural transformation is a morphism between functors 

• A natural transformation α : F ⇒ G is a collection of arrows of Y, one for each object in m ∈ X 

• These must satisfy a condition with respect to the arrows of X, namely for each arrow C: m→n 

F ⇒ G: X → Y

αm : Fm → Gm

Fm Gm

Fn Gn
FC GC

αm

αn

commutes. These are sometimes called 
naturality squares



Aside — string diagrams for Cat 
• Cat is a 2-category 

• Objects (0-morphisms): categories 

• Arrows (1-morphisms): functors 

• 2-cells (2-morphisms): natural transformations 

• Suppose that F: C→D has right adjoint G: D→C, then the triangle equations can be drawn as 
follows, using string diagrams:

η

ε

F

G

F
=

F

η

ε

G

F

G

= G

F FGFFη

F
εF

G GFGηG

Gε
G



Symmetry as natural transformation

• For a monoidal category C, there are actually two 
functors C×C → C given by ⊕  

• tw is a natural transformation from the first to the 
second, with components twm,n : m⊕n→ n⊕m

⊕ = –1⊕–2: C×C → C 
⊕’ = –2⊕–1: C×C → C 

– stack the first on the second 

– stack the second on the first 



Drawing twists

twm,n: m⊕n → n⊕m

m

mn

n



Diagrammatic reasoning III

p⊕n n⊕p

q⊕n n⊕q
C⊕n n⊕C

twp,n

twq,n

C

n

np

q C
n

np

q
=

naturality = sliding across twists

m⊕p p⊕m

m⊕q q⊕m
m⊕C C⊕m

twm,p

twm,q

C
p

qm

m

C

p

qm

m

=



Diagrammatic reasoning IV

• In any symmetric monoidal category, the twist is 
invertible, and has itself as inverse, in the following sense

tightening (without wires tangling)

twm,n ; twn,m= Im⊕n : m⊕n → m⊕n

=

m

m

m

n

n

n

m

n

In a braided monoidal category, the twist is invertible, 
but it is not, in general, it’s own inverse



Symmetric monoidal 
categories

• A strict symmetric monoidal category C, is a strict 
monoidal category with a natural family of arrows 
twm,n : m⊕n → n⊕m, indexed by pairs of objects of 
C, such that

twm,n ; twn,m= Im⊕n : m⊕n → m⊕n

twm⊕n, p = (Im  ⊕ twn,p) ; (twp,m ⊕ In): m⊕n⊕p→ p⊕m⊕n 
twp, m⊕n = (twp,m ⊕ In); (Im  ⊕ twp,n): p⊕m⊕n→ m⊕n⊕p 

twI,m = Im = twm,I



• Exercise: The famous Yang-Baxter equation is an 
instance of naturality of the twist 

• tegether with 

Yang-Baxter

=

=

we get that “pure” wiring diagrams t⊕m → t⊕m are in 1-1 
correspondence with permutations of the m-element set



The category of 
permutations

• Objects: finite ordinals m = {1,…,m} 

• Arrows: no arrows from m to n if m≠n, otherwise the 
permutations 

• Strict symmetric monoidal, with m⊕n := m+n


