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Lecture 2
Resource sensitive algebraic theories



Plan
• algebraic theories

• symmetric monoidal theories (resource sensitive 
algebraic theories) 

• props 

• bimonoids and matrices of natural numbers  

• Hopf monoids and matrices of integers



Algebraic theories
• A (presentation of) algebraic theory is a pair (Σ, E) where 

• Σ is a set of generators (or operations), each with an arity, a 
natural number 

• E is a set of equations (or relations), between Σ-terms built up 
from generators and variables

Example 1 -  monoids Example 2 -   
abelian groups

ΣM = { ⋅:2, e:0 } 
EM = { ⋅( ⋅(x, y), z ) = ⋅( x, ⋅(y, z) ),  

 ⋅(x, e) = x, ⋅(e, x) = x }

ΣG = ΣM ∪ { i:1 } 
EG = EM ∪ { ⋅(x, y) = ⋅(y, x),  

                 ⋅(x, i(x)) = e }

Universal Algebra



Σ - terms (cartesian)

x ∈ Var
x

t1 t2 … tm   σ ∈ Σ  ar(σ) =  m
σ(t1, t2, …, tm)

i.e. terms a trees with internal nodes labelled by 
the generators and the leaves labelled by variables  

and constants (generators with arity 0)



Models - classically
• To give a model of an algebraic theory (Σ,E), choose a set X 

• for each operation σ : k in Σ, choose a function [[σ]] : Xk → X 

• now for each term t, given an assignment of variables α, we can 
recursively compute the element of [[t]]α ∈ X which is the “meaning” of t 

• need to ensure that for every assignment of variables α, and every 
equation t1 = t2 in E, we have [[t1]]α = [[t2]]α as elements of X 

• Example 1: to give a model of the algebraic theory of monoids is to give a 
monoid 

• Example 2: to give a model of the theory of abelian groups is to give an 
abelian group



Algebraic theories, 
categorically

• There is a nice way to think of algebraic theories 
categorically, due to Lawvere in the 1960s 

• get rid of “countably infinite set of variables”, 
“variable assignments” etc. 

• generalise - models don’t need to be sets (e.g. 
topological groups) 

• relies on the notion of categorical product



Categorical product
• Suppose that X, Y are objects in a category C. Then X and Y have a 

product if ∃ object X×Y and arrows π1: X×Y → X, π2: X×Y → Y so 
that the following universal property holds

• Example: in the category Set of sets and functions, the cartesian 
product satisfies the universal property 

• Any category with (binary) categorical products is monoidal, with 
the categorical product as monoidal product 

X×Y

Z

X Yπ1 π2

f g
h

for any object Z and arrows 
f: Z → X, g: Z → Y,  

∃ unique h: Z → X×Y s.t.  
h ; π1 = f and h ; π2 = g



• If X is a preorder, considered as a category, what 
does it mean if X has (binary) categorical products? 

• In Set, the categorical product is the cartesian 
product 

• What is the product in the category of categories 
and functors? 

• What is the product in the category of monoids 
and homomorphisms?

Exercise



Lawvere categories
• Suppose that (Σ, E) is an algebraic theory 

• Define a category L(Σ,E) with  

• Objects: natural numbers 

• Arrows from m to n: n tuples of Σ-terms, each using possibly m variables x1, 
x2, …, xm, modulo the equations of E 

• Composition is substitution

Examples in the theory of monoids 

2 1

It is also possible (and 
elegant) to view L(Σ,E) as  
the free category with 
products on the data 

specified in (Σ,E)

(x1⋅x2) 2 1(x2⋅x1)

1 1(x1⋅e) = 1 1(x1)



• Lawvere categories have (binary) categorial products: 
m×n := m+n.  

Q1. What are the projections? 

• In any category with binary products there is a 
canonical arrow  Δ: X→X×X called the diagonal.  

Q2. How is it defined? 

Q3. What is L(∅,∅)? Can you find a simple way of 
describing it?

Exercise



Models categorically 
(Functorial semantics)

• A functor F: C → D is product-preserving if 

F(X×Y) = F(X) × F(Y) 

• Theorem. To give a model of (Σ,E) is to give a product-
preserving functor F: L(Σ,E) → Set 

Proof idea: since m = 1+1+…+1 (m times), to give a product 
preserving functor F from L(Σ,E) it is enough to say what F(1) is. 

• By changing Set to other categories, we obtain a nice 
generalisation of classical universal algebra, with examples 
such as topological groups, etc.



Limitations of algebraic theories

• Copying and discarding built in 

• But in computer science (and elsewhere), we often 
need to be more careful with resources 

• Consequently, there are also no bona fide 
operations with coarities other than one

1 2(x1, x1)2 1(x1) 2 1(x2)

1 2c = 1 2(c1,c2)



Plan
• algebraic theories 

• symmetric monoidal theories (resource 
sensitive algebraic theories)

• props 

• bimonoids and matrices of natural numbers  

• Hopf monoids and matrices of integers



Symmetric monoidal 
theories

• symmetric monoidal theories (SMTs) give rise to 
special kinds of symmetric monoidal categories 
called props 

• Symmetric monoidal theories generalise algebraic 
theories, a classical concept of universal algebra, 
but 

• no built in copying and discarding 

• can consider operations with coarities other than 1



Symmetric monoidal 
theories

• A symmetric monoidal theory is a pair (Σ, E) where 

• Σ is a set of generators (or operations), each with an arity, and coarity, 
both natural numbers 

• E is a set of equations (or relations), between compatible Σ-terms 

• Since generators can have coarities, and since we need to be careful with 
resources, we can’t use the standard notion of term (tree).  

• Instead, terms are arrows in a certain symmetric monoidal category, which 
we will construct a la magic Lego 



Generators and terms

: (2, 1)

Running example: the SMT of commutative monoids

: (0, 1)

we always have the following “basic tiles” around

: (1, 1) : (2, 2)



Some string diagrams
• String diagrams: constructions built up from the generators 

and basic tiles, with the two operations of magic Lego

� =

� =

; =



Recall: diagrammatic reasoning
• diagrams can slide along wires  

• wires don’t tangle, i.e. 

• sub-diagrams can be replaced with equal diagrams (compositionality)

A
k l

C
m n

A
k l

C
m n

= =

A
k l

C
m n

functoriality

A
k l

m

m

l

=

A
k l

m

m

k

naturality

i.e. pure wiring obeys the same equations as permutations

= =



Σ - Terms (monoidal)
• Are thus the arrows of the free symmetric monoidal 

category SΣ on Σ  

• Objects: natural numbers 

• Arrows from m to n: string diagrams constructed 
from generators, identity and twist, modulo 
diagrammatic reasoning 

• Monoidal product, on objects: m⊕n := m+n



Equations
x

y

z

x+ y

(x+ y) + z

x

y

z
y + z

x+ (y + z)
= (Assoc)

x

y

x+y

x

y

y+x
= (Comm)

0

x

0 + x

= (Unit)

Note that all equations are of the form t1 = t2 : (m, n), 
that is, t1 and t2 must agree on domain and codomain



The SMT of commutative 
monoids

=

=

=

EquationsGenerators

Let’s call this SMT M, for monoid



Diagrammatic reasoning example

=

=

=

=

= =



Another SMT: commutative 
comonoids

EquationsGenerators

=

=

=
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From SMTs to symmetric 
monoidal categories

• Every symmetric monoidal theory (Σ,E) yields a free strict 
symmetric monoidal category S(Σ,E)  

• Object: natural numbers 

• Arrows: monoidal Σ-terms, taken modulo equations in E 

• Such categories are an instance of props (product and 
permutation categories) 



props
• A prop (product and permutation category) is 

• strict symmetric monoidal 

• objects = natural numbers 

• monoidal product on objects = addition 

• i.e. m⊕n = m+n



Examples
1. Any symmetric monoidal theory gives us a prop 

2. The strict symmetric monoidal category F 

• arrows from m to n are all functions from the m element 
set {0, …, m-1} to the n element set {0, … , n-1}  

3.The free strict symmetric monoidal category on one 
object, the category P of permutations  

4. The category I with precisely one arrow from any m to n is 
a prop



Morphisms of props
• A morphism of props F: X→Y is an identity on objects 

symmetric monoidal functor 

• identity-on-objects: F(m) = m 

• strict: F(C ⊕ D) = F(C) ⊕ F(D) 

• symmetric monoidal: F(twm,n) = twm,n 

• functor F(Im)=Im, F(C ; D) = F(C) ; F(D)  

• In other words, all the structure is simply preserved on the 
nose — easy peasy



Models
• Recall: models of algebraic theories are finite product preserving functors, 

often to Set 

• We can define models of an SMT to be symmetric monoidal functors, a 
generalisation of the notion of finite product preserving 

• Some computer science intuitions: 

• SMTs, like M, are a syntax  

• props like F are a semantics 

• homomorphisms map syntax to semantics 

• when the map is an isomorphisms, we have an equational characterisation, 
and a sound and fully complete proof system to reason about things in F



Example

• So M is an equational characterisation of F 

• or the “commutative monoids is the theory of functions”

As props, M is isomorphic to F



Morphisms from (props obtained from) SMTs

• Let us define a morphism [[-]] : M → F

• M is obtained from a symmetric monoidal theory (Σ, E), 
thus its arrows are constructed inductively 

• To define [[-]] it thus suffices to 

• say where the generators in Σ are mapped 

• check that the equations in hold in F

• This is a general pattern when defining morphisms from 
a prop obtained from an SMT



[[-]]: M → F
7�!

7�! {} → {1}

{1,2} → {1}

= (Assoc)

= (Comm)

= (Unit)

Simple exercise: check the following hold in F



Soundness
• Simple observation: the fact that we have a 

homomorphism [[–]] : M → F means that 
diagrammatic reasoning in M is sound for F

Q1. What property of [[–]] do we need to ensure 
completeness? 

Q2. If we have soundness and completeness, is this 
enough for [[–]] to be an isomorphism? (i.e. invertible)



Full and faithful
• To show that a morphism of props F: X→Y is an 

isomorphism it suffices to show that it is full and 
faithful 

• full: for every arrow g of Y there exists an arrow f of 
X such that F(f) = g 

• faithful: given arrows f, f’ in X, if F(f)=F(f’) then f = f’

So full and faithful functor from a (free PROP on an) SMT  
= sound and fully complete equational charaterisation



[[–]] : M → F
• full: every function between finite sets can be 

constructed from the two basic building blocks 
together with permutations 

• faithful: every diagram in M can be written as 
multiplications followed by units, which 
corresponds to a factorisation of a function as an 
surjection followed by an injection. This 
factorisation is unique “up-to-permutation”.



Free things
• A free “something on X” is one that satisfies a universal 

property — it’s the “smallest” thing that contains X which 
satisfies the properties of “something” 

• e.g. free “monoid on a set Σ” is the set of finite words Σ*

X

F G



Free strict symmetric monoidal 
category on one object

• Any ideas? 

• Recall: there is a category 1 with one object and one arrow 

• Let X be the free symmetric monoidal category on 1

• There should be a functor from 1 to X

• For any functor to a strict symmetric monoidal category Y, there should be a 
strict symmetric monoidal functor X to Y such that the diagram below commutes

1

X Y

functorfunctor

strict symmetric  
monoidal functor



Plan
• algebraic theories 

• symmetric monoidal theories (resource sensitive 
algebraic theories) 

• props 

• bimonoids and matrices of natural numbers 

• Hopf monoids and matrices of integers



• Combines generators and equations of the SMTs of 
monoids and comonoids 

• Intuition: “numbers” travel on wires from left to right

The monoid structure 
acts as addition/zero

The comonoid structure 
acts as copying/discarding

x

y
x+y

0

x
x

x

x

The SMT of bimonoids



The SMT of bimonoids
• all the generators we have seen so far 

• monoid and comonoid equations 

• “adding meets copying” - equations compatible with intuition

=

= = =

=

=

=

=

=

=



Mat
• A PROP where arrows m to n are n×m matrices of natural 

numbers  

• e.g. 

• Composition is matrix multiplication 

• Monoidal product is direct sum 

• Symmetries are permutation matrices

�
0 5

�
: 2 ! 1

✓
3
15

◆
: 1 ! 2

✓
1 2
3 4

◆
: 2 ! 2

A1 �A2 =

✓
A1 0
0 A2

◆



• Theorem. B is isomorphic to the Mat

• ie. bimonoids is the theory of natural number matrices  

• natural numbers themselves can be seen as certain (1,1) 
diagrams, with the recursive definition below 

• as we will see, the algebra (rig) of natural numbers follows

0 :=

k+1 :=
k

B and Mat

+1 is “add one path”



m

n
m+n=

m n nm=

m
m

m
=

m

m
m=

Exercise

0 :=

k+1 :=
k

Given , prove

1. 

2.

3.

4.



Proof B≅Mat

�
1 1

�
: 2 ! 1

() : 0 ! 1

✓
1
1

◆
: 1 ! 2

() : 1 ! 0

7!
7!
7!
7!

Full - easy!  
Recursively define a syntactic sugar for matrices
Faithful - harder
Use the fact that equations are a presentation of a  
distributive law, obtain factorisation of diagrams as 
comonoid structure followed by monoid structure - normal form

Recall: Since B is an SMT, suffices to say where generators go 
(and check that equations hold in the codomain)



Normal form for B
• Every diagram can be put in the form  

• comonoid ; monoid  

• Centipedes



Matrices
• To get the ijth entry in the matrix, count the paths 

from the jth port on the left to the ith port on the right 

• Example:

2

3

4

✓
1 2
3 4

◆



Q1. Show that the monoidal product in B≅Mat is the categorical product 

Q2. The categorical coproduct of X, Y, if it exists satisfies the following universal property 

show that the monoidal product in B≅Mat is the categorical coproduct.  

When a monoidal product satisfies both the universal properties of products and coproducts, 
we say that it is a biproduct. 

In fact B≅Mat is the free category with biproducts on one object.  

Q3 (challenging). Given a category C, describe the free category with biproducts on C.  

Exercise

X+Y

Z

X Yi1 i2

f g
h

for any object Z and arrows 
f: X → Z, g: Y → Z,  

∃ unique h: X+Y → Z s.t.  
i1 ; h = f and i2 ; h = g



Lawvere categories with string 
diagrams 

(i.e. how ordinary syntax looks, with string diagrams)

σ... (σ ∈ Σ)

=

=

=

and what else?



In particular, notice that B is isomorphic (as a symmetric monoidal 
category) to the Lawvere category of commutative monoids!

σ...
= ...

σ

σ...

...

σ...
= ...

Exercise: show that the monoidal product now  
becomes a categorical product 



Plan
• algebraic theories 

• symmetric monoidal theories (resource sensitive 
algebraic theories) 

• props 

• bimonoids and matrices of natural numbers  

• Hopf monoids and matrices of integers



Putting the n in ring: Hopf monoids
• generators of bimonoids + antipode

• think of this as acting as -1

• equations of bimonoids and the following

=

= =

= =



-1 ⋅ -1 = 1
=

=

=

=

=

=

=

=



The ring of integers
• Simple induction:  

• Recall: in B, the arrows 1→1 were in one-to-one 
correspondence with natural numbers 

• In H, the arrows 1→1 are in one-to-one 
correspondence with the integers

n n=

0 :=

k+1 :=
k

-n := n



• Verify that, in H, for all integers m, n we have

Exercise

m

n
m+n=

m n nm=



• Arrows m to n are n×m matrices of integers 

• composition is matrix multiplication 

• monoidal product is direct sum 

• MatZ is equivalent to the category of finite dimensional 
free Z-modules 

• SMT H is isomorphic to the PROP MatZ

MatZ



Path counting in MatZ
• To get the ijth entry in the matrix, count the  

• positive paths from the jth port on the left to the ith port on the right (where 
antipode appears an even number of times) 

• negative paths between these two ports (where antipode appears an odd 
number of times) 

• subtract the negative paths from the positive paths 

• Example:
✓

0 �1
1 0

◆



Proof H≅MatZ

• Fullness easy  

• Faithfulness more challenging: put diagrams in the form

�
1 1

�
: 2 ! 1

() : 0 ! 1

✓
1
1

◆
: 1 ! 2

() : 1 ! 0

7!
7!
7!
7!

copying ; antipode ; adding

7! (�1) : 1 ! 1



• We saw that B is the isomorphic, as a symmetric 
monoidal category, to the Lawvere category of 
commutative monoids. 

• Which Lawvere category is H isomorphic to?

Exercise


