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Algebraic theories

Universal Algebra

. A (presentation of) algebraic theory is a pair (2, £) where

e > Is a set of generators (or operations), each with an arity, a
natural number

o [ is a setof equations (or relations), between 2-terms built up
from generators and variables

' abelian groups
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> - terms (cartesian)

X € Var t1to...tm O0€e2 ar(o)=m

X o(ti, to, ..., tm)

.e. terms a trees with internal nodes labelled by
the generators and the leaves labelled by variables
and constants (generators with arity 0)



Models - classically

» To give a model of an algebraic theory (2,E£), choose a set X
» for each operation o : kin 2, choose a function [[0]] : X X

* now for each term ¢, given an assignment of variables a, we can
recursively compute the element of [[1]], € X which is the “meaning” of t

* need to ensure that for every assignment of variables a, and every
equation t; = o in &£, we have [[11]]4 = [[12]]4 @s elements of X

 Example 1:to give a model of the algebraic theory of monoids is to give a
monoid

 Example 2: to give a model of the theory of abelian groups is to give an
abelian group



Algebraic theories,
categorically

* There is a nice way to think of algebraic theories
categorically, due to Lawvere in the 1960s

* get rid of “countably infinite set of variables”,
“variable assignments” etc.

* generalise - models don’t need to be sets (e.Q.
topological groups)

* relies on the notion of categorical product



Categorical product

e Suppose that X, Y are objects in a category C. Then Xand Y have a
oroduct if 3 object XxY and arrows 1my: XxY = X, To: XxY = Y so

that the following universal property holds

XXY for any object Zand arrows
L= X g Z— Y,
3 unigue h: £ = XxY s.t.
h;ﬂ1=faﬂdh;ﬂ2=g
o Example: in the category Set of sets and functions, the cartesian

product satisfies the universal property

* Any category with (binary) categorical products is monoidal, with
the categorical product as monoidal product



Exerclse

* |f XIs a preorder, considered as a category, what
does it mean if X has (binary) categorical products?

* |In Set, the categorical product is the cartesian
product

* \What is the product in the category of categories
and functors?

 \What is the product in the category of monoids
and homomorphisms?



| awvere categories

e Suppose that (2, E£) is an algebraic theory
 Define a category L ¢y with
e Objects: natural numbers

« Arrows from m to n: n tuples of 2-terms, each using possibly m variables x4,
X5, ..., Xm, Modulo the equations of £

o Composition is substitution

Examples in the theory of monoids It is also possible (and

elegant) to view L k) as
(X1-X2) (X2 X1) the free category with
22— 2 —— 1 products on the data

specified in (2,E)

) g o L)y



e Lawvere categories have (binary) categorial products:
MXN ;= Mm+n.

(1. What are the projections?

* |n any category with binary products there is a
canonical arrow A: X—=XxX called the diagonal.

Q2. How is it defined?

Q3. What is Lz 2)? Can you find a simple way of
describing it”



Models categorically
(Functorial semantics)

* Afunctor F: C = D is product-preserving if
FIXxY) = F(X) x F(Y)

« Theorem. To give a model of (2,E) is to give a product-
preserving functor F: L r) = Set

Proof idea: since m = 1+1+...+1 (m times), to give a product
preserving functor F from L gy it is enough to say what F(1) is.

* By changing Set to other categories, we obtain a nice
generalisation of classical universal algebra, with examples
such as topological groups, etc.



Limitations of algebraic theories

* Copying and discarding built in
(X1)

(x2) s ¢ XX,

2 > ] 2

* But in computer science (and elsewhere), we often
need to be more careful with resources

* Consequently, there are also no bona fide
operations with coarities other than one

1 —S o = 2%,
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Symmetric monoidal
theories

* symmetric monoidal theories (SMTs) give rise to
special kinds of symmetric monoidal categories
called props

* Symmetric monoidal theories generalise algebraic
theories, a classical concept of universal algebra,
but

* NO built in copying and discarding

e can consider operations with coarities other than 1



Symmetric monoidal
theories

* A symmetric monoidal theory is a pair (2, £) where

* > is a set of generators (or operations), each with an arity, and coarity,
both natural numbers

e £ is a setof equations (or relations), between compatible >-terms

e Since generators can have coarities, and since we need to be careful with
resources, we can't use the standard notion of term (tree).

* [nstead, terms are arrows in a certain symmetric monoidal category, which
we will construct a la magic Lego



(Generators and terms

Running example: the SMT of commutative monoids

Dg_ - (2,1) O— 1 (0,1)

we always have the following “basic tiles” around

- (1,1) >< . (2,2)




Some string diagrams

e String diagrams: constructions built up from the generators

and basic tiles, with the two operations of magic Lego
DD— D = }
J
—
b DD— = DQ_
X P = X




Recall: diagrammatic reasoning

* diagrams can slide along wires

k | m k
k I k I k | m
— A A A A
m c n m c n m c n
— — ] — m m k |
I A L=

functoriality naturality

e wires don’t tangle, I.e.

SOC- = 252555

l.e. pure wiring obeys the same equations as permutations

e sub-diagrams can be replaced with equal diagrams (compositionality)



> - Terms (monoidal)

Are thus the arrows of the free symmetric monoidal
category Ss on >

Objects: natural numbers
Arrows from m to n: string diagrams constructed
from generators, identity and twist, modulo

diagrammatic reasoning

Monoidal product, on objects: m®n .= m+n



Eguations

—_— ssoc
Y Y+ z
V4 Z

X X
o= - D00 o
X+y y+X
y

Note that all equations are of the form t1 = f2: (m, n),
that is, ty and t2 must agree on domain and codomain



The SMT of commutative

monoids
Generators Equations
00— - e
S
B S
O——o
—

Let’s call this SMT M, for monoid



Diagrammatic reasoning example

_________________

-—ees en e e o o) -—ees e e e e e s e e




Another SMT: commutative
comonoids

Generators Equations

—o(_

—e

—o__ - —o0C
- T
—* - —
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From SMTs to symmetric
monolidal categories

e Every symmetric monoidal theory (2,E) yields a free strict
symmetric monoidal category S r)

e Object: natural numbers

o Arrows: monoidal >-terms, taken modulo equations in &

e Such categories are an instance of props (product and
permutation categories)



Drops

* A prop (product and permutation category) is
e strict symmetric monoidal
e Objects = natural numbers
 monoidal product on objects = addition

* .. MmM®N = Mm+n



Examples

1. Any symmetric monoidal theory gives us a prop
2. The strict symmetric monoidal category F

e arrows from m to n are all functions from the m element
set {0, ..., m-1} to the n element set {0, ... , n-1}

3.The free strict symmetric monoidal category on one
object, the category P of permutations

4. The category | with precisely one arrow from any m to n is
a prop



Morphisms of props

A morphism of props F: X—Y Is an identity on objects
symmetric monoidal functor

e |dentity-on-objects: F(m) = m

o strict: F(C @ D) =F(C) ® F(D)

o symmetric monoidal: F(tw, ) = twmn
e functor F(/)=1», F(C; D) = F(C) ; F(D)

e |n other words, all the structure is simply preserved on the
Nnose — easy peasy



Moaels

* Recall: models of algebraic theories are finite product preserving functors,
often to Set

* We can define models of an SMT to be symmetric monoidal functors, a
generalisation of the notion of finite product preserving

e Some computer science intuitions:

SMTs, like M, are a syntax

props like F are a semantics

homomorphisms map syntax to semantics

when the map is an isomorphisms, we have an equational characterisation,
and a sound and fully complete proof system to reason about things in F



Example

As props, M is isomorphic to F

* SO0 M is an equational characterisation of F

* or the “"commutative monoids is the theory of functions”



Morphisms from (props obtained from) SMTs

* Let us define a morphism [[-]] : M — F

M is obtained from a symmetric monoidal theory (2, E),
thus its arrows are constructed inductively

* Jo define [[-]] it thus suffices to
e say where the generators in 2 are mapped
* check that the equations in hold in F

e This is a general pattern when defining morphisms from
a prop obtained from an SMT






Soundness

e Simple observation: the fact that we have a
homomorphism [[-]] : M = F means that
diagrammatic reasoning in M is sound for F

Q1. What property of [[-]] do we need to ensure
completeness?

Q2. It we have soundness and completeness, is this
enough for [[-]] to be an isomorphism? (i.e. invertible)



Full and taithful

* Jo show that a morphism of props F: X—Y is an

iIsomorphism it suffices to show that it is full and
faithful

* full: for every arrow g of Y there exists an arrow f of
X suchthat F(/) = g

* faithful: given arrows f, 'in X, it F(H=F(f) then f=f

So full and faithtul functor from a (free PROP on an) SMT
= sound and fully complete equational charaterisation



e full

=] M —F

: every function between finite sets can be

constructed from the two basic building blocks
together with permutations

mu
COr

Ssur|

faithful: every diagram in M can be written as

tiplications followed by units, which
responds to a factorisation of a function as an

ection followed by an injection. This

factorisation is unique “up-to-permutation”.



-ree things

* A free “something on X” is one that satisties a universal
property — it's the "smallest” thing that contains X which
satisfies the properties of “something”

R e
X

* e.g. free "monoid on a set 2" is the set of finite words 2~



Free strict symmetric monoidal
category on one object

* Any ideas?
* Recall: there is a category 1 with one object and one arrow
e Let X be the free symmetric monoidal category on 1
e There should be a functor from 1 to X

e For any functor to a strict symmetric monoidal category Y, there should be a
strict symmetric monoidal functor X to Y such that the diagram below commutes

strict symmetric
monoidal functor

functor functor
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The SMT of bimonoids

 Combines generators and equations of the SMTs of
monoids and comonoids

e Intuition: “numbers” travel on wires from left to right

The monoid structure The comonoid structure

acts as addition/zero acts as copying/discarding

X+Yy




The SMT of bimonoids

 all the generators we have seen so far

* monoid and comonoid equations

Xo— = _p— —o__ - —oOC
?‘F% ﬂéﬂq
e —°_ -

e "adding meets copying” - equations compatible with intuition

DD—C -

O_
o—

:




Mat

A PROP where arrows m to n are nxm matrices of natural
numbers

. . 3\ . L2
eg. (0 5):2—1 (15)1%2 (3 4>.2%2
Composition is matrix multiplication

Monoidal product is direct sum

A
A1@A2:< 01 14(1)2 >

Symmetries are permutation matrices




B and Mat

 Theorem. B is isomorphic to the Mat
* |e. bimonoids is the theory of natural number matrices

e natural numbers themselves can be seen as certain (1,1)
diagrams, with the recursive detinition below

* as we will see, the algebra (rig) of natural numbers follows

[ - e o
Kk
— k+1 =

+11s "add one path”




Exerclse

—{D— - . o
Given . prove




Proof B=Mat

Recall: Since B is an SMT, suffices to say where generators go

(and check that equations hold in the codomain)

T = (1 1):2—1
o —  ():0—=1

— = (1):1—>2
—e |+ ():1—0

Full - easy!
Recursively define a syntactic sugar for matrices

Faithful - harder

Use the fact that equations are a presentation of a

distributive law, obtain tactorisation of diagrams as

comonoid structure followed by monoid structure - normal form



Normal form tfor B

* Every diagram can be put in the form

e comonoid : monoid

* Centipedes
—o
O_
@ @



Matrices

* Jo get the ijth entry in the matrix, count the paths
from the jth port on the left to the ith port on the right

 Example:

2@ ()




Exerclse

Q1. Show that the monoidal product in B=Mat is the categorical product

Q2. The categorical coproduct of X, Y, if it exists satisfies the following universal property

X —LX+Y«~2—Y  forany object Zand arrows

p X Z gVY—2Z
f ; g 3 unique h: X+Y = Zs.t.

7 l1;h=rfandiz; h=g

show that the monoidal product in B=Mat is the categorical coproduct.

When a monoidal product satisfies both the universal properties of products and coproducts,
we say that it is a biproduct.

In fact B=Mat is the free category with biproducts on one object.

Q3 (challenging). Given a category C, describe the free category with biproducts on C.



Lawvere categories with string

diagrams
(i.e. how ordinary syntax looks, with string diagrams)

5@1(062) —C —e

—o__ - —0C
e G e and what else?

D al—



Exercise. show that the monoidal product now
becomes a categorical product

In particular, notice that B is isomorphic (as a symmetric monoidal
_category) to the Lawvere category of commutative monoids! '



Plan

algebraic theories

symmetric monoidal theories (resource sensitive
algebraic theories)

Drops

bimonoids and matrices of natural numbers

- Hopf monoids and matrices of integers



Putting the n in ring: Hopt monoids

* generators of bimonoids + antipode

 think of this as acting as -1

* equations of bimonoids and the following






The ring of integers

 Simple induction: —®{D— = {8

e Recall: in B, the arrows 1—1 were In one-to-one
correspondence with natural numbers

* In H, the arrows 1—1 are in one-to-one
correspondence with the integers

[0 )

0 ) —e O—
—\
1) (>

3
[
flL




Exerclse

* Verity that, in H, for all integers m, nwe have

m)~n)l— = nm »—




Mat

* Arrows m to n are nxm matrices of integers
* composition is matrix multiplication
 monoidal product is direct sum

* Matz is equivalent to the category of finite dimensional
free Z-modules

« SMT H is isomorphic to the PROP Matz



Path counting in MatZ

e To get the ijth entry in the matrix, count the

e positive paths from the jth port on the left to the ith port on the right (where
antipode appears an even number of times)

e negative paths between these two ports (where antipode appears an odd
number of times)

e subtract the negative paths from the positive paths

o Example:




Proof H=Matz

T = (1 1):2—>1
o = ():0—=1

—« (}):1+2
—e | ():1—=0

(] > (—1):1—1

* Fullness easy

* Faithfulness more challenging: put diagrams in the form

copying ; antipode ; adding



Exerclse

* We saw that B Is the isomorphic, as a symmetric
monoidal category, to the Lawvere category of
commutative monoids.

* Which Lawvere category is H isomorphic to?



