Lecture 3

Interacting Hopf monoids and graphical linear algebra

Plan

relational intuitions

- Frobenius monoids
- the equations of interacting Hopf monoids
- linear relations
- rational numbers, diagrammatically

Relational intuitions

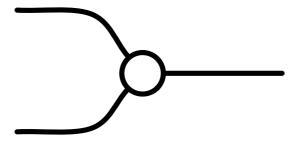
- We have been saying that numbers go from left to right in diagrams
 - this is a **functional**, input/output interpretation

The input/output framework is totally inappropriate for dealing with all but the most special system interconnections. [The input/output representation] often needlessly complicates matters, mathematically and conceptually. A good theory of systems takes the behavior as the basic notion.

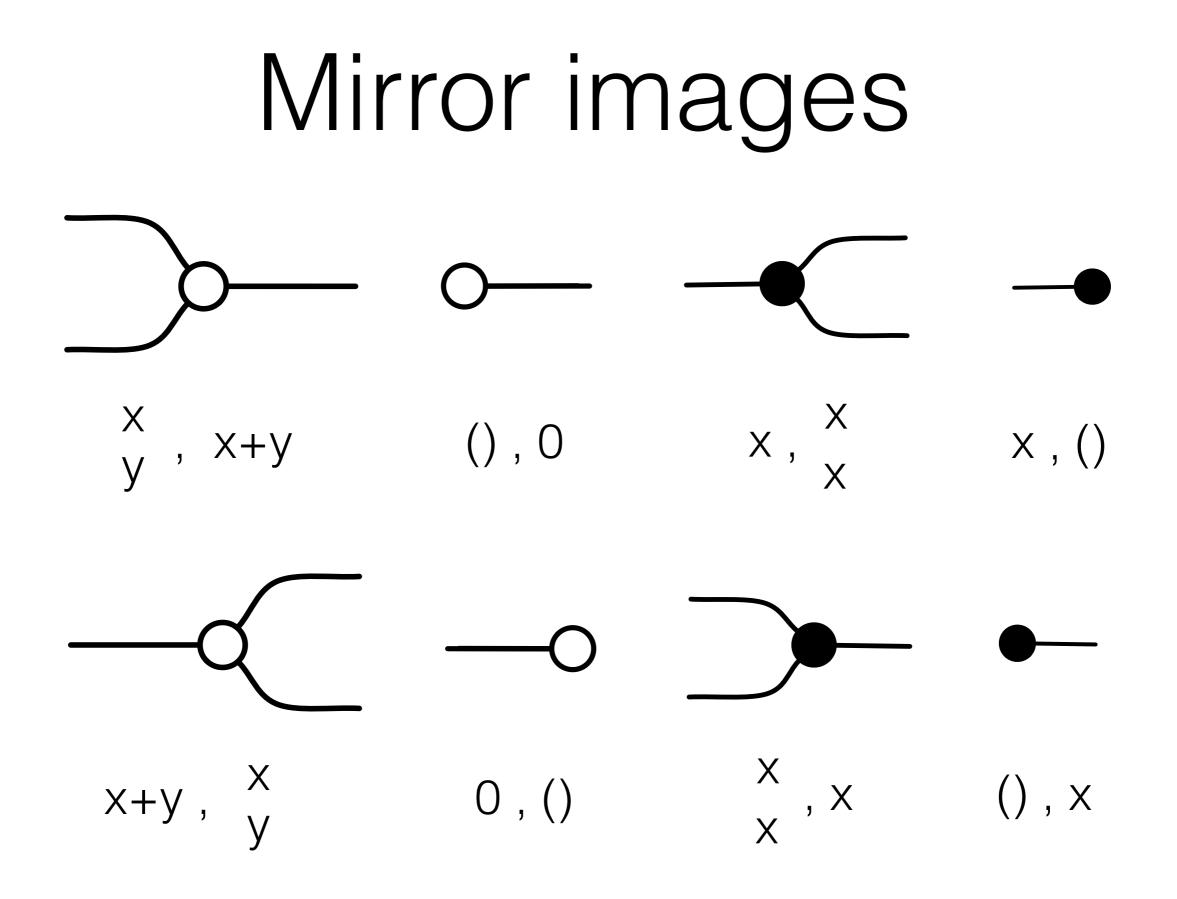
J.C. Willems, Linear systems in discrete time, 2009

 From now on, we will take a relational point of view, a diagram is a contract that allows certain numbers to appear on the left and on the right

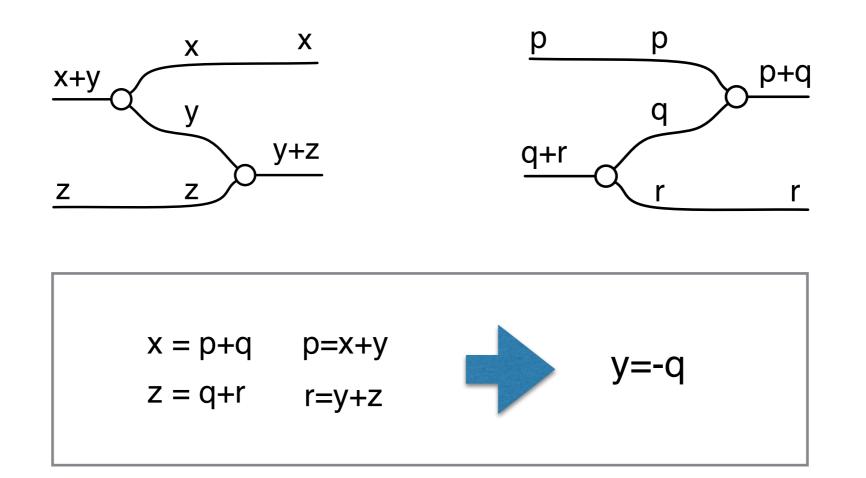
Intuition upgrade



- Intuition so far is this as a function $+: D \times D \rightarrow D$
- From now it will be as a relation of type $DxD \rightarrow D$
- Composition is relational composition

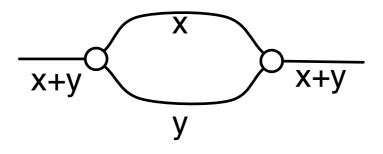


Adding meets adding

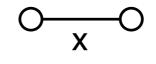


Provided addition yields abelian group (i.e. there are additive inverses), the two are **the same** relation

More adding meets adding

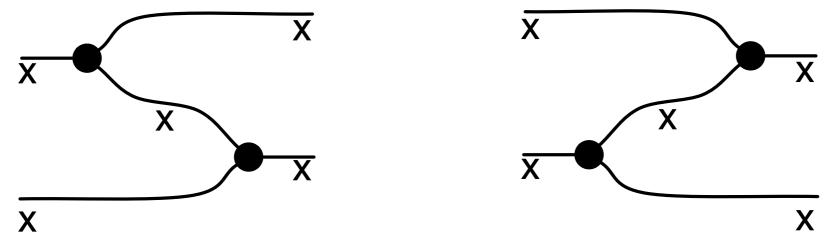


since x and y are free, this is the identity relation

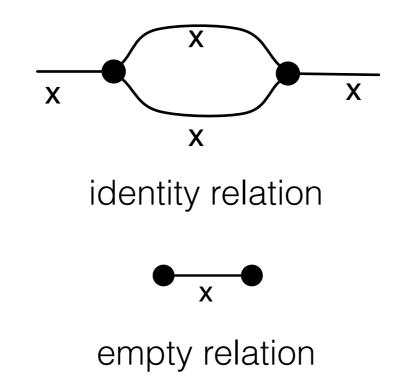


empty relation

Copying meets copying

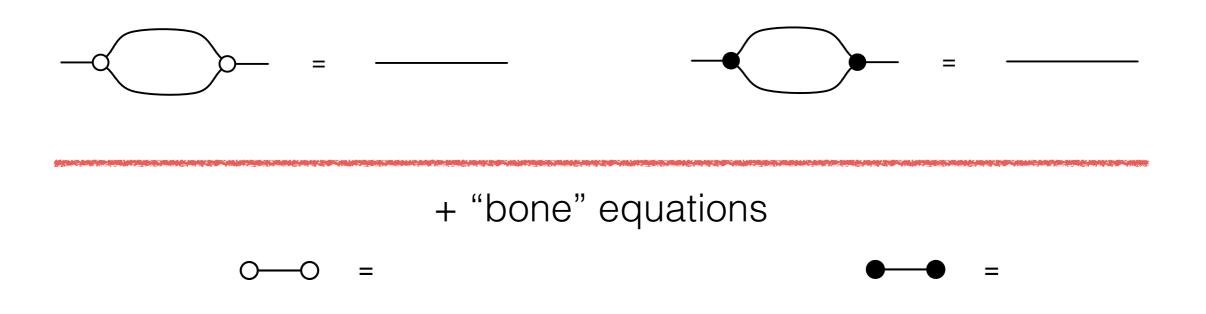


clearly both give the same relation



Two Frobenius structures

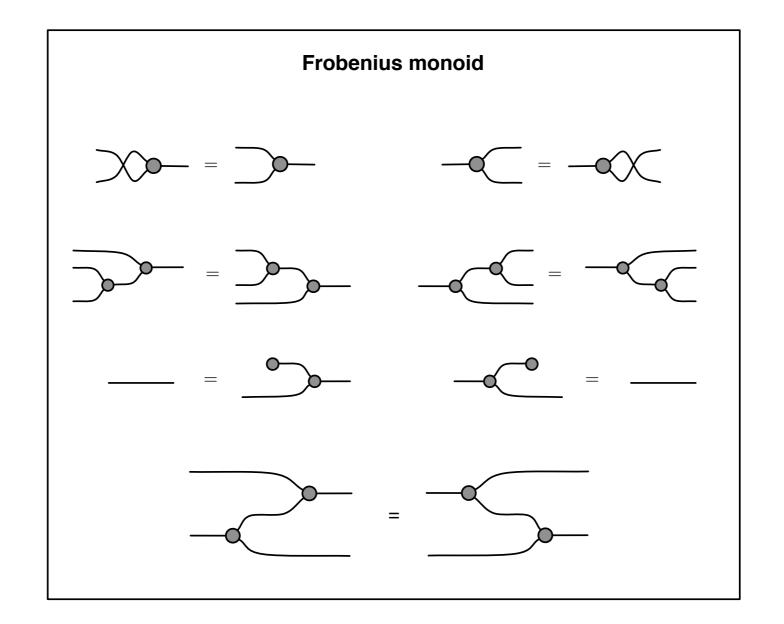
+ special / strongly separable equations

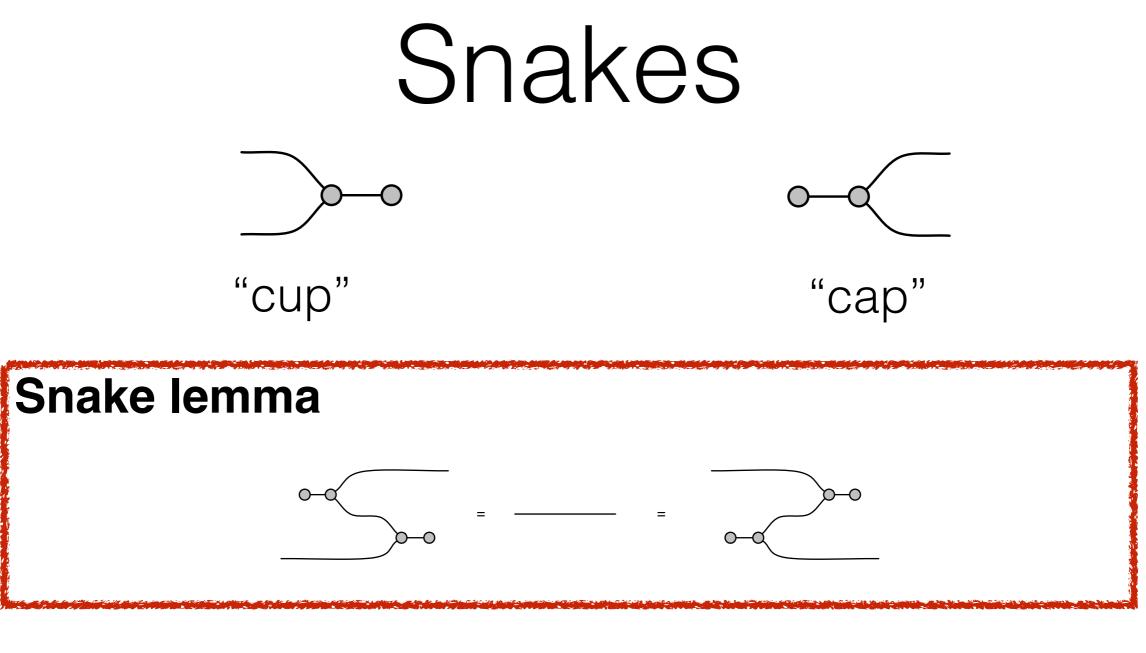


Plan

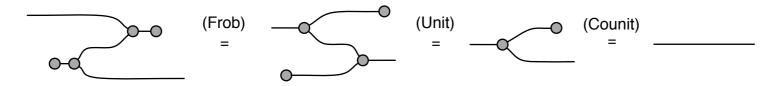
- relational intuitions
- Frobenius monoids
- the equations of interacting Hopf monoids
- rational numbers and linear relations
- graphical linear algebra

Frobenius monoids

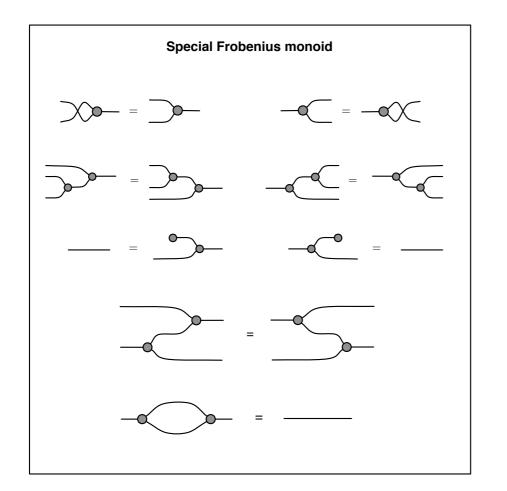




Proof:



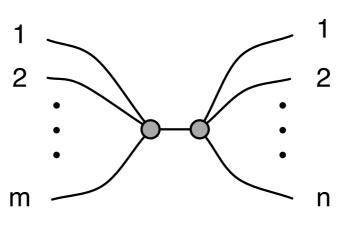
Normal forms



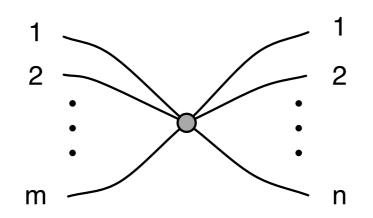
- In B, we saw that every diagram can be factorised into comonoid structure ; monoid structure, this gave us centipedes
- In Frob, every diagram can be factored into monoid structure; comonoid structure, these are often referred to as spiders

Spiders in special Frobenius monoids 1

 In a special Frobenius monoid every connected diagram is equal to one of the form

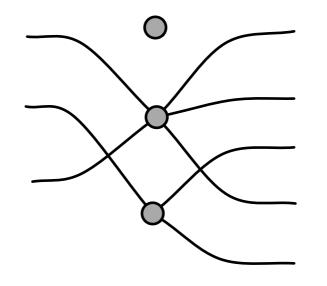


• which suggests the "spider notation"



Spiders in special Frobenius monoids 2

• In general, diagrams are collections of spiders

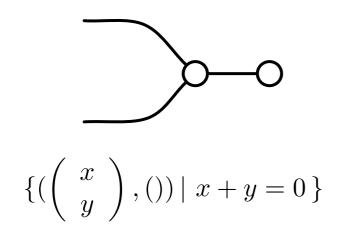


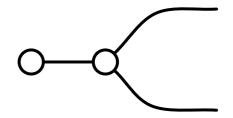
- when two spiders connect, they fuse into one
 - i.e. any connected diagram of type m→n is equal

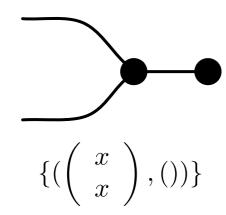
Plan

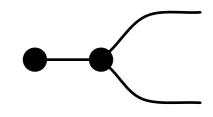
- relational intuitions
- Frobenius monoids
- the equations of interacting Hopf monoids
- rational numbers and linear relations
- graphical linear algebra

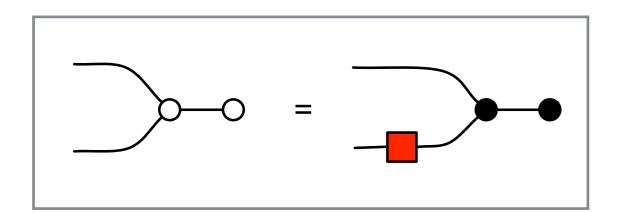
Black and white cups and caps

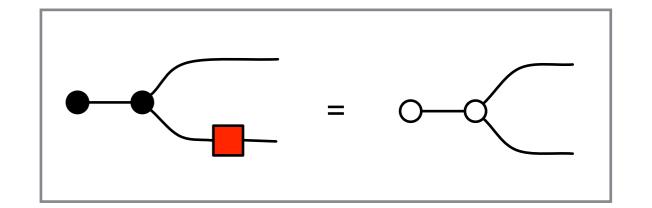




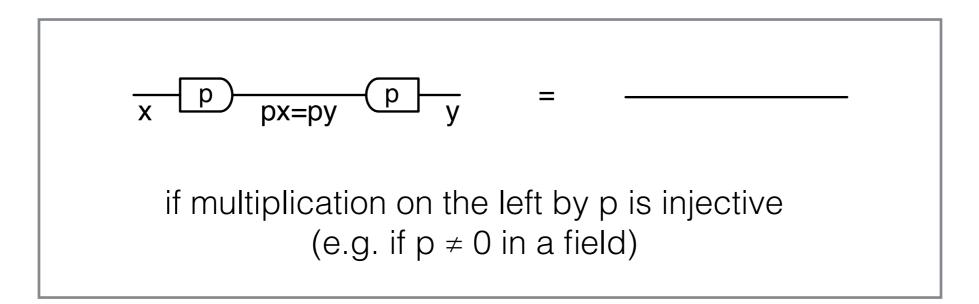


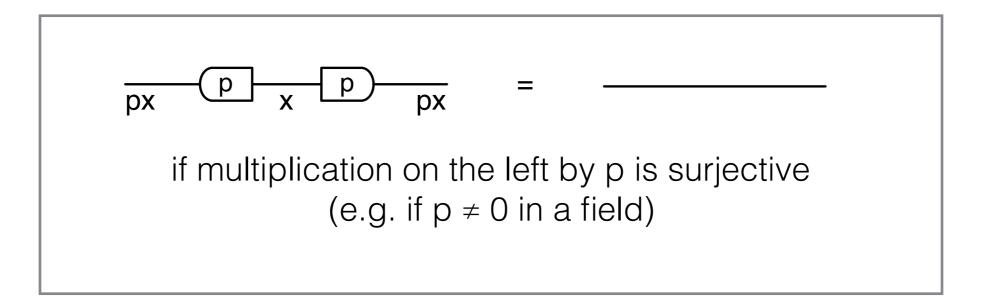




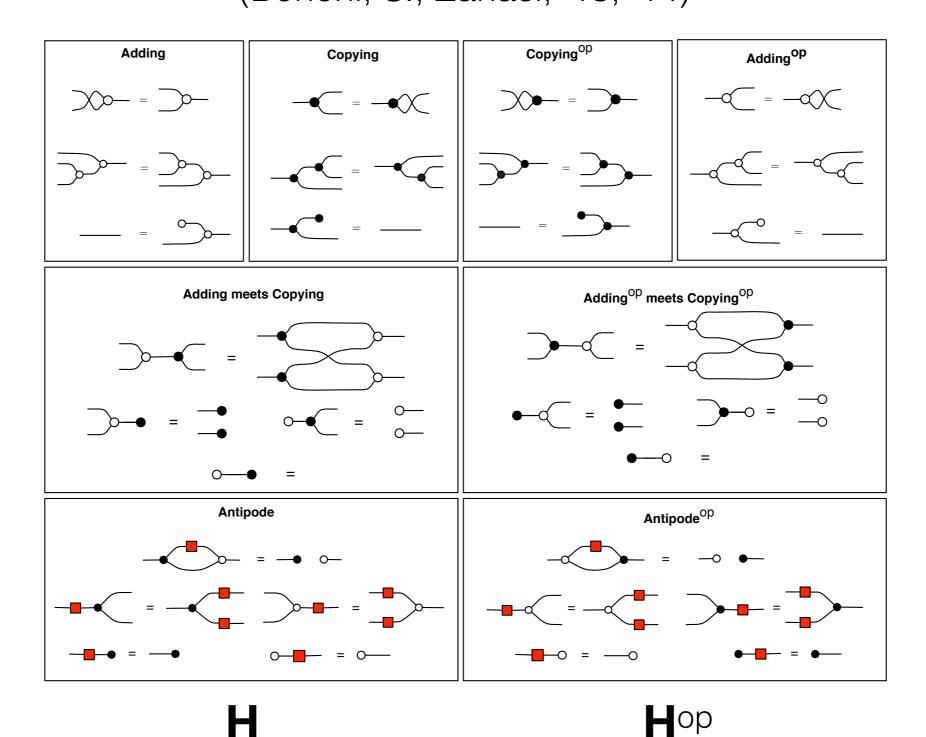


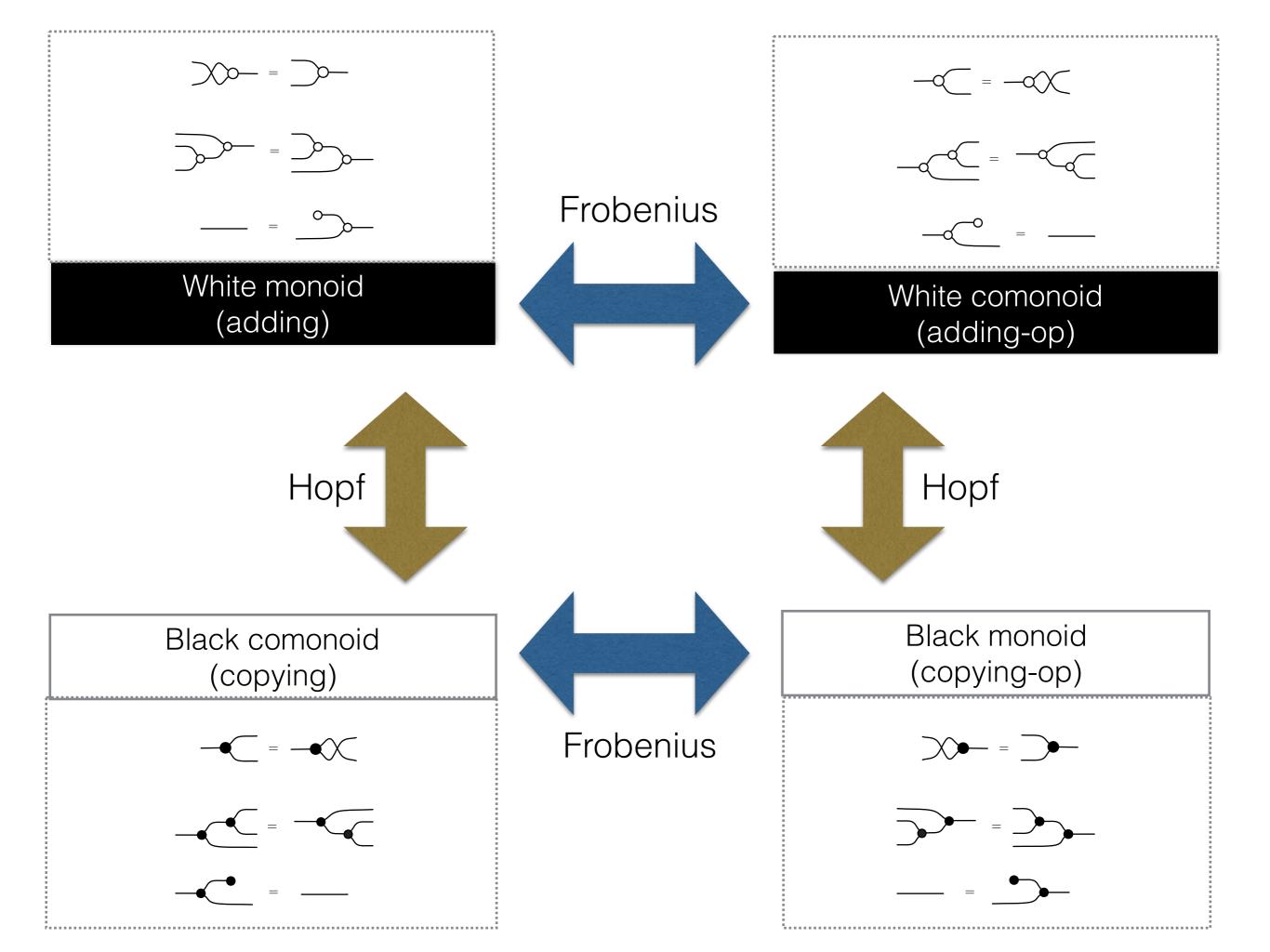
Scalars meet scalars



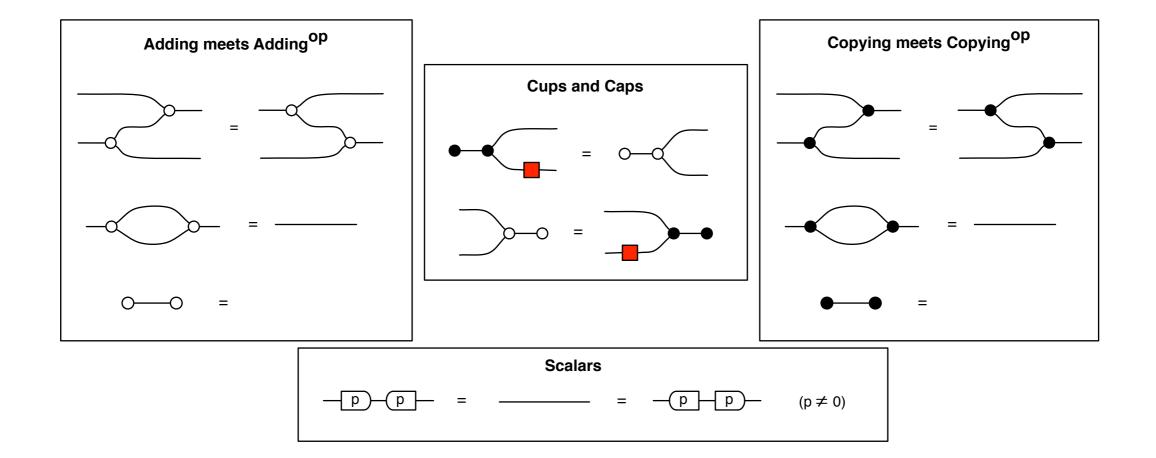


Interacting Hopf Monoids (Bonchi, S., Zanasi, '13, '14)

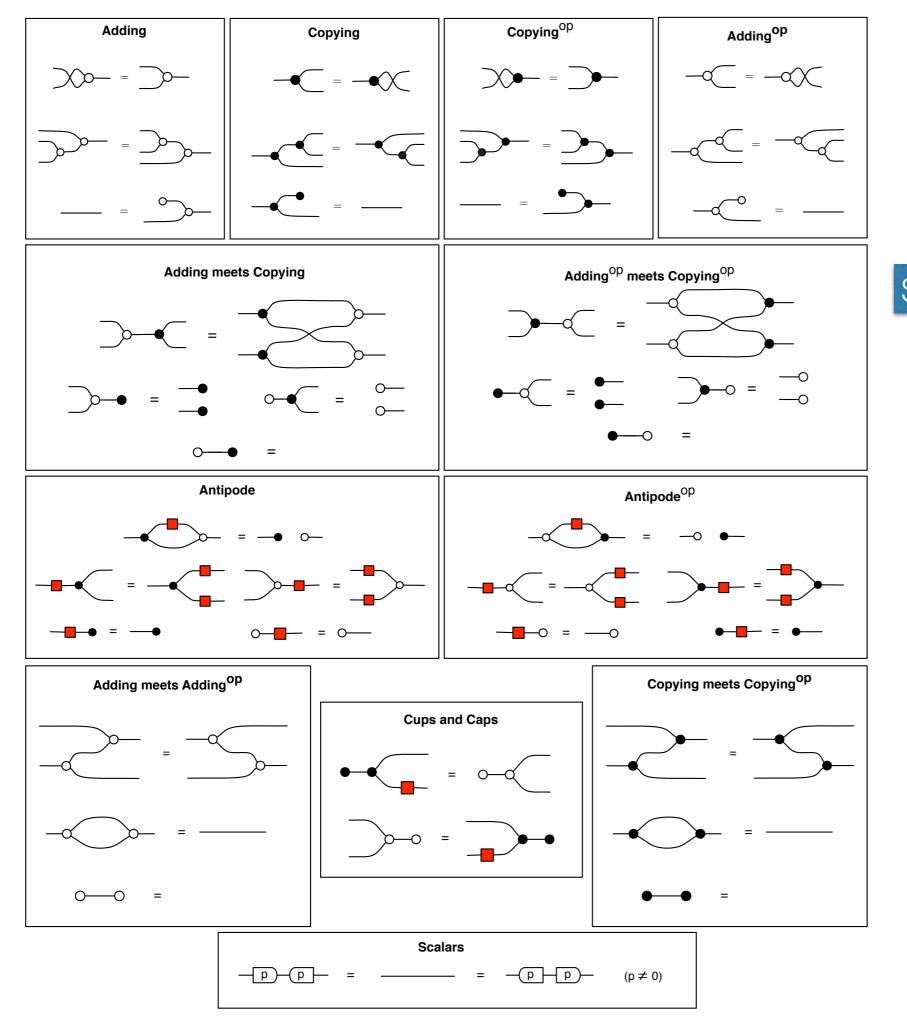




Interacting Hopf Monoids



cf. ZX-calculus (Coecke, Duncan)



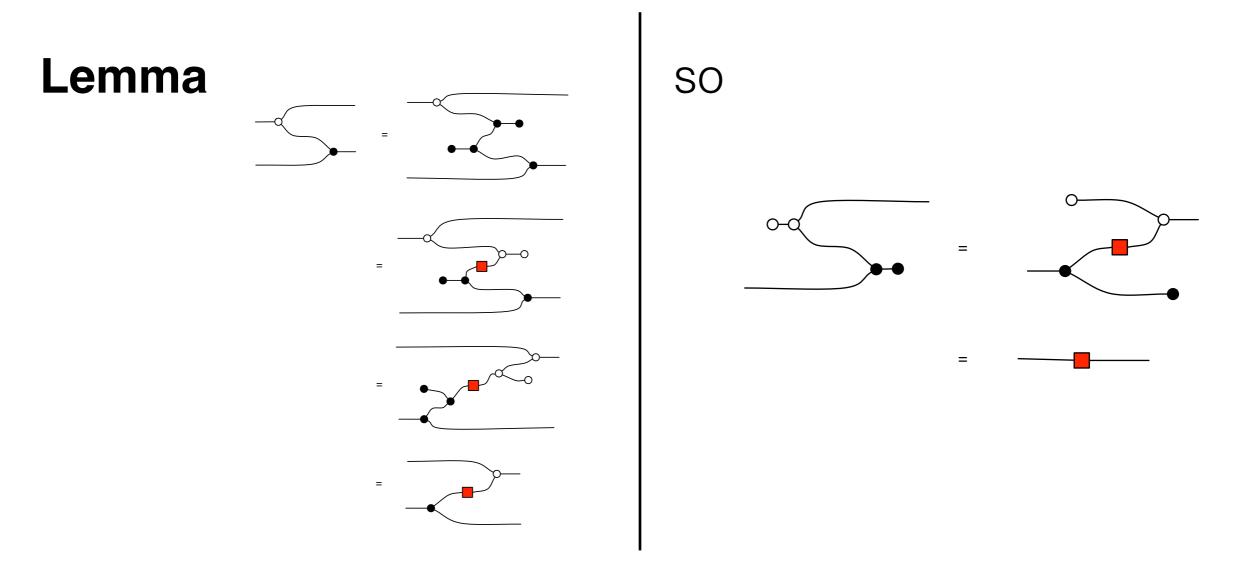
IH

Symmetry 1 - colour inversion

Symmetry 2 - mirror image

Redundancy

• Generators are expressible in terms of other generators, e.g.



Plan

- relational intuitions
- Frobenius monoids
- the equations of interacting Hopf monoids
- rational numbers and linear relations
- graphical linear algebra

Linear subspaces

- Suppose that *V* is a vector space over field *k*
 - A *linear subspace* $U \subseteq V$ is a subset that
 - contains the zero vector, $\boldsymbol{O} \in V$
 - closed under addition, if $u, u' \in U$ then $u+u' \in U$
 - closed under scalar multiplication, if $u \in U$ and $p \in k$ then $p \cdot u \in U$
 - e.g. R² is an R-vector space. What are the linear subspaces?

Exercise

- Suppose that U, V, W are k vector spaces,
 - $R \subseteq U \times V$ is a subspace and
 - $S \subseteq V \times W$ is a subspace
- Show that the relational composition R;S⊆U×W is a subspace

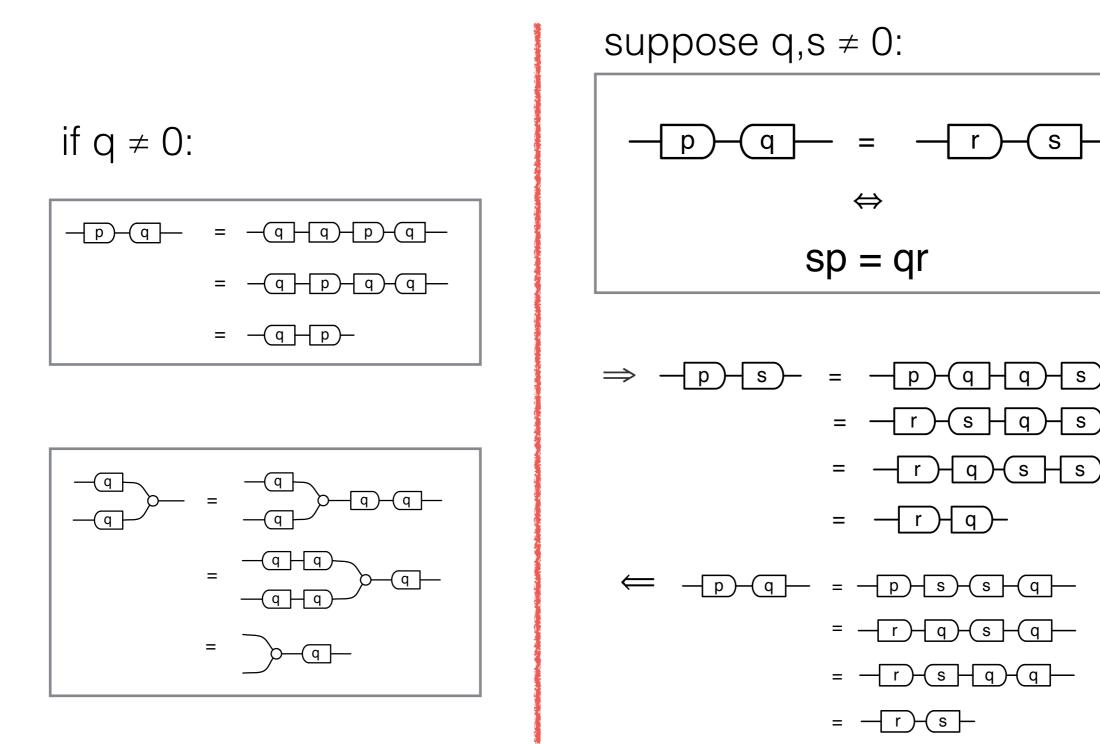
LinRel

- PROP of linear relations over the rationals
 - arrows m to n are subspaces of $\mathbf{Q}^m\times\mathbf{Q}^n$
 - composed as relations
 - monoidal product is direct sum
- IH is isomorphic to LinRel

Where did the rationals come from?

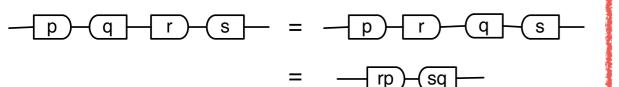
- Recall
 - in **B**, the (1,1) diagrams were the natural numbers
 - in **H**, the (1,1) diagrams were the integers
 - In IH, the (1,1) diagrams include the rationals p/q

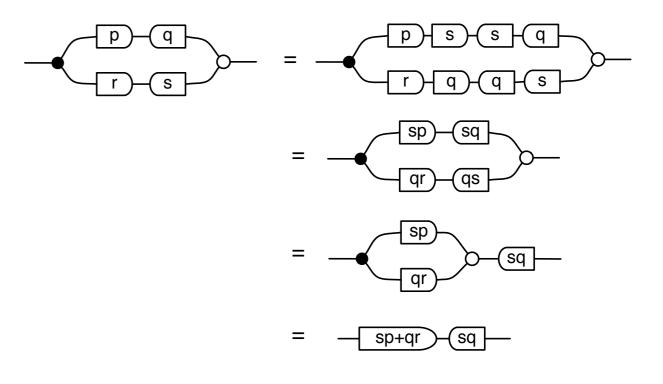
Some Lemmas



Rational arithmetic

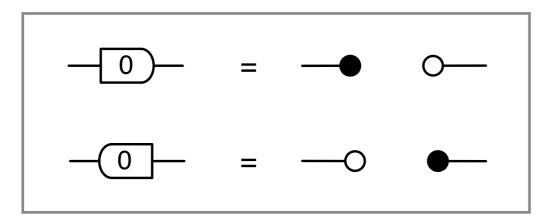
(q,s ≠ 0)





Keep calm and divide by zero

• it's ok, nothing blows up



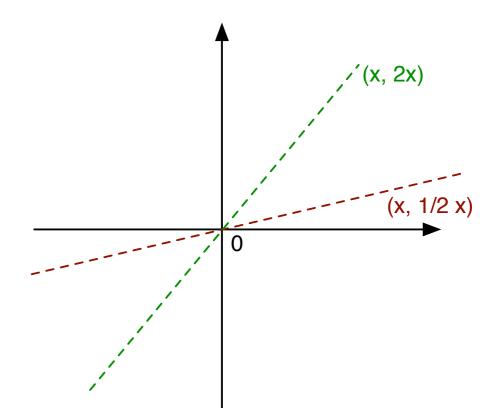
Problems with Zero -Numberphile 1,787,255 views - 2 years ago

- of course, arithmetic with 1/0 is not quite as nice as with proper rationals.
- two ways of interpreting 0/0 (0 \cdot /0 or /0 \cdot 0)

$$-0 - 0 - = -0 - 0$$

Projective arithmetic++

- Projective arithmetic identifies numbers with onedimensional spaces (lines) of Q²
 - one for each rational $p : \{ (x, px) | x \in \mathbf{Q} \}$
 - and "infinity" : { $(0, x) | x \in \mathbf{Q}$ }
- The extended system includes all the subspaces of Q², in particular:
 - the unique zero dimensional space { (0, 0) }
 - the unique two dimensional space { (x,y) | x,y $\in \mathbf{Q}$ }



Plan

- relational intuitions
- Frobenius monoids
- the equations of interacting Hopf monoids
- rational numbers and linear relations
- · graphical linear algebra

Factorisations

- Every diagram can be factorised as a span or a cospan of matrices
- This gives us the two different ways one can think of spaces

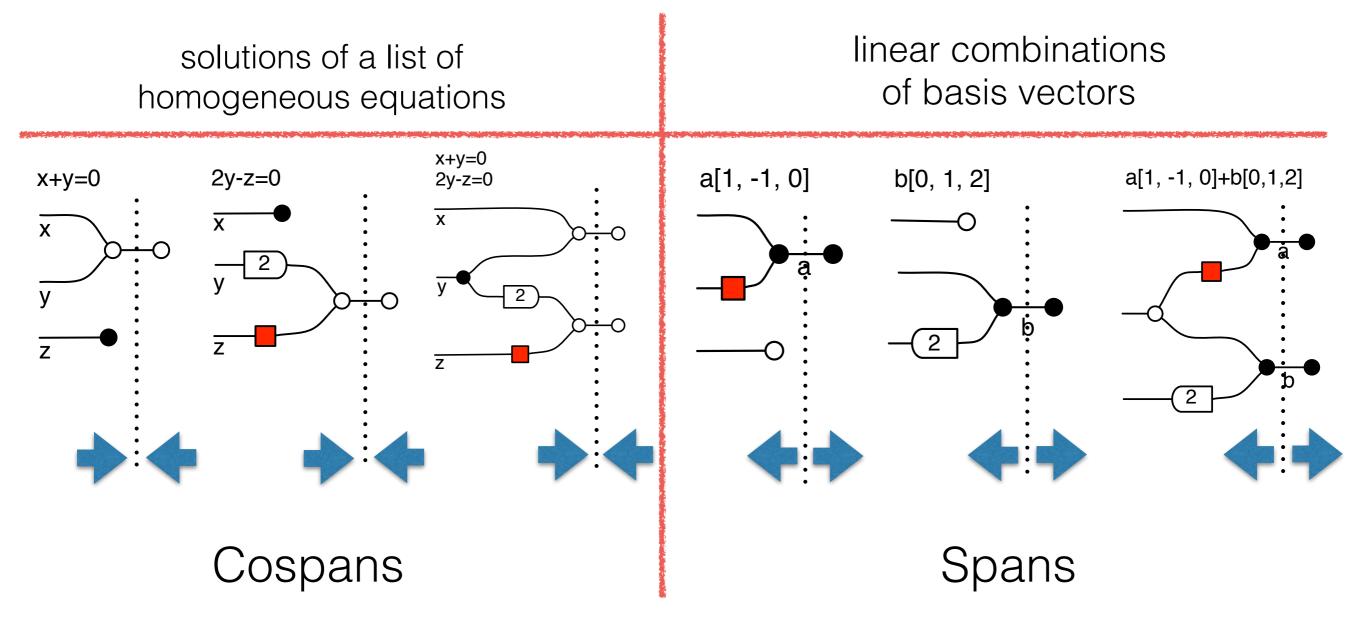


Image and kernel

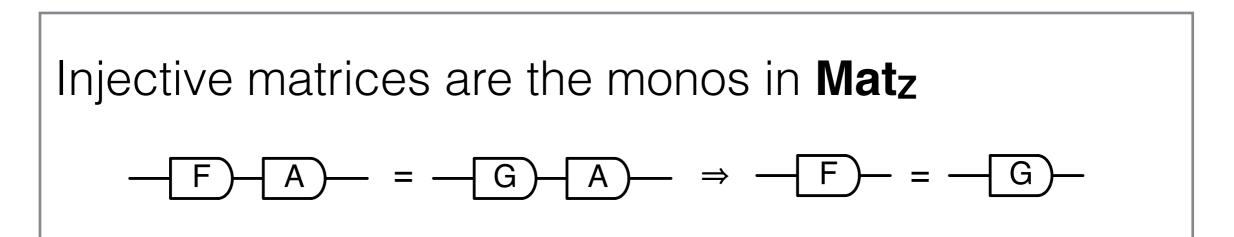
- Definition
 - The **kernel** of A is

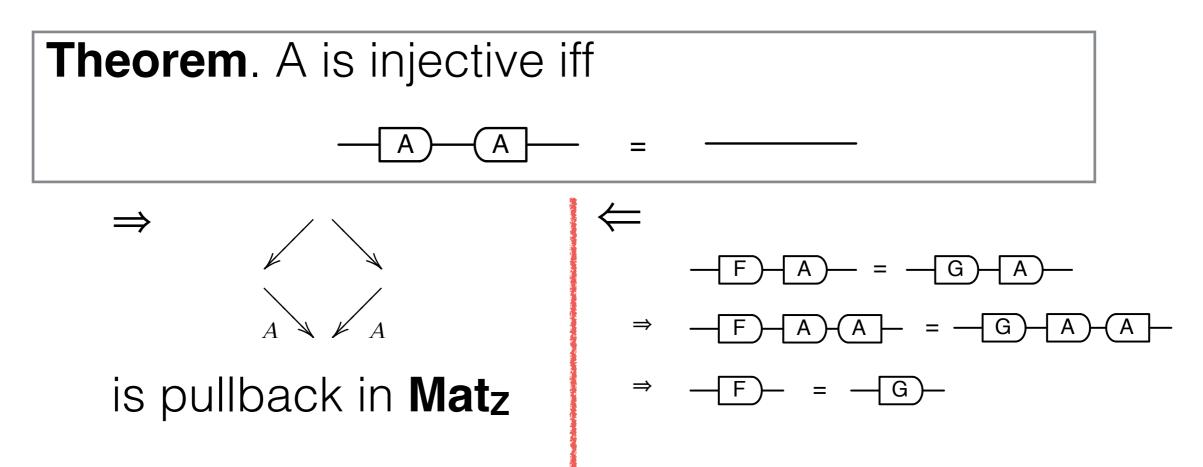
- The **cokernel** of A is

• The **image** of A is

- A
- The **coimage** of A is

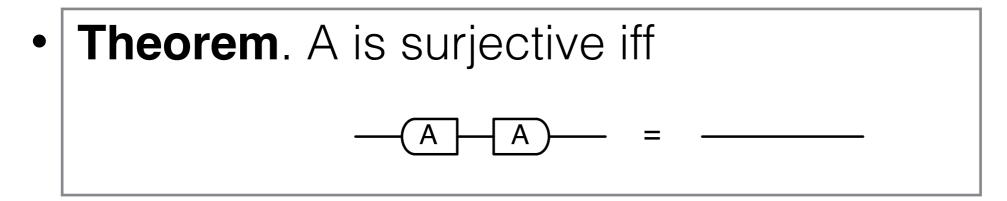
Injectivity





Surjectivity

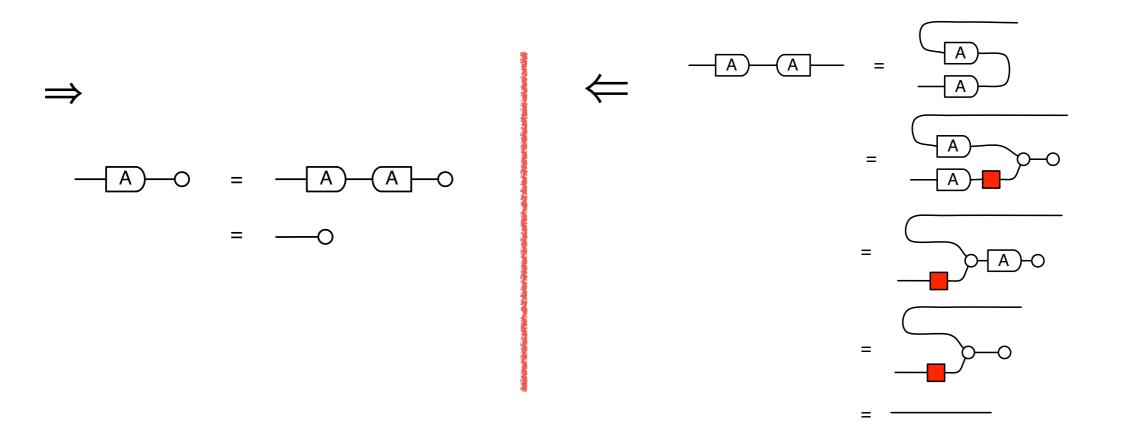
• Surjective matrices are the epis in **Mat**_z, i.e. $-\underline{A} - \underline{F} = -\underline{A} - \underline{G} \longrightarrow -\underline{F} = -\underline{G} - \underline{F}$



Proof: Bizarro of last slide

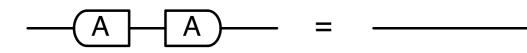
Injectivity and kernel

• **Theorem**. A is injective iff ker A = 0

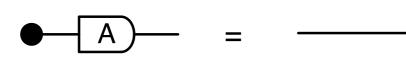


Surjectivity and image

• **Theorem**. A is surjective iff im(A)=codomain



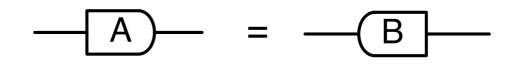
Proof: bizarro of last slide

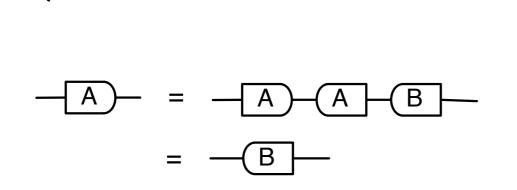


 \Leftrightarrow

Invertible matrices

• **Theorem**: A is invertible with inverse B iff





 \Rightarrow

bizarro argument yields other half

Summary

- We have done a bit of linear algebra without mentioning
 - vectors, vector spaces and bases
 - linear dependence/independence, spans of a vector list
 - dimensions
- Similar stories can be told for other parts of linear algebra: decompositions, eigenvalues/eigenspaces, determinants
 - much of this is work in progress: check out the blog! :)