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Signal Flow Graphs and recurrence relations



Plan
• Fibonacci’s rabbits and sustainable rabbit 

farming

• Signal Flow Graphs 

• Generating functions 

• IHQ[x] 

• Operational semantics 

• Solving sustainable rabbit farming



Fibonacci
 (~1170 - ~1250)1
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A certain man had one pair of rabbits together in a certain enclosed 
place, and one wishes to know how many are created from the pair in one 
year when it is the nature of them in a single month to bear another pair, 
and in the second month those born to bear also.

You can indeed see in the margin how we operated, namely that we 
added the first number to the second, namely the 1 to the 2, and the 
second to the third, and the third to the fourth, and the fourth to the fifth, 
and thus one after another until we added the tenth to the eleventh, 
namely the 144 to the 233, and we had the above written sum of rabbits, 
namely 377, and thus you can in order find it for an unending number of 
months.

(extract from Liber Abaci, chapter 12, 
 translated from Latin by Lawrence Sigler)



The Fibonacci sequence
1, 2, 3, 5, 8…

in modern presentations often given as
1, 1, 2, 3, 5, … or 0, 1, 1, 2, 3, …

is an example of a recurrence relation.

All three satisfy

Fn+2 = Fn+1 + Fn



Coding Fibonacci
Natural to generalise Fibonacci’s rabbit breeding 

# ffib [1;0;0;0;0;0;0;0];; 
- : int list = [1; 2; 3; 5; 8; 13; 21; 34]

# ffib [1;1;1;1;1;1;1;1];;     
- : int list = [1; 3; 6; 11; 19; 32; 53; 87]

# ffib [1;1;-3;1;-2;-4;1];; 
- : int list = [1; 3; 2; 3; 4; 1; 2]

 val ffib : int list -> int list = <fun>



Sustainable rabbit farming problem

• Suppose we want a sustainable rabbit farm, 
keeping four pairs of rabbits at all times 

• is it possible? 

• if so, how many pairs of rabbits must we add/
remove and in which months? 

• More generally, can we obtain a solution for any 
(possibly variable) number of rabbits in each 
month?



Achieving sustainable rabbit 
breeding

ffib: int list -> int list

bfib: int list -> int list

bfib [4;4;4;4;4;4;4;4;4;4;4;4];;

To obtain solution, one could try to compute 
the inverse
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Signal Flow Graphs
• Directed circuits wired by connecting 

• Adder gates 

• Copy Gates 

• Amplifier gates 

• Register gates

(C. Shannon, 1942)
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The circuit defines a function of type int list -> int list 

note: if I keep pumping in zeros, then eventually all registers will get zeroed out 
and the output will stabilise at zero —- is this the case for every circuit?



Feedback!
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Example - Fibonacci
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A little optimisation 1
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ALGEBRAIC MANIPULATION, DIRECTLY ON THE CIRCUIT DIAGRAM!
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A directed calculus

It follows that c9 is also in SF and thus c8 is the rewiring of
a circuit in SF. Since c8 was obtained by c2 by only using
rewriting steps allowed by the equational theory of IH, the
statement of the theorem follows.

6. Directing the Flow
In the classical presentation of signal flow graphs (see e.g. [23]),
wires are directed, signifying the direction of signal flow. Through-
out the previous sections, we have been referring to flow direction
only on an intuitive level. We now introduce directionality explic-
itly, claiming that it can be really treated as a derivative notion of
our theory of circuits. We then present some applications and ex-
amples supporting our statement.

In order to model classical signal flow graphs we first need to
introduce an alternative syntax, which we call the directed signal
flow calculus. We will need components that resemble those of
C

�!

irc , but which are explicitly oriented from left to right.

e :: = | |

k
|

x
| |

We also require some “pure” wiring: since signal flow is explicit,
we include two versions of the identity wire and four of the twist:

w :: = | | | | |

These basic components above are given a sorting (u, v) where
u, v 2 {⇣, ⌘}

⇤; for instance:

: (⌘, ⌘⌘) and : (⇣⌘, ⌘⇣).

Classical signal flow graphs are obtained by composing compo-
nents e and w using the operations ; and �, for which we reuse the
sorting rules of Fig. 1, together with guarded feedback operations
Tr

⌘(·) that take a circuit of sort (⌘1+m,⌘1+n) and yield a circuit
of sort (⌘m,⌘n). The associated sorting rule is thus:

c : (⌘1+n

, ⌘1+m)

Tr⌘(c) : (⌘n

, ⌘m)

This is represented graphically as follows:

c...
... 7�! ...

...

x
c

The syntax for directed signal flow graphs is thus:

sf :: = e | w | sf ; sf | sf � sf | Tr

⌘(sf)
Finally, we include top-level operations reminiscent of the rewiring
in §5: L⌘, L⇣, R⌘ and R⇣, with sorting rules:

c : (⌘u, v)

L

⌘(c) : (u, ⇣v)

c : (⇣u, v)

L

⇣(c) : (u, ⌘v)

c : (u, ⌘v)

R

⌘(c) : (⇣u, v)

c : (u, ⇣v)

R

⇣(c) : (⌘u, v)

In the graphical rendering below we leave out the arrowheads on
wires where direction is arbitrary:

c...
... c...

...
...

... c ...
... c

Circuits of the directed signal flow calculus are thus specified by
following grammar:

d :: = sf | L⌘d | L⇣d | R⌘d | R⇣d | d ;w | w ; d

Note that the composition at the top level is restricted to disallow
the introduction of unguarded feedback.

Rather than defining the operational semantics directly, we can
obtain the expected behaviour by first translating directed terms to
the signal flow calculus. Intuitively, the inductively defined transla-
tion E “erases directions” from the wires:

7! , 7! · · · 7! , 7! ,

sf1 ; sd2 7! E(sf1) ;E(sf2), sf1 � sf2 7! E(sd1)� E(sf2),

Tr

⌘(sf) 7! Tr(E(sf)), L

?(d) 7! L(E(d)) R

?(d) 7! R(E(d)).
where ? 2 {⇣,⌘} and Tr, L and R are defined as in §2 and §5.

A key observation is that directed sort discipline prevents us
from writing problematic circuits where signal flow is incompat-
ible, like in the examples in §4. In fact, using Proposition 3 and
Lemma 1 we get:

Proposition 4. For any circuit d of the directed signal flow calcu-
lus, E(d) is deadlock and initialisation free.

Moreover, this syntactic restriction does not affect the expres-
siveness since, thanks to Theorem 5, rewirings of signal flow graphs
denote all the possible behaviours. Thus, informally speaking, all
circuits in Circ can be directed (modulo the theory of IH).

Proposition 5. For any circuit c of Circ, there exists a directed
circuit d such that E(d) IH

= c

Propositions 4 and 5 have two interesting consequences. First,
Proposition 4 and the full-abstraction result mean that we can use
the equational theory of IH to safely reason about classical signal
flow graphs and extensions—indeed, all the circuits in the directed
signal flow calculus. Roughly speaking, the procedure is: forget the
directions and then use IH

=. This confirms the intuition that, like for
electrical circuits, also for signal flow graphs directionality is not a
primitive notion as originally advocated in [23].

Second, Proposition 4, Proposition 5 and full-abstraction tell us
that the denotational semantics of any circuit of the signal flow cal-
culus can be properly realised by some directed circuit. We can
therefore use the “more liberal” signal flow calculus to specify
circuits and the “more restrictive” directed calculus to implement
them. One can then check that an implementation d adheres to a
specification c by mean of the graphical reasoning supported by
IH. Indeed E(d)

IH
= c, means that d implements, without deadlocks

or initialisation, the behaviour denoted by c. Note that while an im-
plementation is a directed circuit—typically featuring feedbacks—
we are being deliberately vague about what kind of circuit in Circ

constitutes a specification: in examples that we consider these are
typically generating functions that can be obtained in a standard
way (see e.g. [29]) from recurrence formulas. We illustrate these
ideas with the aid of the simple example below.

Example 4. Consider the circuits displayed below. The leftmost
serves as specification ( 1

1�x

) and the rightmost, a directed circuit,
as its implementation.

1�x x

To prove that the implementation realises the specification, we
first throw away all the directions from the wires and then we
proceed with a graphical derivation in IH:

x

x x

xx
1�x

(I1)(I2)
(A17�)(A5�)

(A14�)
(I11)

(I5) (I3)

(A1)(A6)
(14)

We annotated the key axioms of IH justifying each derivation step.
Note that the first and the second to last circuit, that we have just
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typically generating functions that can be obtained in a standard
way (see e.g. [29]) from recurrence formulas. We illustrate these
ideas with the aid of the simple example below.

Example 4. Consider the circuits displayed below. The leftmost
serves as specification ( 1

1�x

) and the rightmost, a directed circuit,
as its implementation.

1�x x

To prove that the implementation realises the specification, we
first throw away all the directions from the wires and then we
proceed with a graphical derivation in IH:

x

x x

xx
1�x

(I1)(I2)
(A17�)(A5�)

(A14�)
(I11)

(I5) (I3)

(A1)(A6)
(14)

We annotated the key axioms of IH justifying each derivation step.
Note that the first and the second to last circuit, that we have just

T ::= T ; T   |  T⊕T  |  Tr( T ) 

T : (m+1, n+1)

Tr(T) : (m, n)

Trace operation



Signal flow graphs as string 
diagrams

• Easy - get rid of directions on the wires!

x

x

x

x



Forgetting directions

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.
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Figure 2. Structural rules for operational semantics, with k, l ranging over k and u, v, w vectors of elements of k of the appropriate size.

boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c0 is drawn
c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0
��!

w0
s1

v1
��!

w1
. . . in the transition system of c, starting from

its initial state s0. When c has sort (n, m), each v
i

and w
i

consist
of strings over k, say k

i1 . . . kin and l
i1 . . . lim, respectively. The

trace of a computation s0
v0
��!

w0
s1

v1
��!

w1
. . . is then a pair of vec-

tors

 

↵1

.

.

.
↵

n

!

,

 

�1

.

.

.
�

m

!

where ↵
j

= k0jk1j . . . and �
j

= l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!

� ) for such a pair and,
to make the notation lighter, we will write ↵

j

= k0k1 . . . and
�
j

= l0l1 . . . . Moreover, with ↵
j

(i) and �
j

(i) we will denote the
i-th elements of ↵

j

and �
j

.
Note that in a computation of length z, all ↵

j

,�
j

have length
z, while for an infinite computation all ↵

j

,�
j

are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( �
x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

c
i

[0] 1
�!

1
c
i

[1] 0
�!

1
c
i

[1] 0
�!

1
c
i

[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.
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boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c0 is drawn
c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0
��!

w0
s1

v1
��!

w1
. . . in the transition system of c, starting from

its initial state s0. When c has sort (n, m), each v
i

and w
i

consist
of strings over k, say k

i1 . . . kin and l
i1 . . . lim, respectively. The

trace of a computation s0
v0
��!

w0
s1

v1
��!

w1
. . . is then a pair of vec-

tors
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where ↵
j

= k0jk1j . . . and �
j

= l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!

� ) for such a pair and,
to make the notation lighter, we will write ↵

j

= k0k1 . . . and
�
j

= l0l1 . . . . Moreover, with ↵
j

(i) and �
j

(i) we will denote the
i-th elements of ↵

j

and �
j

.
Note that in a computation of length z, all ↵

j

,�
j

have length
z, while for an infinite computation all ↵

j

,�
j

are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( �
x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

c
i

[0] 1
�!

1
c
i

[1] 0
�!

1
c
i

[1] 0
�!

1
c
i

[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.
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boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c0 is drawn
c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0
��!

w0
s1

v1
��!

w1
. . . in the transition system of c, starting from

its initial state s0. When c has sort (n, m), each v
i

and w
i

consist
of strings over k, say k

i1 . . . kin and l
i1 . . . lim, respectively. The

trace of a computation s0
v0
��!

w0
s1

v1
��!

w1
. . . is then a pair of vec-

tors

 

↵1

.

.

.
↵

n

!

,

 

�1

.

.

.
�

m

!

where ↵
j

= k0jk1j . . . and �
j

= l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!

� ) for such a pair and,
to make the notation lighter, we will write ↵

j

= k0k1 . . . and
�
j

= l0l1 . . . . Moreover, with ↵
j

(i) and �
j

(i) we will denote the
i-th elements of ↵

j

and �
j

.
Note that in a computation of length z, all ↵

j

,�
j

have length
z, while for an infinite computation all ↵

j

,�
j

are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( �
x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

c
i

[0] 1
�!

1
c
i

[1] 0
�!

1
c
i

[1] 0
�!

1
c
i

[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.
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boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c0 is drawn
c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0
��!

w0
s1

v1
��!

w1
. . . in the transition system of c, starting from

its initial state s0. When c has sort (n, m), each v
i

and w
i

consist
of strings over k, say k

i1 . . . kin and l
i1 . . . lim, respectively. The

trace of a computation s0
v0
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w0
s1

v1
��!

w1
. . . is then a pair of vec-

tors
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where ↵
j

= k0jk1j . . . and �
j

= l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!

� ) for such a pair and,
to make the notation lighter, we will write ↵

j

= k0k1 . . . and
�
j

= l0l1 . . . . Moreover, with ↵
j

(i) and �
j

(i) we will denote the
i-th elements of ↵

j

and �
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.
Note that in a computation of length z, all ↵

j

,�
j

have length
z, while for an infinite computation all ↵

j

,�
j

are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( �
x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

c
i

[0] 1
�!

1
c
i

[1] 0
�!

1
c
i

[1] 0
�!

1
c
i

[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.
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boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c0 is drawn
c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0
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. . . in the transition system of c, starting from

its initial state s0. When c has sort (n, m), each v
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consist
of strings over k, say k
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��!

w1
. . . is then a pair of vec-

tors
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where ↵
j

= k0jk1j . . . and �
j

= l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!

� ) for such a pair and,
to make the notation lighter, we will write ↵

j

= k0k1 . . . and
�
j

= l0l1 . . . . Moreover, with ↵
j

(i) and �
j

(i) we will denote the
i-th elements of ↵

j

and �
j

.
Note that in a computation of length z, all ↵

j

,�
j

have length
z, while for an infinite computation all ↵

j

,�
j

are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( �
x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

c
i

[0] 1
�!

1
c
i

[1] 0
�!

1
c
i

[1] 0
�!

1
c
i

[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.
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u

�!

v

s0 t
v

�!

w

t0

s ; t u

�!

w

s0 ; t0

s
u1
��!

v1
s0 t

u2
��!

v2
t0

s� t
u1 u2
����!

v1 v2
s0 � t0

Figure 2. Structural rules for operational semantics, with k, l ranging over k and u, v, w vectors of elements of k of the appropriate size.

boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c0 is drawn
c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0
��!

w0
s1

v1
��!

w1
. . . in the transition system of c, starting from

its initial state s0. When c has sort (n, m), each v
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and w
i

consist
of strings over k, say k

i1 . . . kin and l
i1 . . . lim, respectively. The

trace of a computation s0
v0
��!
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w1
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where ↵
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= k0jk1j . . . and �
j

= l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!

� ) for such a pair and,
to make the notation lighter, we will write ↵

j

= k0k1 . . . and
�
j

= l0l1 . . . . Moreover, with ↵
j

(i) and �
j

(i) we will denote the
i-th elements of ↵
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and �
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.
Note that in a computation of length z, all ↵

j

,�
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have length
z, while for an infinite computation all ↵

j

,�
j

are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( �
x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

c
i

[0] 1
�!

1
c
i

[1] 0
�!

1
c
i

[1] 0
�!

1
c
i

[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the
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Plan
• Fibonacci’s rabbits and sustainable rabbit farming 

• Signal Flow Graphs 

• Operational semantics 

• Generating functions

• IHQ[x] 

• Solving sustainable rabbit farming



Polynomial Zoo
• Ring of polynomials Q[x] 

• → Field of polynomial fractions Q(x) 

• Ring of formal power series Q[[x]] 

• → Field of Laurent power series Q((x)) 

• injective ring hom. Q[x] → Q[[x]]  

• → (injective) field hom. Q(x) → Q((x)) 



Generatingfunctionology
Fn+2 = Fn+1 + Fn

1X

n=0

Fn+2x
n =

1X

n=0

Fn+1x
n +

1X

n=0

Fnx
n

F0 = 1

F (x) =
1X

n=0

Fnx
n

F (x) =
1X

n=0

Fn+2x
n �

1X

n=0

Fn+1x
n

x

2(
1X

n=0

Fn+2x
n) =

1X

n=2

Fnx
n = F (x)� 2x� 1

x(
1X

n=0

Fn+1x
n) =

1X

n=1

Fnx
n = F (x)� 1

F1 = 2Spec

F (x) =
F (x)� 2x� 1

x

2
� F (x)� 1

x

F (x) =
1 + x

1� x� x

2

(see famous book by H. Wilf)

Define



Obtaining the coefficients

k(x) → k((x))

F (x) =
1 + x

1� x� x

2
1 + 2x+ 3x2 + 5x3 + 8x4 + . . .

(1, 2, 3, 5, 8, …)

Moral of the story : polynomial fractions are useful 
for reasoning about recurrence relations

7!
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farming 
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From linear relations over Q 
to linear relations over Q(x)

x =
x

x
x =

x

x
= x x =

x=
x

x
x=

x

x
=xx=

x x = = xx



Polynomial fractions with 
diagrammatic syntax

F (x) =
1 + x

1� x� x

2

=

x

x

x

1+x 1-x-x2



Example

As linear relation over Q(x) is the space generated by

As linear relation over Q((x)) is the space generated by

(1,  (1+x)/(1-x-x2))

(1,0,0,…    ,    1,2,3,5,8,…)

1+x 1-x-x2



Realisability and Full 
Abstraction

• Realisability Every diagram can be put in a form 
where the direction of signal flow is consistent 

• Full abstraction Operational equality (in terms of 
behaviour, given by operational semantics) coincides 
with denotational equality (the denoted linear relation) 
on diagrams with consistent signal flow
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x

x

x

x

x

=

=

1+x 1-x-x2

Which we can be directed from left to right

x

x



1+x 1-x-x2

=

x

x

x

Which can be directed from right to left

x

x

x

-1

-1



# rfib [4;4;4;4;4;4;4;4;4;4;4;4;4];;   
- : int list = [4; -4; 0; -4; 0; -4; 0; -4; 0; -4; 0; -4; 0]

Solving sustainable rabbit farming

i.e. buy four pairs of rabbits in the first month, 
then sell four every two months…
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