
Autonomous Units and their Semantics – the Sequential Case
Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany

{hoelscher,kreo,kuske}@informatik.uni-bremen.de

Published in:
A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberg, editors, Proc. 3rd Intl. Conference
on Graph Transformations (ICGT 2006), Volume 4178 of Lecture Notes in Computer Science.
Springer, 2006.

To be used only in the SegraVis School 2006!

Autonomous Units and their Semantics —

the Sequential Case?

Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 330440, D-28334 Bremen, Germany

{hoelscher,kreo,kuske}@informatik.uni-bremen.de

Abstract. In this paper, we introduce the notion of a community of
autonomous units as a rule-based and graph-transformational device to
model processes that run interactively but independently of each other
in a common environment. The emphasis of the approach is laid on the
study of the formal semantics of a community as a whole and of each
of its member units separately. We concentrate on the sequential case
where only one unit can act at a time and the rule applications of the
involved units are interleaved with each other.

1 Introduction

Data processing of today (like communication networks, multiagent systems,
swarm intelligence, ubiquitous, wearable and mobile computing) is often dis-
tributed and comprises various components that run partially independent of
each other, but may access and update the same information structures, com-
municate with each other and interact in various ways. They may cooperate to
reach a common goal or may compete with each other to achieve their individ-
ual aims. Typical examples of this kind are logistic processes and systems like
transport and production networks where many actors from different companies
come together and cooperate to a certain degree. But they are usually still com-
petitors who are not willing to transfer their control to others or to a central
entity. On the more technical level, transport networks, for example, comprise
many transport vehicles, lots of goods to be shipped, various further components
for storing, loading, reloading, etc. It is not meaningful to model such a network
as a centralized system with a single control. The same applies to production
networks with respect to the involved machines, materials, storage areas, etc.

The main idea of this paper is to provide a formal graph-transformational
and rule-based framework for the modeling of such systems composed of a vari-
ety of highly self-controlled components that make their decisions on their own
depending on the information they get from their environment.

? Research partially supported by the EC Research Training Network SegraVis (Syn-
tactic and Semantic Integration of Visual Modeling Techniques) and the Collabora-
tive Research Centre 637 (Autonomous Cooperating Logistic Processes: A Paradigm
Shift and Its Limitations) funded by the German Research Foundation (DFG).

The basic notion is that of a community of autonomous units which exist in
a common environment (assumed to be a graph). There are initial environments
to start computational processes, and there is an overall goal. Each autonomous
unit in a community has its own individual goal in addition. To reach its goal,
the unit can apply its rules or ask imported units for help. Moreover, each unit
has a control mechanism to decide which rule is applied next or which imported
unit is used next. This establishes the autonomy of a unit.

In this paper, we concentrate on the sequential semantics of communities of
autonomous units. The semantics is given by all sequential processes - finite and
infinite - that start in an initial environment, are composed of rule applications
of autonomous units and calls of imported units, and follow, in each step, the
control of the active unit. From the point of view of a single unit, this means
that its own actions (being rule applications or calls of imported units) take
place interleaved with other changes of the dynamic environment caused by the
coexisting units. Clearly, the sequential semantics is only adequate if one deals
with systems in which activities take place one after the other. Examples of this
kind are card and board games, sequential algorithms, single-processor systems
and such. Moreover, there are many modeling approaches the semantics of which
assumes one action at a time. But even sequential systems may consist of self-
controling components that decide about their own activities independently of
the others like the examples of card and board games with several players show.

Autonomous units generalize our former modeling concept of graph transfor-
mation units (see, e.g., [1]). While the latter apply their rules and call imported
units without any interference from the outside, an autonomous unit works in a
dynamic environment which may change because of the activities of other units
in the community. This makes a tremendous difference because the running of
the system is no longer controlled by a central entity.

The benefit we expect of using autonomous units is to obtain an easy-to-
use and visually well-understandable formal framework with a precise semantics
that allows to model systems of interacting components so that on the one hand
external control structures are set aside and on the other hand string-based
representation is replaced by graph- and rule-based representation that allows to
visualize and specify the systems more like they are. Nevertheless, the presented
concepts are not restricted to graphs and graph transformation but can be used
for any rule-based mechanism where rules modify some kind of configurations
(cf. also [2]).

The paper is organized as follows. In Sect. 2 we briefly recall the notion of a
graph transformation approach. In Sect. 3 autonomous units are introduced and
a sequential semantics for them is given. Section 4 presents communities of au-
tonomous units and how they interact within a common environment. Section 5
compares communities of autonomous units with the original transformation
units introduced and studied in [1]. In Sect. 6 we present a case study modeling
the players of the board game Ludo as autonomous units. The conclusion is given
in Sect. 7. For reasons of space limitations proofs are omitted in this paper.

2 Graph Transformation Approaches

Whenever one has to do with dynamic graph-like structures, graph transforma-
tion (see also [3]) constitutes an adequate formal specification technique because
it supports the visual and rule-based transformation of such structures in an
intuitive and direct way. The ingredients of graph transformation are provided
by a so-called graph transformation approach. In this section, we recall the no-
tion of a graph transformation approach as introduced in [1] but modified with
respect to the class of control conditions.

Two basic components of every graph transformation approach are a class of
graphs, and a class of rules that can be applied to these graphs. In many cases,
rule application is highly nondeterministic — a property that is not always
desirable. Hence, graph transformation approaches can also provide a class of
control conditions so that the degree of nondeterminism of rule application can
be reduced. Moreover, graph class expressions can be used in order to specify for
example sets of initial and terminal graphs of graph transformation processes.

Formally, a graph transformation approach is a system A = (G,R,X , C) the
components of which are defined as follows.

– G is a class of graphs.
– R is a class of graph transformation rules such that every r ∈ R specifies a

binary relation on graphs SEM (r) ⊆ G × G.
– X is a class of graph class expressions such that each x ∈ X specifies a set

of graphs SEM (x) ⊆ G.
– C is a class of control conditions such that each c ∈ C specifies a set of

sequences SEM E,Change(c) ⊆ SEQ(G) where E: ID → 2SEQ(G), for some set
ID of names and Change ⊆ G × G.1 As we will see later the mapping E

is meant to associate a semantics to rules and imported autonomous units.
The relation Change defines the changes that can occur in the environment
of an autonomous unit. Hence, control conditions have a loose semantics
which depends on the semantics associated to rules and imported units via
the mapping E and on the changes of the environment given by Change .

For technical simplicity we assume in the following that ID is an arbitrary
but fixed set with R ⊆ ID and that A = (G,R,X , C) is an arbitrary but fixed
graph transformation approach.

3 Autonomous Units

Autonomous units act within or interact on a common environment which is
modeled as a graph. An autonomous unit consists of a set of graph transforma-
tion rules, a control condition, and a goal. Moreover, it can import other units to
which it may delegate auxiliary tasks. The graph transformation rules contained

1 For a set A 2A denotes its powerset and SEQ(A) the set of finite and infinite se-
quences over A.

in an autonomous unit aut and the imported units of aut specify all transfor-
mations the unit aut can perform. Such a transformation comprises for example
a movement of the autonomous unit within the current environment, the ex-
change of information with other units via the environment, or local changes of
the environment. The control condition regulates the application process. For
example, it may require that a sequence of rules be applied as long as possi-
ble or infinitely often. In this first approach the goal of a unit is a graph class
expression determining how the transformed graphs should look like.

Definition 1 (Autonomous unit). An autonomous unit is a system aut =
(g, U, P, c) where g ∈ X is the goal, U is a set of imported autonomous units, P ⊆
R is a set of graph transformation rules, and c ∈ C is a control condition. The
components of aut are also denoted by gaut , Uaut , Paut , and caut , respectively.

In the following we consider only autonomous units with acyclic import struc-
ture. Moreover, for technical simplicity we assume that in addition to the rules
all autonomous units are contained in the set ID .

An autonomous unit modifies an underlying environment while striving for
its goal. Its semantics consists of a set of transformation processes being finite
or infinite sequences of environment transformations. An environment transfor-
mation comprises the application of a local rule or a transformation process
performed by an imported unit or an environment change typically performed
by another autonomous unit that is working in the same environment. These
environment changes are given as a binary relation of environments. Hence, in
this sequential approach a transformation process of an autonomous unit in-
terleaves local rule applications with transformation processes of imported units
and environment changes specified by other components. This implies that an en-
vironment transformation of an imported unit cannot be interrupted by changes
of the importing unit but it can be interleaved with the change relation induced
by other components. Hence, every autonomous unit has exactly one thread of
control. Autonomous units regulate their transformation processes by choosing
in every step only those rules or imported units that are allowed by its control
condition.

The definition of the sequential semantics of autonomous units makes use
of the sequential composition of sequences. Let s = (x0, . . . , xn) and s′ =
(x′

0, x
′
1, . . .) be sequences such that s is finite, s′ is finite or infinite, and x′

0 = xn.
Then the sequential composition of s and s′ is equal to s◦s′ = (x0, . . . xn, x′

1, . . .).
Moreover, the number of elements of a finite sequence s = (x0, . . . , xn) is equal
to n + 1 and is denoted by |s|. For an infinite sequence s its number of elements
is |s| = ∞. The first element of a sequence s is denoted by first(s) and its last
element by last(s) in the case where s is finite.

Definition 2 (Sequential semantics). Let aut = (g, U, P, c) be an autonomous
unit and let Change ⊆ G × G. Let s ∈ SEQ(G). Then s ∈ SEM Change(aut) if

– there is a sequence seq = (s0, s1, . . .) ∈ SEQ(SEQ(G)) such that
• for 0 ≤ i < |seq| if seq is finite and for all i ∈ N if seq is infinite, si is

finite and last(si) = first(si+1);

• s = s0 ◦ s1 ◦ · · · ; 2

• for i = 0, . . . , |seq| if seq is finite and for all i ∈ N if seq is infinite

si ∈
⋃

p∈P

SEM (p) ∪ Change ∪
⋃

u∈U

SEM Change(u).

– s ∈ SEM E(aut),Change(c) with E(aut)(id) = SEM (id) if id ∈ P , E(aut)(id) =
SEM Change(id) if id ∈ U , and E(aut)(id) = ∅, otherwise.

It is worth noting that the semantics of autonomous units is inductively
defined meaning that it covers the case where no unit is imported and in the
case where the set of imported units is not empty the semantics of every imported
unit is recursively computed.

Every autonomous unit induces a set of atomic (i.e. not interruptible) envi-
ronment transformations that consist of the semantic relation of all local rules
plus the atomic transformations of the imported autonomous units.

Definition 3 (Atomic transformations). The set of atomic transformations

of an autonomous transformation unit aut = (g, U, P, c) is defined as AT (aut) =⋃
p∈P SEM (p) ∪

⋃
u∈U AT (u).

As one would expect a transformation process of an autonomous unit consists
of a sequence of atomic transformations interleaved with other changes of the
environment.

Observation 1 Let aut = (g, U, P, c) be an autonomous unit and let s =
(G0, G1, . . .) ∈ SEM Change(aut) for some relation Change ⊆ G × G. Then for
i = 1, . . . , |s| if s is finite and for all i ∈ N

+ if s is infinite (Gi−1, Gi) ∈
AT (aut) ∪ Change .3

4 Communities of Autonomous Units

Autonomous units are meant to work within a community of autonomous units
that modify the common environment together. In the sequential case these
modifications take place in an interleaving manner. Every community is com-
posed of an overall goal that should be achieved, an environment specification
that specifies the set of initial environments the community may start working
with, and a set of autonomous units. The overall goal may be closely related to
the goals of the autonomous units in the community. Typical examples are the
goals admitting only graphs that satisfy the goals of one or all autonomous units
in the community.

Definition 4 (Community). A community is a triple COM = (Goal , Init ,Aut),
where Goal , Init ∈ X are graph class expressions called the overall goal and the
initial environment specification, respectively, and Aut is a set of autonomous
units.
2 Please note that s = s0 ◦ s1 ◦ · · · stands for s = s0 ◦ s1 ◦ · · · ◦ s|seq| if seq is finite.
3

N
+ denotes the set of all positive natural numbers.

In a community all units work on the common environment in a self-controlled
way by applying their rules or their imported units. The change relation inte-
grated in the semantics of autonomous units makes it possible to define an
interleaving semantics of a community in which every autonomous unit may
perform its transformation processes. For this purpose it is necessary to know
for every autonomous unit the set of atomic transformations of all other units
in the community.

Definition 5 (Change relation). Let COM = (Goal , Init ,Aut) be a com-
munity. Then for each aut ∈ Aut the change relation w.r.t. aut is defined as
Change(aut) =

⋃
aut′∈Aut−{aut} AT (aut ′).

Every transformation process of a community must start with a graph spec-
ified as an initial environment of the community. Moreover, it must be in the
sequential semantics of every autonomous unit participating in the community. A
finite transformation process of a community is successful if its last environment
satisfies the overall goal. Every infinite transformation process of a community is
successful if it meets infinitely many environments that satisfy the overall goal.

Definition 6 (Sequential community semantics).

1. Let COM = (Goal , Init ,Aut). Then the sequential community semantics of
COM consists of all finite or infinite sequences s = (G0, G1, . . .) ∈ SEQ(G)
such that G0 ∈ SEM (Init) and s ∈ SEM Change(aut)(aut) for all aut ∈ Aut .

2. The sequence s is called a successful transformation process if s is finite
and G|s| ∈ SEM (Goal) or if for all j ∈ N there is a finite sequence sj =
(Gj,0, . . . , Gj,nj

) with Gj,nj
∈ SEM (Goal) such that s = s0 ◦s1 ◦ · · ·. The set

of all successful transformation processes of COM is denoted by STP(COM).

As the definition of the community semantics shows, there is a strong connec-
tion between the semantics of a community COM = (Goal , Init ,Aut) and the
semantics of an autonomous unit aut ∈ Aut. More precisely, the semantics of
COM is a subset of the semantics of aut w.r.t. the change relation Change(aut).

For the community semantics we can also show in a straightforward way
that only atomic transformations of the participating units are applied in every
transformation process.

Observation 2 Let COM = (Goal , Init ,Aut) be a community and let s =
(G0, G1, . . .) ∈ SEM (COM). Then for i = 1, . . . , |s| if s is finite and for all
i ∈ N

+ if s is infinite (Gi−1, Gi) ∈
⋃

aut∈Aut AT (aut).

5 Comparison with Transformation Units

In this section we compare communities of autonomous units with transforma-
tion units that have an acyclic import structure (see e.g. [1]). Autonomous units
are up to a certain degree similar to transformation units because both con-
cepts are graph- and rule-based, use control conditions, import other units, and

employ graph class expressions. Nevertheless there are some fundamental differ-
ences: (1) While an autonomous unit interacts with other autonomous units, an
ordinary transformation unit runs its computations without interference of other
units except those imported. Hence the semantics of transformation units is not
defined with respect to possible environment changes. (2) All transformations
are solely controlled by the transformation units whereas an autonomous unit
controls its own actions, but not those of the other units in the community. (3)
The semantics of a transformation unit and consequently also the semantics of
control conditions used in transformation units are binary relations on graphs
whereas the semantics of autonomous units consists of finite and infinite trans-
formation processes, i.e. finite and infinite sequences of graphs. Because of these
differences communities have the advantage that systems such as logistic pro-
cesses or games consisting of many automomously and perhaps infinitely long
acting components can be modeled in a more realistic way.

If one considers only the semantic relation induced by all finite transforma-
tion sequences of communities and if there exist appropriate control conditions
in the underlying graph transformation approach, one can translate transfor-
mation units into communities. To this aim we define for every finite sequence
s = (G0, . . . , Gn) its induced pair as pair (s) = (G0, Gn) and for every set S of se-
quences its induced binary relation as rel(S) = {pair(s) | s ∈ S ′} where S′ is the
set of all finite sequences in S. Moreover, for a set G, its identity relation is the
set ∆G = {(G, G) | G ∈ G}. Finally, for a binary relation R ⊆ G × G the set R∗

denotes the set of all finite sequences obtained from sequentially composing pairs
of R ∪∆G, i.e. R∗ = {(r0, . . . , rn) | (ri−1, ri) ∈ R ∪∆G for i = 1, . . . , n, n ≥ 1}.4

5.1 Transformation Units

A transformation unit is a system tu = (I, U, P, C, T) where I, T ∈ X , U is
a set of imported transformation units, P ⊆ R, and C is a control condition
that specifies for every mapping E: ID → 2G×G a binary relation on graphs.
Please note that analogously to autonomous units, transformation units are also
inductively defined i.e. they have an acyclic import structure.5 The set of di-

rectly and indirectly imported transformation units of tu is inductively defined
by IMP (tu) = U ∪

⋃
u′∈U IMP (u′). A pair (G, G′) ∈ SEM (I)×SEM (T) is in the

interleaving semantics SEM (tu) of tu if there is a sequence s = (G0, . . . , Gn) of
graphs such that G0 = G, Gn = G′, for i = 1, . . . n (Gi−1, Gi) ∈

⋃
p∈P SEM (p)∪⋃

u∈U SEM (u), and (G, G′) ∈ SEM E(tu)(C) where E(tu)(id) = SEM (id) if
id ∈ P ∪ U and E(tu)(id) = ∅, otherwise. Analogously to autonomous units
the set of atomic transformations of tu is defined by AT (tu) =

⋃
p∈P SEM (p)∪⋃

u∈U AT (u).

4 Obviously, rel(R∗) corresponds to the reflexive and transitive closure of R.
5 Transformation units with an arbitrary import structure are studied in [4].

5.2 Translating Transformation Units into Communities

For comparing transformation units with communities we first translate every
transformation unit tu into two sets of autonomous units namely TRANS1 (tu)
and TRANS2 (tu). The units in both sets are inductively defined such that the
rule set of every autonomous unit in TRANS1 (tu) ∪ TRANS2 (tu) is equal to
the rule set of tu, the goal is equal to the terminal graph class expression of tu,
and the control condition can be anyone satisfying a certain property that is
different for TRANS1 (tu) and TRANS2 (tu).

Definition 7 (Translations). Let tu = (I, U, P, C, T) be a transformation
unit.

1. The first translation of tu is the set TRANS1 (tu) consisting of all au-
tonomous units aut(tu) = (T, {aut(u) | u ∈ U}, P, c) such that for all
s ∈ AT (tu)∗ with pair (s) ∈ SEM E(tu)(C), s ∈ SEM E(aut(tu)),∆G(c), and
aut(u) ∈ TRANS1 (u) for each u ∈ U .

2. The second translation of tu is the set TRANS2 (tu) consisting of all au-
tonomous units aut(tu) = (T, {aut(u) | u ∈ U}, P, c) such that

rel(SEM E(aut(tu)),∆G(c)) ⊆ SEM E(tu)(C),

and aut(u) ∈ TRANS2 (u) for each u ∈ U .

It can be shown that the first translation preserves the behaviour of the
original transformation unit tu (but can do more), and the second only per-
forms such transformations that can also be done by tu, provided that the graph
class expressions occurring in tu do not restrict the class G to some proper sub-
class. As a consequence we get that every autonomous unit in the intersection
of TRANS1 (tu) and TRANS2 (tu) behaves as tu, if tu satisfies the mentioned
property with respect to the graph class expressions.

These facts imply the following observation that relates transformation units
with communities. In particular, for every autonomous unit aut in TRANS1 (tu)∪
TRANS2 (tu) let COM (aut) be the community with aut as its only autonomous
unit, the initial graph class expression of tu as the initial environment spec-
ification, and the terminal expression of tu as the goal. Then the interleaving
semantics of tu is contained in the binary relation induced by the transformation
processes of COM (aut) if aut belongs to the first translation of tu. Moreover, the
binary relation induced by the successful transformation processes of COM (aut)
are contained in the interleaving semantics of tu if aut belongs to the second
translation of tu. Consequently, the interleaving semantics of tu is equal to the
binary relation induced by the successful transformation processes of COM if
aut belongs to both translations. In the last two cases, the graph class expres-
sions of all directly and indirectly imported transformation units of tu must
specify the class of all graphs. It is worth noting that this condition concerning
the graph class expressions can be dropped by requiring additionally that the
control condition of every aut(tu) in TRANS2 (tu) admits only sequences from
initial into terminal graphs of tu.

Observation 3 Let tu = (I, U, R, C, T) be a transformation unit and let COM =
(T, I, {aut}). Then the following holds.

1. SEM (tu) ⊆ rel(SEM (COM)) if aut ∈ TRANS1 (tu).
2. rel(STP(COM)) ⊆ SEM (tu) if aut ∈ TRANS2 (tu) and if SEM (Iu) =

SEM (Tu) = G for all u ∈ IMP(tu).
3. SEM (tu) = rel(STP(COM)) if aut ∈ TRANS1 (tu) ∩ TRANS2 (tu) and if

SEM (Iu) = SEM (Tu) = G for all u ∈ IMP(tu).

6 Modeling Ludo Players as Autonomous Units

Board games are a typical example of communities of autonomous units with
sequential semantics where the board provides the common environment and
the players are the autonomous units. As a concrete example we consider in this
section the game Ludo. 6

The graph transformation approach used in this example consists of labeled
directed graphs and double-pushout rules (cf. [5]). The control conditions used
are regular expressions and priorities. As graph class expressions we use subgraph
conditions and the graph class expression specifying the class of all graphs. A
subgraph condition is a graph G that admits all graphs that have (an isomorphic
copy of) G as subgraph. Please note that in order to verify the presented case
study we have implemented it based on the AGG system [5].

A possible environment graph of Ludo is the initial game situation where
four players of different colours have all their tokens at the start place and there
is one die showing an arbitrary number between one and six. This graph is
depicted in Fig. 1. Every player is drawn as a kind of actor labeled with a colour
out of b(lue), y(ellow), r(ed), and g(reen) so that every player has a different
colour. Technically, a player is a labeled node. The players are connected via
some directed edges indicating the playing direction. The game board consists
of a start node and four home nodes for every player and a set of round nodes.
The start node of a c-labeled player is depicted as a c-labeled polygon with six
corners. The home nodes are drawn as rhombuses. Every c-labeled player has
four c-labeled tokens that are all situated at her/his start node at the beginning
of a match. The fact that a token of colour c is situated at a node v is visualized
with a c-labeled token that is connected to v via an undirected edge. Technically,
this can be modeled by means of a c-labeled loop connected to the node v. The
directed edges between the nodes of the game board indicate where and in which
direction the tokens can move around the game board.

Every round node and every directed edge between round and home nodes
are labeled with a set M ⊆ {b, y, g, r}. The label of every round node contains
all colours that can visit this node. Since at the beginning of a game all round
nodes are vacant, i.e. they can be visited by all colours, they are all labeled with
{b, y, g, r}. The labels of the edges connecting home and round nodes contain

6 There exist several distinct versions of the game Ludo. In this paper we consider one
of the standard german versions.

{y}

{y}

{y}

{y}

{g}{g}{g}{g}

{r}

{r}

{r}

{r}

{b} {b} {b} {b}

label() = {b,y,g,r}

yb

g

label() = {b,y,g,r}
label() = {b,y,g,r},

b b

b

b

b

y y

y
y

y

g g

g
g

g

r r

r

r
r

x

N_g

N_b

N_y

r
N_r

x in [1,...,6],

N_z = {b,y,g,r}−{z} for all z in {b,y,g,r}

Fig. 1. An environment of Ludo

also all colours the tokens of which can move via these edges. For example, only
yellow tokens can move to a home node of a yellow player. Moreover, no yellow
token may go over the edge labeled with N y = {b, g, r}, because it has to enter
its home. Please note that the labels of most of the nodes and edges of Fig. 1
are depicted below the graph in order to keep the graph easy to read.

The goal of every player is to have all four tokens at home, one in each home
node. To reach a home place, a token must go from the start place over the round
fields in the indicated direction. To move a token, a die must be thrown. If a
six is thrown the current player must move one of her/his tokens from the start
node to the first round node, i.e. to the round node connected to the start node.
If there is no token left at the start node, the player can take any other of her/his
tokens. A six allows for throwing again. We assume here that the blue player
starts to play. This is why the b-labeled player is holding the die (represented
by the edge from the player to the die). Afterwards it is the turn of the yellow
player.

Every player of Ludo can be realized as the autonomous unit depicted in
Fig. 2. The goal of a player is to have all of her/his tokens at home, one at

each home node. The rules and the imported units model all possible actions

againready

cc

ready turn
x in {1,...,5}

cnm−6:

cnm:

rules:

player(c:[b,g,y,r])

cc
66

c c

kicked−out

c
x c

x

c c c c

go−to−startpoint:

conds: go−to−startpoint > (move−6(c),move(c)) > (cnm−6,cnm)

uses: move−6(c), move(c)

goal:
{c} {c} {c}

Fig. 2. A ludo player

of a player. A rule is depicted by an arrow pointing from the left-hand side of
the rule to the right-hand side. The possible values of the variables occurring in
the left- or right-hand side are put under the arrow. If the label of a node or
an edge is not significant it is omitted in the rule, i.e. an item without a label
can be matched to an item with any label. The rule go-to-startpoint of the unit
player moves a token that has been kicked out to its home node. As the control
condition prescribes this rule has the highest priority, i.e. it should be always
applied if possible. The rule cnm-6 and the rule set cnm are applied if no token
can be moved by the player, i.e. they have the lowest priority. The rule cnm-6

asks the die to throw again and cnm asks the die to turn to the next player if a
number between one and five was thrown.

Every player imports the two units move-6 and move. The unit move is
depicted in Fig. 3. It models all moves of a token if no six is thrown. The moves
corresponding to a six are contained in the unit move-6. For reasons of space
limitations it is not depicted. The unit move contains four rules. The first, mf

moves a token from the first round node (the one connected to its start node) x

nodes ahead where x ∈ {1, . . . , 5} is the number thrown by the die. This move

L +{c} M−{c}L

L +{c}ML (M+{z})−{c}

L M−{c}L+{c}

L L+{c}

kicked−out

(M+{z})−{c}

 z z c

x in {1,...,5}

 c c c c

x in {1,...,5}

 c c c c

x in {1,...,5}

 c c

x in {1,...,5}

 c

c c

c

ready
x

c

turn
x

c

z
z

c

c
x

ready

c

turn
x

c

ready
x

c

turn
x

M

c

ready
x

c

turn
x

mf:
rules

move(c:[b,y,g,r])

11

M

x x

M = {b,y,g,r}

mfko:

11

kicked−out

x x

c in M,

1

N_1 N_2

1

N_1 N_2
M

x x

N_x N_x

c in N_1,...,N_x,
M = {b,y,g,r}

goko:

go:

1

N_1 N_2

1

N_1 N_2

6

c in M,

c in N_1,...,N_x, x

N_x N_x

conds: (mf,mfko) > (go,goko)

Fig. 3. The unit move

can only be performed if the target node is not occupied and if there is still a
token at the start node. Moreover, the token can only be moved if it is the turn
of its player. This is indicated by the arrow pointing from player c to the die. On
the left-hand side the die has a ready-loop which means that the die has already
thrown itself. On the right-hand side the die is asked to turn. The rule mfko is
similar to mf. The difference is that another token is kicked out. The rule go

moves from a round or a home node to another round or home node. The rule
goko does the same but it additionally kicks out another token. The rules go and
goko can only be applied if the first two rules are not applicable. This is why the
first round node must be left if it is occupied by a token of colour c and if there
is still a token at the start node. If this move is not possible any other token can
be taken.

Please note that players select their tokens nondeterministically. More so-
phisticated rules would allow to decide whether it is appropriate to choose a
token that can kick out another one, etc. The rules for making such decisions
possible are more complicated, because they have to consider a wider context of
the environment (e.g. such a rule could check whether the kicking out of another
token brings the own token into a “dangerous” position). For reasons of space
limitations they are kept simple in this paper.

The last autonomous unit of Ludo models the die and is depicted in Fig. 4.
The unit die has no special goal, i.e. it admits every graph as a goal. The only

yx
x,y in {1,..,6}

ready

turn

yx
x,y in {1,..,6}

ready

yagain
6 y in {1,..,6}

ready

rules:

die

start:

turn&throw:

throw−again:

conds: start ; (throw−again | turn&throw)*

Fig. 4. The unit die

functionality of die is to throw itself and to move to the next player. The first
rule throws the die. The second rule throws and turns the die in the case where
the die gets a corresponding turn-message from the player. With the third rule
the die throws itself again without moving to the next player. This can be only

done if a six was thrown before. The control condition requires that the start

rule be applied once at first. Afterwards any of the two remaining rules can be
applied arbitrarily often.

The game Ludo (including the board, up to four players, one die and the
game rules) can be modeled as the community Ludo the goal of which specifies
all graphs in which at least one player unit has reached its goal, the initial
environment specification specifies all possible start situations of Ludo, and the
set autonomous units consists of the unit die and one player unit for every colour.

7 Conclusion

In this paper, we have introduced communities of autonomous units as a means
for modeling systems in which different components interact in a rule-based,
self-controlled, and goal-driven manner within a common environment. We have
compared communities of autonomous units with the original transformation
units and we have illustrated the notion of communities with a case study mod-
eling the board game Ludo in which every player as well as the die can act as
an autonomous unit.

The underlying formal framework for communities of autonomous units has
been graph transformation which is highly adequate if the common environment
can be represented in a natural way as a graph as for example in the case of
board games and logistic applications. Nevertheless, it is worth noting that the
graphs and the graph transformation rules the units are working with are not
further specified in the underlying graph transformation approach so that in
general, one can take as formal basis any rule-based mechanism that provides
a set of configurations and a set of rules specifying a binary relation on such
configurations.

The presented paper has been concentrated on the sequential semantics of
communities of autonomous units which seems to be suitable for a series of
applications. For applications in which unit actions can happen in parallel or
concurrently, the semantics can be defined accordingly as is done in a very first
attempt in [6] where one can find also a case study from the area of transport
logistics.

There are at least the following interesting points for future work. (1) Com-
munities of autonomous units should be compared with related approaches such
as agent systems [7, 8], swarm intelligence [9] and distributed graph transfor-
mation [10]. (2) Communities of autonomous units should be implemented in
order to be able to elaborate and to verify case-studies of realistic size. In order
to verify the case study presented in Sect. 6 we have implemented it based on
the AGG system. For this pupose the community Ludo had to be translated
into a single flat graph transformation system because AGG does not support
the concept of transformation units or communities. Currently there is being
done some work towards the implementation of communities at the University
of Bremen which has as one aim to allow to plug in other already existing graph
transformation tools (cf. [11]). (3) Up to now, the goal of an autonomous unit

is defined as a graph class expression. Since for some applications this may not
be sufficient, other adequate classes of goals should be studied. It should also
be studied which concrete classes of control conditions are the right ones for
autonomous units. In particular, in the case of games different playing strategies
should be employed for the different units in a communities. (4) More case stud-
ies should be specified. In this context it would be meaningful to elaborate for
one application several case studies with a different degree of control distribu-
tion. For example in the case of the game Ludo one could compare the presented
case study with another in which also the tokens are modeled as autonomous
units with their own control and rules. (5) Communities of autonomous units
that can perform parallel and concurrent transformations should be further in-
vestigated taking into account concepts and results from concurrent, parallel and
distributed graph transformation (cf.,e.g., [12, 10]).

References

1. Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics.
Formal Aspects of Computing 11(6) (1999) 690–723

2. Kreowski, H.J., Kuske, S.: Approach-independent structuring concepts for rule-
based systems. In Wirsing, M., Pattison, D., Hennicker, R., eds.: Proc. 16th Int.
Workshop on Algebraic Development Techniques (WADT 2002). Volume 2755 of
Lecture Notes in Computer Science. (2003) 299–311

3. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, Singapore (1997)

4. Kreowski, H.J., Kuske, S., Schürr, A.: Nested graph transformation units. Inter-
national Journal on Software Engineering and Knowledge Engineering 7(4) (1997)
479–502

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G., eds.: Fundamentals of Algebraic
Graph Transformation. Springer (2006)

6. Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.J., Kuske, S.: Regel-
basierte Modellierung mit autonomen Transformationseinheiten. Technical Re-
port 1, University of Bremen (2006)

7. Weiss, G., ed.: Multiagent Systems — A Modern Approach to Distributed Artificial
Intelligence. The MIT Press (1999)

8. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(2) (1995)

9. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)
10. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G., eds.: Handbook of Graph

Grammars and Computing by Graph Transformation, Vol. 3: Concurrency, Paral-
lelism, and Distribution. World Scientific, Singapore (1999)

11. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. World Scientific, Singapore (1999)

12. Heckel, R.: Open Graph Transformation Systems: A New Approach to the Com-
positional Modelling of Concurrent and Reactive Systems. PhD thesis, Technical
University of Berlin (1998)

	Autonomous Units and their Semantics – the Sequential Case�

