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Part I

General Introduction and Motivation

1 What is Graph Transformation?

2 Aims and Paradigms of Graph Transformation

3 Graph Transformation Approaches

4 Application Areas of Graph Transformation Systems
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What is Graph Transformation?

Rule-based modification of graphs

�
��

�
��L R

p = (L,R)

from Chomsky grammars on strings to graph grammars;

from term rewriting to graph rewriting;

from textual description to visual modeling.
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Aims and Paradigms of Graph Transformation

Computing by graph transformation is a fundamental concept for

visual modeling and specification,

model transformation,

concurrency and distribution,

software development.

Projects

Supported by EU projects since 1990:
COMPUGRAPH 1 + 2, GETGRATS, APPLIGRAPH, SEGRAVIS.
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Graph Transformation Approaches

1 Node label replacement approach

2 Hyperedge replacement approach
3 Algebraic approach

Double Pushout (DPO) (since 1973)
Single Pushout (SPO) (since 1984/90)
High Level Replacement (HLR) (since 1991/2004)

4 Logical approach

5 Theory of 2-structures

6 Programmed graph replacement approach

Literature

Handbook of Graph Grammars and Computing by Graph Transformation,
Vol. 1 (1997)
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Application Areas of Graph Transformation Systems

Application areas are

model and program transformation;

syntax and semantics of visual languages;

visual modeling of behavior and programming;

modeling, metamodeling, and model-driven architecture;

software architectures and evolution;

refactoring of programs and software systems;

security policies.

Literature

Handbook of Graph Grammars and Computing by Graph Transformation,
Vol. 2 (1999)
Proc. ICGT ’02-06, LNCS
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Part II
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7 Mono-, Epi- and Isomorphisms
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Graphs and Graph Morphisms

Definition

graph G = (V ,E , s, t) consists of

sets V of nodes and E of edges, and

source and target functions s, t : E → V

E1 V1

E2 V2

fE fV

s1
t1

s2
t2

=

graph morphism f : G1 → G2, f = (fV , fE ) consists of two functions
fV : V1 → V2 and fE : E1 → E2 with

fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE

composition g ◦ f = (gV ◦ fV , gE ◦ fE ) : G1 → G3 of f : G1 → G2 and
g : G2 → G3 is graph morphism
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Example: Graphs and Graph Morphisms

Example

Top: graph GS = (VS ,ES , sS , tS), with

VS = {u, v , x , y}, ES = {a, b},

sS : ES → VS : a, b �→ u,
tS : ES → VS : a, b �→ v

Bottom: graph GT = (VT ,ET , sT , tT ), with

VT = {s, t}, ES = {e},

sT : ET → VT : e �→ s,
tT : ET → VT : e �→ t

Inbetween: graph morphism f : GS → GT with

fV : VS → VT : u, x �→ s; v , y �→ t

fE : ES → ET : a, b �→ e

GS

GT

x

u

y

v
a
b

s te
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Typed Graphs and Typed Graph Morphisms

Definition

type graph is a distinguished graph TG = (VTG ,ETG , sTG , tTG )

typed graph GT = (G , type) over TG is graph G and graph
morphism type : G → TG

typed graph morphism f : GT
1 → GT

2 is graph morphism f : G1 → G2

with type2 ◦ f = type1

G1 G2

TG

f

type1 type2
=
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Example: Mutual Exclusion and Gluing Construction

Example

TG : P

T

F1

F2

R

start

crit

check

setTurn

active

non−active

setFlag P R P R P F1 R

start

non−active

setTurn

active

P
2

TP
1

R

non−active

start

non−active

start

P
2

TP
1

R

non−active

start

P
2

T

F1

P
1

R

non−active

start

active

setTurn

m

S D G1
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Notion of Category

Definition

category C = (ObC ,MorC , ◦, id) defined by

class ObC of objects;

set MorC (A,B) of morphisms ∀A,B ∈ ObC ;

composition ◦ : MorC (B ,C )×MorC (A,B)→ MorC (A,C )
∀A,B ,C ∈ ObC ,

identity morphism idA ∈ MorC (A,A) ∀A ∈ ObC ;

such that:

1 Associativity. (h ◦ g) ◦ f = h ◦ (g ◦ f ) ∀A
f
→ B

g
→ C

h
→ D

2 Identity. f ◦ idA = f and idB ◦ f = f ∀f : A→ B

for f ∈ MorC (A,B), we write f : A→ B
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Examples of Categories

1 category Sets

objects: sets, morphisms: functions f : A→ B,
composition for f : A→ B and g : B → C defined by
(g ◦ f )(x) = g(f (x)),
identity: identical mapping idA : A→ A : x �→ x .

2 category Graphs

objects: graphs, morphisms: graph morphisms,
composition and identity: componentwise on nodes and edges.

3 category GraphsTG

objects: typed graphs, morphisms: typed graph morphisms,
composition and identity: as in Graphs.

4 category Alg(Σ)

objects: algebras over a given signature Σ, morphisms: homomorphisms
composition and identity: componentwise on the carrier sets.
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Mono-, Epi- and Isomorphisms

Definition

m : B → C ∈ MorC is monomorphism if
m ◦ f = m ◦ g implies f = g ∀f , g : A→ B ∈ MorC

A B Cmf
g A B Ce f

g

e : A→ B ∈ MorC is epimorphism if
f ◦ e = g ◦ e implies f = g ∀f , g : B → C ∈ MorC

i : A→ B ∈ MorC is isomorphism if
there is i−1 : B → A ∈ MorC with i ◦ i−1 = idB and i−1 ◦ i = idA

Fact

In Sets, Graphs, and GraphsTG the monomorphisms (or epimorphisms or
isomorphisms) are exactly those morphisms which are injective (or
surjective or bijective, respectively).
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Pushouts as Gluing Construction

Definition

pushout (PO) over morphisms
f : A→ B and g : A→ C defined by

a pushout object D and

morphisms f ′ : C → D and
g ′ : B → D with f ′ ◦ g = g ′ ◦ f

A B

C D

X

f

g

k

h
f ′

g ′

x

=

=

=

with universal property:
For all objects X , morphisms h : B → X , k : C → X with k ◦ g = h ◦ f :
there is a unique morphism x : D → X with x ◦ g ′ = h and x ◦ f ′ = k

The pushout construction is unique up to isomorphism.
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Pushouts in Sets

Fact

In Sets, pushout C
f ′
→ D

g ′

← B over f : A→ B and g : A→ C is

D = B
�

∪ C |≡, with ≡ generated by (f (a), g(a)) ∈ ≡ ∀a ∈ A and
f ′(c) = [c] ∀c ∈ C and g ′(b) = [b] ∀b ∈ B.

Example

a
b
c
d

1
2

3
4

5
6
7
8

[1]
[3]

[4][8]

A B

C

D

(1, 5), (2, 5), (2, 6), (3, 7) ∈ ≡

[1] = [2] = [5] = [6] = {1, 2, 5, 6},
[3] = [7] = {3, 7},
[4] = {4}, [8] = {8}
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Pushouts in Graphs and GraphsTG

Fact

In Graphs and GraphsTG, pushouts can be constructed componentwise
for nodes and edges in Sets.

EA EB

EC ED

VA VB

VC VD

fE

gE g ′

E

f ′

E

fV

gV

f ′

V

g ′

V

sA sB

sC sD

Example
GA GB

GC GD
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Composition and Decomposition of Pushouts

Fact

PO composition:
(1) and (2) POs ⇒ (1) + (2) PO

PO decomposition:
(1) and (1) + (2) POs ⇒ (2) PO

A B

C D

E

F

(1) (2)

f e

f ′ e′

g g ′

e′′

Example

(1) (2)
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Pullbacks as Dual Construction of Pushouts

Definition

pullback (PB) over morphisms f : C → D
and g : B → D defined by

a pullback object A and

morphisms f ′ : A→ B and
g ′ : A→ C with g ◦ f ′ = f ◦ g ′

A B

C D

X

g

f

k

h

f ′

g ′

x

=

=

=

with universal property:
For all objects X , morphisms h : X → B , k : X → C with f ◦ k = g ◦ h:
there is a unique morphism x : X → A with f ′ ◦ x = h and g ′ ◦ x = k.

The composition and decomposition of pullbacks is dual to pushouts.
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Pullbacks in Sets, Graphs and GraphsTG

Fact

In Sets, pullback C
g ′

← A
f ′
→ B over f : C → D and g : B → D:

A =
⋃

d∈D f −1(d)× g−1(d) = {(c , b) | f (c) = g(b)} ⊆ C × B
with f ′ : A→ B : (c , b) �→ b and g ′ : A→ C : (c , b) �→ c.

Special case: A
∼
= B ∩ C for inclusions f and g.

In Graphs and GraphsTG, pullbacks can be constructed componentwise
for nodes and edges in Sets.
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Part III

Graph Transformation Systems

11 Graph Productions and Transformations

12 Graph Transformation Systems, Grammars and Languages
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15 Construction of Graph Transformations

16 Embedding of Transformations
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Graph Productions and Transformations

Definition

(typed) graph production

p = (L
l
← K

r
→ R) consists of

(typed) graphs L, K , and R ,

injective (typed) graph morphisms l
and r

L K R

G D H

(1) (2)

l r

m k n

f g

direct (typed) graph transformation G
p,m
=⇒ H given by POs (1) and (2),

production p and match m : L→ G

(typed) graph transformation, G0
∗
⇒ Gn, is sequence G0 ⇒ G1 ⇒ . . .⇒ Gn

of direct (typed) graph transformations
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Recap: Example Mutual Exclusion

Example

TG : P

T

F1

F2

R

start

crit

check

setTurn

active

non−active

setFlag P R P R P F1 R

start

non−active

setTurn

active

P
2

TP
1

R

non−active

start

non−active

start

P
2

TP
1

R

non−active

start

P
2

T

F1

P
1

R

non−active

start

active

setTurn

m

S D G1
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Example: Mutual Exclusion 2

Example

setFlag : P R P R P F1 R

start

non−active

setTurn

active

setTurn1:

P

T

P

R

P

T

P

R

P

T

P

R

non−active non−active

setTurn

non−active

check

setTurn2: P T R P T R P T R

setTurn check

enter : P

F1

T

R P

T

R P

F2

T

R

check crit

exit: P F2 R P R P R

crit

active

start

non−active
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Example: Mutual Exclusion 3

Example

S : P
2

RP
1

T

non−active

start

non−active

start

⇓setFlag

G1 : P
2

RP
1

T

F1
non−active

start

active

setTurn

⇓setTurn1

G2 : P
2

RP
1

T

F1
non−active

start

active

check

⇓enter

G3 : P
2

RP
1

T

F2
non−active

start

active

crit

⇓setFlag

G4 : P
2

RP
1

T

F2

F1

active

setTurn

active

crit

⇓exit

G5 : P
2

RP
1

TF1

active

setTurn

non−active

start
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Graph Transformation Systems, Grammars and Languages

Definition

(typed) graph transformation system GTS = (TG ,P)
consists of (type graph TG and) set of (typed) graph productions P

(typed) graph grammar GG = (GTS ,S)
consists of GTS and (typed) start graph S

(typed) graph language L of GG is defined by

L = {G | ∃ (typed) graph transformation S
∗
⇒ G}.

Example

typed graph transformation system ME = (TG ,P)

typed graph grammar MutualExclusion = (TG ,P ,S)

P = {setFlag , setTurn1, setTurn2, enter , exit}.
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Example: Language of Mutual Exclusion Grammar

Example

process 1 process 2
active active
setTurn crit
flag=1 flag=2

turn

process 1 process 2
active active
crit setTurn
flag=2 flag=1
turn

process 1 process 2
active active
setTurn check
flag=1 flag=1

turn

process 1 process 2
active active
check setTurn
flag=1 flag=1
turn

process 1 process 2
non−act. active
start setTurn
flag=0 flag=1
turn

process 1 process 2
active active
setTurn setTurn
flag=1 flag=1
turn

process 1 process 2
non−act. non−act.
start start
flag=0 flag=0
turn

process 1 process 2
non−act. non−act.
start start
flag=0 flag=0

turn

process 1 process 2
active non−act.
setTurn start
flag=1 flag=0

turn

process 1 process 2
active active
setTurn setTurn
flag=1 flag=1

turn

process 1 process 2
active non−act.
setTurn start
flag=1 flag=0
turn

process 1 process 2
active non−act.
check start
flag=1 flag=0
turn

process 1 process 2
active non−act.
crit start
flag=2 flag=0
turn

process 1 process 2
non−act. active
start setTurn
flag=0 flag=1

turn

process 1 process 2
non−act. active
start check
flag=0 flag=1

turn

process 1 process 2
non−act. active
start crit
flag=0 flag=2

turn

setFlag

setFlag

setFlag

setTurn2

setFlag

enter

setFlag

setTurn2

setFlag

enter

setFlag

setFlag

setFlag
setFlag

setTurn2

setTurn2

setFlag

enter

enter

setFlag

exit exit

setTurn1setTurn1

exit exit

S :
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Applicability and Gluing Condition

Problem: When is production p applicable via match m?

Definition

production p is applicable to G via match m
if context graph D exists such that (1) is PO

Gluing condition: IP ∪ DP ⊆ GP

L K R

G D

(1)

l r

m k

f

gluing points GP = lV (VK ) ∪ lE (EK ) = l(K )

identification points IP =
{v ∈ VL | ∃w ∈ VL,w �= v : mV (v) = mV (w)} ∪ {e ∈ EL | ∃f ∈ EL, f �= e : mE (e) = mE (f )}

dangling points DP =
{v ∈ VL | ∃e ∈ EG\mE (EL) : sG (e) = mV (v) or tG (e) = mV (v)}

Fact

Context graph D with the PO (1) exists iff the gluing condition is
satisfied. If D exists, it is unique up to isomorphism.
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Example and Counterexample: Gluing Condition

Example
setFlag

P R P R P F1 R

start

non−active

setTurn

active

P
2

TP
1

R

non−active

start

non−active

start

P
2

TP
1

R

non−active

start

P
2

T

F1

P
1

R

non−active

start

active

setTurn

m

S D G1

GP = l(K ): both nodes in L,

IP = ∅,

DP = node labelled R .

gluing condition is satisfied
with IP ∪ DP ⊆ GP

Counterexample

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

P ∅ ∅

P
2

TP
1

R

non−active

start

non−active

start
D

m′

S

GP = l(K ) = ∅,

IP = ∅,

DP = node labeled P .

gluing condition is not satisfied,
because DP � GP

H. Ehrig, U. Prange, K. Ehrig () Tutorial on Graph Transformation July 15, 2006 30 / 73

Construction of Direct Graph Transformations

Fact

If gluing condition is satisfied, G
p,m
⇒ H

can be constructed in two steps:

L K R

G D H

(1) (2)

l r

m k n

f g

1 Delete those nodes and edges in G that are reached by the match m,
but keep the image of K, i.e. D = (G\m(L)) ∪m(l(K )), such that
G = L +K D in PO (1).

2 Add those nodes and edges that are newly created in R, i.e.

H = D
�

∪ (R\r(K )), such that H = R +K D in PO (2).

This construction is unique up to isomorphism.
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Embedding of Graph Transformations

Problem: When can graph transformation t : G0
∗
⇒ Gn be extended to

t ′ : G ′
0

∗
⇒ G ′

n for k0 : G0 → G ′
0?

Theorem

Given transformation t : G0
∗
⇒ Gn and consistent morphism k0 : G0 → G ′

0

w.r.t. t, then there is an extension diagram (1) over t and k0.

G0

G ′
0

Gn

∗

G ′
n

∗
k0 kn

t

t′

(1)

Problem: What is consistency of k0 with respect to t?

H. Ehrig, U. Prange, K. Ehrig () Tutorial on Graph Transformation July 15, 2006 32 / 73



Boundary, Context and Consistency

Definition

boundary B is smallest subgraph of G0 containing IP and DP of
k0 : G0 → G ′

0

context C is smallest subgraph of G ′
0 such that G ′

0 = G0 +B C

consistency: boundary B is preserved by G0
t
⇒ Gn leading to bn : B → Gn

Fact

In case of consistency we also
have G ′

n = Gn +B C

B

C

G0

G ′
0

Gn

∗

G ′
n

∗
(2) (1)

b0

k0

t

t′

kn

bn
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Example: Embedding of Graph Transformation

Example

B

P
1

S

P
2

T

P
1

R
non−active

start

non−active

start

G ′
0

P
2

T

P
1

R

T R

non−active

start

non−active

start

C

P
1

T R

bn

∗

∗

k5k0

G ′
5

P
2

R

P
1

TF1

RT

active

setTurn

non−active

start

G5

P
2

RP
1

TF1

active

setTurn

non−active

start
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Parallel and Sequential Independence

Problem: When are direct transformations commutable?

Definition

G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel independent if

m1(L1) ∩m2(L2) ⊆ m1(l1(K1)) ∩m2(l2(K2)).

G
p1,m1
=⇒ H1

p2,m2
=⇒ H2 are sequentially independent for comatch n1 : R1 → H1

if n1(R1) ∩m2(L2) ⊆ n1(r1(K1)) ∩m2(l2(K2)).

Fact

G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are

parallel independent iff there ex-
ist morphisms i : L1 → D2 and

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

l1r1

m1k1n1

f1g1

l2 r2

m2 k2 n2

f2 g2

ij

j : L2 → D1 such that f2 ◦ i = m1 and f1 ◦ j = m2.

Similar for sequential independence.
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Examples: Parallel and Sequential Independence

Example

K1 L1 L2 K2

setFlag setFlag

P RP R P R P R

start

non−active

start

non−active

P
2

TP
1

R

non−active

start

non−active

start

P
2

TP
1

R

non−active

start

P
2

TP
1

R

non−active

start
f2f1

m m′

D1 S D2

... ...

parallel independent:
m(L1) ∩m′(L2)

= {node labelled R}
= m(l1(K1)) ∩m′(l2(K2))

Example

K1 R1 L2 K2

enter setFlag

P R

T

F2

P

T

R P R P R

crit start

non−active

P
2

T

F2

P
1

R

non−active

start

active

crit

P
2

TP
1

R

non−active

start

active

P
2

T

F2

P
1

R

active

crit
f2g1

n2 m3

D ′
1 G ′′ D ′′

2

... ...

sequentially independent:
n2(R1) ∩m3(L2)

= {node labelled R}
= n2(r1(K1)) ∩m3(l2(K2))
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Local Church-Rosser Theorem

Theorem

1 If G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel independent, there are G ′

and H1
p2,m

′

2=⇒ G ′ and H2
p1,m

′

1=⇒ G ′ such that G
p1,m1
=⇒ H1

p2,m
′

2=⇒ G ′ and

G
p2,m2
=⇒ H2

p1,m
′

1=⇒ G ′ are sequentially independent.
G

H1 H2

G ′

p1,m1 p2,m2

p2,m
′

2 p1,m
′

1

2 If G
p1,m1
=⇒ H1

p2,m
′

2=⇒ G ′ are sequentially independent, there are H2 and

G
p2,m2
=⇒ H2

p1,m
′

1=⇒ G ′ such that G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel

independent.
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Example: Local Church-Rosser Theorem

Example

S

G1 G ′

X

setFlag ,m setFlag ,m′

setFlag ,m′ setFlag ,m

P
2

TP
1

R

non−active

start

non−active

start

P
2

T

F1

P
1

R

active

setTurn

non−active

start

P
2

RP
1

T

F1
non−active

start

active

setTurn

P
2

T

F1

F1P
1

R

active

setTurn

active

setTurn
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Overview of Parallelism and Concurrency SKIP

Problem: How to compose productions p1 and p2?

Solution: 1. Parallel composition p1 + p2 (independency)
2. E-concurrent production p1 ∗E p2 (dependency)

Theorem

Parallelism

G

H1 H2

G ′

p1 p2

p2 p1

p1+p2

Concurrency

G

H

G ′

p1 p2

p1∗Ep2
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Parallel Productions and Transformations

Definition

Given productions p1 = (L1
l1← K1

r1→ R1) and p2 = (L2
l2← K2

r2→ R2),
the parallel production p1 + p2 is defined by the disjoint union

p1 + p2 = (L1
�

∪ L2
l1

�

∪l2←− K1
�

∪ K2
r1

�

∪r2−→ R1
�

∪ R2)

The application of a parallel (typed) graph production is called a
parallel direct (typed) graph transformation.

Example

enter + setFlag :

P R P R P F1 R

start

non−active

setTurn

active

P

F1

T

R P

T

R P

F2

T

R

check crit

H. Ehrig, U. Prange, K. Ehrig () Tutorial on Graph Transformation July 15, 2006 41 / 73

Parallelism Theorem

Theorem

Given a transformation system GTS, we have:

1 Synthesis. If G ⇒ H1 ⇒ G ′ via productions (p1, p2) are sequentially
independent, then there is a parallel transformation G ⇒ G ′ via the
parallel production p1 + p2.

2 Analysis. For G ⇒ G ′ via p1 + p2 there are sequentially independent
G ⇒ H1 ⇒ G ′ via (p1, p2) and G ⇒ H2 ⇒ G ′ via (p2, p1).

3 Bijective correspondence.
The synthesis and analysis
constructions are inverse to
each other up to
isomorphism.

G

H1 H2

G ′

p1 p2

p2 p1

p1+p2
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Concurrency Theorem

Problem: How to compare productions and transformations in general?

Theorem

Given productions p1 and p2 with E-concurrent production p1 ∗E p2, then:

1 Synthesis. Given an E-related transformation sequence G ⇒ H ⇒ G ′

via (p1, p2), then there is a synthesis construction leading to a direct
transformation G ⇒ G ′ via p1 ∗E p2.

2 Analysis. Given a direct transformation G ⇒ G ′ via p1 ∗E p2, then
there is an analysis construction leading to an E-related
transformation sequence G ⇒ H ⇒ G ′ via (p1, p2).

3 Bijective correspondence. The
synthesis and analysis
constructions are inverse to each
other up to isomorphism. G

H

G ′

p1 p2

p1∗Ep2
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Example: Concurrency Theorem

Example

G1

G2S

setFlag ,m setTurn1,m1

setFlag∗E setTurn1,mP
2

TP
1

R

non−active

start

non−active

start

P
2

RP
1

T

F1
non−active

start

active

setTurn

P
2

RP
1

T

F1
non−active

start

active

check

E :

P

TP

R

F1

active

non−active

setTurn

setFlag ∗E setTurn1:

P

TP

R

P

TP

R

P

TP

R

F1

non−active

non−active non−active

start

non−active

active

check
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Global Determinism and Confluence

Problem: How to achieve global determinism of a GTS in spite of local
nondeterminism?

Definition

A GTS is (locally) confluent if, for all (direct) transformations G
∗
⇒ H1

and G
∗
⇒ H2, there is X and transformations H1

∗
⇒ X and H2

∗
⇒ X .

G

H1 H2

X

∗ ∗

∗ ∗

G

H1 H2

X∗ ∗

Lemma

Every confluent GTS is globally deterministic.
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Termination and Confluence

Definition

A GTS is terminating if there is no infinite sequence of graph

transformations (tn : G
∗
⇒ Gn)n∈N with tn+1 = G

tn⇒ Gn ⇒ Gn+1.

Lemma

Every terminating and locally confluent GTS is also confluent.

Problem: How to obtain local confluence in spite of parallel dependent
graph transformations?
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Critical Pairs

Definition

Pair P1
p1,o1
⇐= K

p2,o2
=⇒ P2 of direct transformations is called a critical pair if it

is parallel dependent and minimal, i.e. the matches o1 : L1 → K and
o2 : L2 → K are jointly surjective.

Critical Pair 1

o1 o2

P RP F1 R

start

non−active

setTurn

active

P

T

P

R

P

T

P

R

non−active

setTurn

non−active

check

P

T

F1P

R P

T

P

R P

T

P

R

setTurn

active non−active

start

setTurnsetTurn

non−active

start

check

P1 K1 P2

setFlag setTurn1

Critical Pair 2

o′

1 o′

2

P RP F1 R

start

non−active

setTurn

active

P

T

P

R

P

T

P

R

non−active

setTurn

non−active

check

P

T

F1P

R

R

P

T

P

R

R R

P

T

P

R

setTurn

active non−active

start

setTurnsetTurn

non−active

start

check

P ′
1 K2 P ′

2

setFlag setTurn1
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Local Confluence Theorem - Critical Pair Lemma

Theorem

A (typed) graph transformation system GTS is locally confluent if all its
critical pairs are strictly confluent.

Example

P

T

F1P

R

P

T

P

R

P

T

P

R

P

T

P

R

setTurn

active

setTurn

non−active

start

setTurn

non−active

start

check

non−active

start

check

P1

K1

P2

P2

setFlag setTurn1

∗ id

strict confluent
critical pairs

P

T

F1P

R

R

P

T

P

R

R

R

P

T

P

R

R

P

T

P

R

setTurn

active

setTurn

non−active

start

setTurn

non−active

start

check

non−active

start

check

P ′
1

K2

P ′
2

P ′
2

setFlag setTurn1

∗ id
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Functional Behavior of Graph Transformation Systems

Theorem

If a GTS is terminating and locally confluent, it has functional behavior:

1 For each G, there is a terminating transformation G
∗
⇒ H in GTS,

and H is unique up to isomorphism.

2 Each pair G
∗
⇒ H1 and G

∗
⇒ H2 can be extended to terminating

transformations G
∗
⇒ H1

∗
⇒ H and G

∗
⇒ H2

∗
⇒ H with the same H.

Theorem

Every layered typed graph grammar GG = (TG ,P ,G0) with injective
matches terminates if it satisfies suitable layer conditions for deleting and
nondeleting productions.
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Part V

Adhesive HLR Categories and Typed AGT Systems

24 Motivation for a Categorical Framework

25 Van Kampen Squares

26 Adhesive and Adhesive HLR Categories

27 Adhesive HLR Systems

28 Typed Attributed Graphs

29 Typed Attributed Graph Transformation Systems
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Motivation for a Categorical Framework

Problem:

Up to now we have graph transformation theory for Graphs, GraphsTG

only
But the theory is required also for

hypergraph transformation systems,

Petri net transformation systems,

transformation systems of algebraic specifications and

typed attributed graph transformation systems.

Solution:

Replace Graphs by suitable category.
Suitable is Adhesive HLR category based on van Kampen property.
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Overview of Adhesive HLR Categories SKIP

Axioms: Adhesive HLR categories (C,M) satisfy:

1 M⊆ Monos closed under composition and decomposition

2 pushouts (POs) and pullbacks (PBs) alongM-morphisms

3 compatibility of POs and PBs by van Kampen squares

Examples: Sets, Graphs, GraphsTG, PTNets, AHLNets,
(AGraphsATG,M)

Theorem
1 construction of adhesive HLR categories by product, slice, coslice,

comma and functor categories

2 properties of adhesive HLR categories are sufficient for all
constructions and results of Parts II-IV
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Van Kampen Squares

Idea: compatibility of pushouts and pullbacks

Definition

Pushout (1) is a van Kampen square if, for any commutative cube with
(1) in the bottom and where the back faces are pullbacks, we have:

The top face is pushout iff
the front faces are pullbacks.

A′

B ′

A

B

C ′

D ′

C

D

(2)

m′

a

f ′

g ′

b

m
f

n′

c

d

n
g

A B

C D

(1)

m

f

n

g

Example

{0, 1}

{0, 1, 2, 3}

{0, 1}

{0, 1, 2}

{∗}

{∗, 2, 3}

{∗}

{∗, 2}
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Adhesive Categories

Definition

category C is an adhesive category if:

1 C has pushouts along monomorphisms (i.e. pushouts where at least
one of the given morphisms is a monomorphism)

2 C has pullbacks

3 Pushouts along monomorphisms are VK squares

Examples: Sets, Graphs, GraphsTG, Hypergraphs, ElemNets

Counterexamples: PTNets, AGraphsATG

Idea for generalization: Replace monomorphisms by subclassM and
pullbacks by those along monomorphisms
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(Weak) Adhesive HLR Categories

Definition

category C with a morphism classM is called a (weak) adhesive HLR
category if:

1 M is a class of monomorphisms closed under isomorphisms,
composition (f : A→ B ∈M, g : B → C ∈M⇒ g ◦ f ∈M), and
decomposition (g ◦ f ∈M, g ∈ M⇒ f ∈M)

2 C has pushouts and pullbacks alongM-morphisms, and
M-morphisms are closed under pushouts and pullbacks

3 Pushouts in C along M-morphisms are (weak) VK squares

Examples: (PTNets,Mmono), (Spec,Mstrict ), (AHLNets,Mmono ),
(AGraphsATG,M) (see below)
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Construction and Properties of AHLR categories

Theorem

If (C,M1) and (D,M2) are (weak) adhesive HLR categories, then the
following categories are (weak) adhesive HLR categories:

1 the product category (C×D,M1 ×M2), the slice category
(C\X ,M1 ∩ C\X ) and the coslice category (X\C,M1 ∩ X\C),

2 the functor category ([X,C],M− functor transformations),

3 the comma category (ComCat(F ,G ;I), (M1 ×M2) ∩MorComCat),
where F : C→ X preserves pushouts alongM1-morphisms and
G : D→ X preserves pullbacks (along M2-morphisms).

In (weak) adhesive categories, the following properties hold:

1 Pushouts along M-morphisms are pullbacks

2 M pushout–pullback decomposition lemma

3 Cube pushout–pullback lemma

4 Uniqueness of pushout complements
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Adhesive HLR Systems

Definition

adhesive HLR system AHS = (C,M,P) consists of (weak) adhesive
HLR category (C,M) and set of productions P with morphisms inM

adhesive HLR grammar AHG = (AHS ,S) is an adhesive HLR system
together with a distinguished start object S

language L of an adhesive HLR grammar is defined by

L = {G | ∃ transformation S
∗
⇒ G}.

The categorical framework allows to prove the results from Parts III and
IVj for all the instantiations (like Graphs, HyperGraphs, PTNets etc.).
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Motivation for Typed AGT Systems

Typed attributed graph transformation (AGT) is

integration of typed graph transformation with

data types as attributes for
modeling of visual languages (VL) with

alphabet of a VL given by attributed type graph,

syntax given by generating grammar,

operational semantics given by simulating grammar and animation.

model transformations between VLs by

typed AGT systems.

H. Ehrig, U. Prange, K. Ehrig () Tutorial on Graph Transformation July 15, 2006 58 / 73

Typed Attributed Graphs

Definition

E-graph G is defined by G = (VG ,VD ,EG ,

ENA,EEA, (sourcej , targetj )j∈{G ,NA,EA}).

EG VG

EEA ENA

VD

sourceEA

targetEA

sourceNA

targetNA

sourceG

targetG

Let DSIG = (SD ,OPD) be a data signature with S ′
D ⊆ SD .

Attributed graph AG = (G ,D) is E-graph G and DSIG -algebra D with
�

∪s∈S ′

D
Ds = VD .

AGraphsATG = category of typed attributed graphs (G ,D) and typed
attributed graph morphisms (fG , fD) consistent w.r.t. S ′

D over an
attributed type graph ATG
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Example: Typed Attributed Graphs

Example

Type graph ATG :

Method Parameter

Classstring

nat

parameterDirectionKind

param

typemname

noOfPars

pname

cname

kind

order

DSIG = CHAR + STRING + NAT+

sorts : parameterDirectionKind
opns : in, out, inout, return :→ parameterDirectionKind
S ′

D = {string , nat, parameterDirectionKind}

m par1

par2

par3 c

add

return

1

23

Nat

p1

in

p2

Notations for typed attributed graphs:
m:Method

mname=add
noOfPars=3

par1:Parameter

pname=p1
kind=in

par2:Parameter

pname=p2
kind=in

par3:Parameter

kind=return

c:Class

cname=Nat

:param

order=1

:param

order=2

:param

order=3
:type

:type

:type
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Typed Attributed Graph Transformation

Definition

typed attributed graph production p = (L
l
← K

r
→ R) consists of

typed attributed graphs L, K , R with common DSIG -termalgebra
TDSIG (X ) with variables X , and l , r ∈M, with

M = {f = (fG , fD) | fg injective, fD isomorphism of DSIG -algebras}

direct typed attributed graph transfor-

mation G
p,m
=⇒ H from G to H via the

match m is given by the following dou-
ble pushout diagram in AGraphsATG

L K R

G D H

(1) (2)

l r

m k n

f g
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Theory for Typed AGT Systems

Idea: Instantiation of theory for adhesive HLR systems

Theorem

(AGraphsATG,M) is an adhesive HLR category.

Corollary

In AGraphsATG, the following results hold:

Construction of typed attributed graph transformations,

Embedding Theorem,

Local Church-Rosser Theorem,

Parallelism Theorem,

Concurrency Theorem,

Local Confluence Theorem.
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Part VI

Advanced Features and Conclusion

30 Graph Constraints

31 Application Conditions

32 Typed AGT Systems with Inheritance

33 Modeling of Visual Languages

34 Model Transformations

35 Implementation of Typed AGT Systems in AGG

36 Conclusion
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Overview of Constraints and Application Conditions SKIP

Idea of graph constraints:
Restriction of graphs / graph languages by existence or nonexistence of
suitable graph patterns, called constraints c

Idea of application conditions:
Restriction of direct graphs transformations G

p,m
⇒ H by suitable conditions

for the match m (e.g. gluing condition)

Theorem

Construction of application condition acc for match m from graph
constraint c such that H |= c if m |= acc.
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Graph Constraints

Problem: How to define graph constraints?

Definition

atomic (typed) graph constraint is of form PC (a),
where a : P → C is (typed) graph morphism

(typed) graph constraint is Boolean formula over
atomic (typed) graph constraints

P C

G

=

a

p q

G |= PC (a), if, for every injective morphism p : P → G , there exists
injective morphism q : C → G such that q ◦ a = p.
This can be extended to boolean formulas.

Example

P C
R P T Ra

G satisfies this constraint if, for each resource
node R , there is a turn variable that connects
it to a process.
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Application Conditions

Problem: How to define application conditions?

Definition

atomic application condition over L is
given by P(x ,∨i∈Ixi )

m |= P(x ,∨i∈Ixi ), if, for all injective
p : X → G with p ◦ x = m, there exist
i ∈ I and injective qi : Ci → G with
qi ◦ xi = p.

L X

G

Ci

= =

x

m p

xi

qi

This can be extended to boolean formulas.

negative application condition NAC (x) is a
morphism x : L→ X . A morphism m : L→ G
satisfies NAC (x) if there does not exist an
injective p : X → G with p ◦ x = m.

L X

G

= |

x

m p
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Productions with Application Conditions

Definition

application condition A(p) = (AL,AR) for production p consists of left
application condition AL over L and right application condition AR over R

G
p,m
⇒ H with comatch n : R → H satisfies A(p) if m |= AL and n |= AR .

Example

P

active
x

addResource with NAC (x):

P P P T R
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Construction of Application Conditions

Theorem

For each graph constraint c for H, there is an equivalent right
application condition racc for the comatch n.

For each right application condition racc for comatch n, there is an
equivalent left application condition lacc for match m.

L K R

G D H

(1) (2)

l r

m k n

f g

H |= c, if m |= lacc.
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Typed AGT Systems with Inheritance

Circle

Rectangle

Line

Screen Figure

{abstract}

Bool
visible

Nat

height
width

id

radius

width

height

endx

endy

x y

has

Problem: How to handle
inheritance?

x: Nat
y: Nat
visible: Bool

Circle
radius: Nat width: Nat

height: Nat

Line
endx: Nat
endy: Nat

Rectangle

x: Nat
y: Nat x: Nat

y: Nat
visible: Bool

x: Nat
y: Nat
visible: Bool

visible: Bool

id: Nat
has

id: Nat
has

id: Nat
has

id: Nat
has

height: Nat

Screen
width: Nat

Figure

{abstract}

closure
only in abstract
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Modeling of Visual Languages

Example

Generation of Statecharts
by typed attributed graph
grammar

StateMachine

String

Conf Step Event

State

Cond

Transition Action
stname

Boolean

isInit

from

to

trigger

String

ename
smname sm2conf

sm2step

conf2state

cond2state

trans2act

act2event

trans2cond

step2trans

begin

end

SC type graph

RHSLHS

NAC=RHS 1:StateMachine

2:Conf 3:Conf

:sm2conf :sm2conf

5:State State

:conf2state

:from :to

Transition

addTransitionRightState()

:end:begin

:to
4:Step

1:StateMachine

2:Conf

:sm2conf :sm2conf

3:Conf

4:Step

RHSLHS

NAC=RHS 1:StateMachine

2:Conf 3:Conf

:sm2conf :sm2conf

State 5:State

:conf2state :conf2state

:from :to

Transition

addTransitionLeftState()

:end:begin

:to
4:Step

1:StateMachine

2:Conf 3:Conf

4:Step

[X={}]

:conf2state

5:State

[X={}]

5:State

:sm2step

:sm2step

:conf2state

RHSLHS

NAC=RHS 1:StateMachine

2:Conf 3:Conf

:sm2conf :sm2conf

State State

:conf2state :conf2state

:from :to

Transition

addTransition()

:begin

[X={}]

:to
4:Step

1:StateMachine

2:Conf

:sm2conf :sm2conf

3:Conf

4:Step

:sm2step

:sm2step:from

:end

:step2trans

:from :sm2step

:step2trans

:conf2state

:sm2conf :sm2conf

:from
:sm2step

:step2trans
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Model Transformation from Statecharts to Petri Nets

ATGS ATG ATGT

GS
... Gi

... GT

incS incT

typeGStypeS typeGT typeTtypeGi

pi pj pk pl

SC2PN type graph ATG

Conf Step Event

Cond

Action

trigger

StateMachine

State

stname: String

ename: String

SC type graph PN type graph

PostArc

Trans

PreArc

Place
plname: String
token: Boolean

RefEvent

RefState

RefStep

Transition

smname: String

isInit: Boolean

sm2conf

sm2step

trans2act

cond2state

act2event

conf2state
to

from

trans2cond

r4r3 r5 r6r2r1

posttgt

presrc pretgt

postsrc

end

step2trans

begin
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Implementation of Typed AGT Systems in AGG

Screenshot of SC2PN Model Transformation
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Conclusion

Fundamental aspects of algebraic graph transformation:

1 Algebraic concept of graph transformation based on

gluing construction and double pushouts.

2 Basic results concerning

independence, parallelism, critical pairs.

3 Categorical framework of AHLR systems for

unified constructions and proofs.

4 Typed attributed graph transformation for

modeling of software systems,
model transformations of visual languages.
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