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The aim of this chapter is to introduce the notions of transformation units and
transformation modules as means of constructing large graph transformation sys-
tems from small ones in a structured and systematic way. A transformation unit
comprises a set of rules, descriptions of initial and terminal graphs, and a control
condition. Moreover, it may use other transformation units for structuring pur-
poses. Its semantics is a binary relation between initial and terminal graphs which
is given by interleaving ordinary direct derivation steps with calls of imported
transformation units. Putting transformation units together yields transformation
modules. A module may have an import interface consisting of formal parameter
units and an export interface consisiting of the units that are made available to the
environment. The formal parameter units can be instantiated by exported units
of other modules. The introduced framework is independent of a particular graph
transformation approach and, therefore, it may enhance the usefulness of graph
transformations in many contexts.

Contents
15.1 Introduction . .. ... ... ... .00 606
15.2 Transformation Units . ... .. ........ 607
15.3 Shortest Paths—An Example . . . . . ... .. 616
15.4 Transformation Modules . . . . ... ...... 629
15.5 Conclusion . . . . . ... v v v v v, 632
References . . . . . . . . . i i i v i i it i 633

605



606 CHAPTER 15. TRANSFORMATION UNITS AND MODULES
15.1 Introduction

The significance of graphs and rules in many areas of computer science is
evident: On the one hand, graphs constitute appropriate means for the de-
scription of complex relationships between objects. Trees, Petri nets, circuit
diagrams, data flow graphs, state charts, and entity-relationship diagrams are
some typical examples. On the other hand, rules are used to describe “permit-
ted” actions on objects as, for example, in the areas of functional and logic
programming, formal languages, algebraic specification, theorem proving, and
rule-based systems.

The intention of bringing graphs and rules together—motivated by several
application areas—has led to the theory of graph grammars and graph trans-
formation (see volume I of the Handbook and [3,10,11,9,30,1,5] for a survey).
A wide spectrum of approaches exists within this theory and some of them are
implemented (see, for example, PROGRES [31], Graph®? [18], Dactl [13], and
Aca [26]) and Chapters 13 and 14 of this volume.

With the aim of enhancing the usefulness of graph transformation, we intro-
duce approach-independent structuring methods for building up large systems
of graph transformation rules from small pieces. The methods are based on the
notion of a transformation unit and its interleaving semantics. A transforma-
tion unit is allowed to use other units such that a system of graph transforma-
tion rules can be structured and existing transformation units can be re-used.
To make the structuring more flexible, a cluster of transformation units can
be encapsulated into a module. This allows to distinguish between main units
to be exported and made available to the environment and auxiliary units
that are hidden in the body. Moreover, a module can import formal parameter
units that allow to leave parts of a system unspecified for later actualization.
Transformation units and modules are basic concepts of the new graph and
rule centered language GRACE that is being developed by researchers from
Berlin, Bremen, Erlangen, Miinchen, Oldenburg, and Paderborn (see also [21,
1,32,22]). Nevertheless, the notion is meaningful in its own right because — in-
dependently of GRACE — it can be employed as a structuring principle in most
graph transformation approaches one encounters in the literature where graph
transformation is often called graph rewriting.

The chapter is organized as follows. In Section 15.2 we discuss the notion of a
transformation unit together with its interleaving semantics. In Section 15.3,
the concepts of a transformation unit are illustrated with the sample specifica-
tion of a shortest-path algorithm. Finally, we introduce the notion of transfor-
mation modules and their composition in Section 15.4. The chapter ends with
some concluding remarks.
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15.2 Transformation Units

The key operation in graph transformation approaches is the direct derivation
being the transformation of a graph into a graph by applying a rule. In other
words, each rule yields a binary relation on graphs. Hence, each set of rules
specifies a binary relation on graphs by iterated rule applications. This deriva-
tion process is highly non-deterministic in general and runs on arbitrary graphs
which is both not always desirable. For example, if one wants to generate graph
languages, one may start in a particular axiom and end with certain terminal
objects only. Or if a more functional behaviour is required, one may prefer
to control the derivation process and to cut down its non-determinism. The
latter can be achieved by control mechanisms for the derivation process like
application conditions or programmed graph transformation (see, e.g., [2,29,8,
23,27,34,20,24,16,28,33], cf. also [6] for regulation concepts in string grammars)
and the former by the use of graph class expressions that specify subclasses
of graphs. Moreover, in practical cases, one may have to handle hundreds or
thousands of rules which cannot be done in a transparent and reasonable way
without a structuring principle.

To cover all these aspects, we introduce the notion of a transformation unit
that allows to specify new rules, initial and terminal graphs, as well as a control
condition, and to import other transformation units. Semantically, a transfor-
mation unit describes a graph transformation, i.e. a binary relation on graphs
given by the interleaving of the imported graph transformations with each
other and with rule applications. Moreover, interleaving sequences must start
in initial graphs, end in terminal graphs and satisfy the control condition. If
nothing is imported, the interleaving semantics coincides with the derivation
relation.

To make the concept independent of a particular graph transformation frame-
work, we assume an abstract notion of a graph transformation approach com-
prising a class of graphs, a class of rules, a rule application operator, a class of
graph class expressions, and a class of control conditions. The semantic effect
of control conditions depends on so-called environments. In this way, it can be
defined without forward reference to transformation units.

Examples of graph class expressions and control conditions are given after the
introduction of transformation units and their interleaving semantics. At the
end of this section, we consider a certain class of control conditions which
consists of languages over rules and transformation units and point out its
relation to interleaving sequences.
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15.2.1 Graph Transformation Approach

A graph transformation approach is a system A = (G, R,=,&,C) where

e G is a class of graphs,
e R is a class of rules,

e = is a rule application operator yielding a binary relation =, C G X G
for every r € R,

£ is a class of graph class expressions such that each e € £ specifies a
subclass SEM(e) C G, and

C is a class of elementary control conditions over some set ID of identifiers
such that each ¢ € C specifies a binary relation SEMg(c) C G x G for
each mapping E: ID —s 29%9 1

A pair (G, G") € =, usually written as G =, G', establishes a direct derivation
from G to G' through r. For a set P C R the union of all relations =,
(r € P) is denoted by = p and its reflexive and transitive closure by =%. A
pair (G,G") € =%, usually written as G =% G, is called a derivation from
G to G' over P. A mapping E: ID —s 29%9 is called an environment. In the
following, we will use boolean expressions over C as control conditions with
elementary control conditions as basic elements and disjunction, conjunction,
and negation as boolean operators. Moreover, we make use of the constant true.
The semantic relations of elementary control conditions are easily extended to
boolean expressions by

SEMEg (true) = Gxg,

SEME(el \Y 62) = SEME(el) U SEME(GQ),
SEME(61 A 62) = SEME(el) N SEME(QQ),
SEME(é) = ng—SEME(e)

The set of control conditions over C is denoted by B(C).

Note that we refer to the meaning of graph class expressions and control con-
ditions by the overloaded operator SEM. This should do no harm because it is
always clear from the context which is which.

All the graph grammar and graph transformation approaches one encounters
in the literature provide notions of graphs and rules and a way of directly
deriving a graph from a graph by applying a rule (cf. e.g. [7,29,19,4,23,31,
18,15,25]). Therefore, all of them can be considered as graph transformation
approaches in the above sense if one chooses the components £ and C in some

L The power set of a set S is denoted by 25.
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standard way. The singleton set {all} with SEM(all) = G may provide the only
graph class expression, and the class of elementary control conditions may be
empty. Non-trivial choices for £ and C are discussed in Subsections 15.2.4 and
15.2.5.

15.2.2  Transformation Units

A transformation unit encapsulates a specification of initial graphs, a set of
identifiers referring to transformation units to be used, a set of rules, a control
condition, and a specification of terminal graphs.

Let A =(G,R,=,&,C) be a graph transformation approach. A transformation
unit over A is a system trut = (I, U, R, C, T) where I, T € £, U is a finite set
of identifiers, R C R is a finite set of rules, and C € B(C). The components
of trut may be denoted by Uiryt, Itrut, Rirut, Cirut, and Ty, respectively.
The class of all transformation units over A is denoted by 7. The component
U may be seen as a set of formal parameters that can be instantiated by
transformation units.

To keep the technicalities simple, one may assume that only defined transfor-
mation units are imported. Hence, initially, U must be chosen as the empty set
yielding unstructured transformation units without import. Such transforma-
tion units of level 0 may be used in transformation units of level 1. Iteratively,
one obtains a transformation unit of level i + 1 for some i € IN if one im-
ports transformation units up to level 4. In this way, the import structures of
transformation units become acyclic. This provides a principle of hierarchical
structuring. The case of an arbitrary import structure is studied in [22].

If I specifies a single graph (cf. item 1 of 15.2.4), U is empty, and C is the
constant true, one gets the usual notion of a graph grammar (in which approach
ever) as a special case of transformation units.

15.2.8 Interleaving Semantics

The semantics of a transformation unit is a graph transformation, i.e. a binary
relation on graphs containing a pair (G, G') of graphs if, first, G is an initial
graph and G’ is a terminal graph, second, G' can be obtained from G by inter-
leaving direct derivations with the graph transformations specified by the used
transformation units, and third, the pair is allowed by the control condition.

Let trut = (I, U, R, C, T) be a transformation unit over the graph transfor-
mation approach 4 = (G,R,=,E£,C). Assume that the set ID of identifiers
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associated to C contains the disjoint union of U and R. Let the interleaving se-
mantics SEM(t) C Gx G for t € U be already defined. Let E(trut): ID — 29%9
be defined by E(trut)(r) = =, for r € R, E(trut)(t) = SEM(t) for t € U, and
E(trut)(id) = {}, otherwise. Then the interleaving semantics SEM(trut) of
trut consists of all pairs (G,G') € G x G such that

1. G € SEM(I) and G' € SEM(T),

2. there are graphs Gy,... ,G, € G with Gy = G, G,, = G’, and for i =
1,...,n, Gi—1 =, G; for some r € R or (G;_1,G;) € SEM(t) for some
te U,

3. (G,G,) € SEME(trut) (O)

The sequence of graphs in point 2 is called an interleaving sequence in trut
from G to G'. Let RIS, denote the binary relation given by interleaving
sequences, i.e. RISt = (= r UU;cy SEM(t))*. Then the interleaving seman-
tics of trut is defined as the intersection of RIS, with SEM(I) x SEM(T)
and SEMg4u)(C). Note that all three relations may be incomparable with
each other. For example, (G,G') € SEMg(4yy1)(C) does not imply in general
that there is an interleaving sequence in trut from G to G', and vice versa.

A control condition C' specifies a binary predicate depending on other binary
graph relations through the notion of environments, but independent of a par-
ticular transformation unit. As a component of trut, only the environment of
trut given by E(trut) is effective, meaning that C' can restrict the semantics
by specifying certain properties of the direct derivation relations of rules in
trut, the interleaving semantics of imported transformation units, and the in-
terrelation of all of them. If transformation units are employed as structuring
concepts in a specification language, it would be reasonable to assume that
rules may be named and that only their names belong to the set of identifiers
rather than the rules themselves. But the naming of rules is not needed here.

The definition of the interleaving semantics follows the recursive definition of
transformation units. Hence, its well-definedness follows easily by an induction
on the import structure, i.e. on the levels of transformation units.

Initially, if U is empty, an interleaving sequence is just a derivation such that
one gets in this case

SEM(trut) = =% N (SEM(I) x SEM(T)) N SEMg(4ru)(C).
In other words, interleaving semantics generalizes the ordinary semantics of

sets of rules given by derivations.

If T is a single graph (specifying itself as initial graph in the sense of 15.2.4.1),
the first component of the interleaving semantics of trut is insignificant. Then
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all second components form a graph language that can be considered as the
language generated by the transformation unit, i.e.

L(trut) = {G € SEM(T) | (I,G) € SEM(trut)}.

In this case, the transformation unit is called language-generating. If, further-
more, U is empty and C'is true, trut is a graph grammar (cf. Subsection 15.2.2),
and its generated language consists, as usual, of all terminal graphs derivable
from the initial graph, i.e.

L(trut) = {G € SEM(T) | I =% G.

In this sense, the interleaving semantics covers the usual notion of graph lan-
guages generated by graph grammars.

The interleaving semantics of a transformation unit is defined for any choice
of the imported transformation units. If one fixes the import, the interleaving
semantics is a binary relation on graphs. But if one does not fix the import,
the interleaving semantics can be considered as an operator yielding a binary
relation on graphs for each choice of binary relations on graphs for the import
parameters.

15.2.4 Graph Class Ezxpressions

There are various standard ways to choose graph class expressions that can be
combined with many classes of graphs and hence used in many graph trans-
formation approaches.

1. In most cases, one deals with some kind of finite graphs with some explicit
representations. Then single graphs (or finite enumerations of graphs)
may serve as graph class expressions. Semantically, each graph G rep-
resents itself, i.e. SEM(G) = {G}. The axiom of a graph grammar is a
typical example of this type.

2. A graph G is reduced with respect to a set of rules P C R if there is
no G' € G with G =, G’ and r € P. In this way, P can be considered
as a graph class expression with SEM(P) = RED(P) being the set of
all reduced graphs with respect to P. Reducedness is often used in term
rewriting and term graph rewriting as a halting condition.

3. If G is a class of labelled graphs with label alphabet X, then aset T C X is
a suitable graph class expression specifying the graph class SEM(T') = Gr
consisting of all graphs labelled in 7' only. This way of distinguishing
terminal objects is quite popular in formal language theory.
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4. Graph theoretic properties can be used as graph class expressions. In par-

ticular, monadic second order formulas for directed graphs, hypergraphs
or undirected graphs are suitable candidates (see e.g. [4]).

Graph schemata, as used in the graph transformation approach PROGRES
are graph class expressions that allow to specify generic graph classes (see
Chapter 13 for more details).

A language-generating transformation unit #rut as introduced in Subsec-
tion 15.2.3 can be used as a graph class expression with SEM(trut) =
L(trut).

15.2.5 Control Conditions

A control condition is meant to restrict the derivation process. A typical ex-
ample is to allow only interleaving sequences where the sequences of applied
rules and called transformation units belong to a particular control language.
Therefore, a regular expression over the set of identifiers can be considered as a
control condition because it specifies a language. In general, every description
of a binary relation on graphs may be used as a control condition. Here, we
give some examples.

1. Let E: ID — 29%9 be an environment. Then E can be extended to the

set of languages over ID, i.e. the power set of the set of strings over
ID in a natural, straight-forward way. E: 210" _y 99%G ig defined by
E(L) = Uyer E(w) for L C ID* where E: ID* — 29%9 is recursively
given by E(A\) = AG, and E(zv) = E(x)oE(v) for z € ID and v € ID*.2
Hence, L can be used as control condition with SEMg(L) = E(L) for all
E: ID — 29%9 . In this case, the class of elementary control conditions is
27P" We refer to conditions in this class as control conditions of language
type.

As a consequence of point 1, every grammar, automaton or expression
which specifies a language L(x) over ID can serve as a control condition
with SEMg(z) = SEMp(L(z)) = E(L(z)) for all environments E.

In particular, the class of regular expressions over ID can be used for this
purpose. For explicit use below, REG(ID) is recursively given by 0, e €
REG(ID), ID C REG(ID), and (e; ; e2), (e1]e2), (e*) € REG(ID) if
e,e1,ea € REG(ID). To save parentheses we assume that * has a stronger

2AG denotes the identity relation on G. Given p, p' C G x G, the sequential composition of
p and p' is defined as usual by pop’ = {(G,G")|(G,G") € p and (G',G") € p' for some G' €

g}.
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binding than ; which in turn has a stronger binding than |.? The language
L(e) specified by some regular expression e is defined as L(f) = {},
L(e) = {\}, L(id) = {id} for all id € ID, L(ey; es) = L(e1) - L(ea),
L(ey|es) = L(e1) U L(ez) and L(e*) = L(e)*.

4. A pair (G,G") of graphs is reduced with respect to a control condition
¢ € C and an environment E if there is no graph G" with (G',G") €
SEMg(c). Thus, ¢! defines a control condition where SEMg(c!) is the
set of all pairs in SEMg(c) which are reduced with respect to ¢ and E.

5. A special case of such a control condition corresponds to the notion of
reduced graphs and is given by a set of rules R. R! means that the rules
of R must be applied as long as possible.

6. Each transformation unit ¢rut can serve as a control condition because se-
mantically it specifies a binary relation on graphs. For each environment
E, the semantics of the control condition trut is given by the semantics
of trut, i.e. by all pairs (G, G') of graphs such that G can be transformed
into G’ with the transformation unit ¢rut.

7. Each pair (e1,es) € € x & defines a binary relation on graphs by
SEM((e1,e2)) = SEM(eq) x SEM(es) and, therefore, it can be used as a
control condition which is independent of the choice of an environment,
i.e. SEMg((e1,e2)) = SEM((e1,e2)) for all environments E. In partic-
ular, let trut = (I,U, R,C,T) be a transformation unit. Then the pair
(I,T) forms a control condition.

8. For readers familiar with the graph transformation language PROGRES, it
shall be mentioned that the deterministic and non-deterministic control
structures of PROGRES serve as control conditions. They allow to define
imperative commands over control conditions.

9. Another type of control conditions are priorities among the rules of a
transformation unit. See Litovski and Métivier [24] for a particular ap-
proach of this kind.

As the following observation shows, the semantic relations given by regular
expressions as control conditions can be constructed easily according to the
recursive structure of regular expressions without reference to the languages
generated by the expressions.

3While § denotes the empty set {}, the expression ¢ denotes the regular set {\}. We prefer
a direct reference to {\} rather than to use 0*.

4Given L,I' C ID*, the concatenation of I, and I is defined as usual by L - I/ =
{ww' |we L, w' € L'}, and the Kleene closure of L is defined as usual by L* = [J2, L?
where L0 = {A} and Li+! = L. L.
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Observation 15.2.1

For all environments E, all id € ID and all e,e;, ey € REG(ID) the following
holds.

1. SEMg

RN
wn
=
sl

Proof

- SEMp(@)=aes E({})= s {}.°

- SEMp()=aes (M) = e E() =0y AG.

. SEMp(id)= 4o E({id})= gof E(id) = 4oy E(id).

. To show this, we use the following statement which is shown by induction
on the length of wy. Let wy,ws € ID*; then E(wiws) = E(wq) o E(ws).
E(A\ws)=g4es E(w2) = AG o E(wz)=gef E(A\) 0 E(ws). Assume that the

statement holds for w; € ID*, and consider some a € I[D. Then
E(awywy)=aes E(a) o E(wiwy)=inaE(a) o (E(wy) o E(wy)) = (E(a) o

E(w;)) o E(ws)=gep E(aw) o E(ws).” Now we get

SEMp (e ; 62)=defE(L(€i) +L(€2))=det U er(er) uner(en) P(W102)
= Ui e(er) une(en) E(w1) 0 E(w2) ~

(
=Uuner(er) EW1) 0 Unyer(en) B(W2)=aer E(L(e1)) 0 E(L(e2))
=aef SEME(e1) o SEME(e2).

—_

- W N

5. SEMp(er | es)=aes E(L(e1) U L(€2))= et Unerienur(e) F@®)
U

= U er(en) E@W1) UlUper(en) Ew)=aes E(L(e1)) U E(L(e2))
ZdeSEME(el) U SEME(eQ).

6. To show point 6, we first prove by induction on i that for i > 0,
E(L(e)?) = SEMg(e)!. If i = 0 we have

E(L(€)°)=ues EGA}) =2 AG= oy SEMis (e)°.

5For p C G x G, p* denotes the reflexive and transitive closure of p that is p* = U2, Pt
where p9 = AG and pit! = po pt.

szef stands for equal by definition.

7=,,4 stands for equal by induction hypothesis.
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Moreover,

E(L(e)*")=ue E(L(e) - L(e)')=4 B(L(e)) o E(L(e)’)
=ind SEME (6) o SEME(G)Z:def SEME(Q)PA.

Hence,

SEMp(e*)=aes E(L(e)*)=ues E(U3S L(e)') = Uiy E(L(e))
= Ufio SEME(e)’:defSEME(e)*. [}

15.2.6 Application Sequences

In interleaving sequences, rules are applied and imported transformation units
are called in some order. Such sequences of applied rules and called transfor-
mation units help to clarify the role of control conditions of the language type
as defined in 15.2.5.1.

Let trut = (I,U,R,C, T) be a transformation unit over some graph trans-
formation approach A = (G, R,=,&,C). Assume that U and R are disjoint
subsets of the set ID associated to C. Then z1 -z, € (U UR)* (z; € U UR)
is called an application sequence of (G,G') € G x G if there is an interleaving se-
quence G, ... ,G, with Go =G, G, =G" and, fori =1,... ,n, G;_1 =, G;
if z; € R and (Gi_1,G;) € SEM(xz;) if z; € U. In the case n = 0, the applica-
tion sequence is the empty string .

Using these notions and notations, the following observation states that a lan-
guage over U UR, used as a control condition due to 15.2.5.1, controls the order
in which rules are applied and imported transformation units are actually used.

Observation 15.2.2
Let C = 2'P" be the class of control conditions of language type, and let
trut = (I, U,R,L, T) with L C (U UR)* C ID*. Then for all G,G' € G, the
following statements are equivalent.

1. (G,G") € SEM(trut).

2. (G,G") € SEMg(¢rur) (L) N SEM(I) x SEM(T).

3. There is an application sequence w of (G,G') with w € L and (G,G') €

SEM(I) x SEM(T).

Proof
Let (G,G") € SEM(trut). Then by definition, there is an interleaving sequence
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in trut from G to G', (G,G") € SEMgyu)(L), and (G,G") € SEM(I) x
SEM(T). Hence, point 1 implies point 2.

To show that point 2 implies point 3 and that point 3 implies point 1, we prove
first the following claim:

(G,G") € SEMp(irur) (L) iff there is an application sequence w € L of (G,G").
By definition, we have (G,G') € SEMp (L) = E(trut)(L) iff (G,G") €
E(trut)(w) for some w € L. We show now by induction on the structure of w
that (G,G") € E(trut)(w) iff w is an application sequence of (G, G").

If w=\ we get (G,G'") € E(trut)(\) iff (G,G') € AG iff G = G' iff X is an
application sequence of (G,G").

Assume now that the statement holds for v € (U U R)*.

And consider w = zv with z € U U R. Then (G,G') € E(trut)(zv) =
E(trut)(z) o E(trut)(v), means that there is some G € G with (G,G) €
E(trut)(z) and (G,G") € E(trut)(v). The latter implies by induction that v is
an application sequence of (G, G') such that there is an interleaving sequence
Gy, ... ,G, with G = Gy and G' = G,,. The former means G =, G if ¢ € R
and (G,G) € SEM(z) if € U. Altogether, G,Gy, ... ,G, defines an inter-
leaving sequence with zv as corresponding application sequence. Conversely,
an application sequence zv of (G,G’) is related to an interleaving sequence
Go,...,G, with G = Gy, G' = G,, and, in particular, Gog =, G, if x € R
and (Go,G1) € SEM(x) if x € U such that (G,G1) € E(trut)(z) in any case.
Moreover, v is an application sequence of (G1,G,) because Gy, ... ,G, is an
interleaving sequence. By induction hypothesis, we get (G1,G') € E(trut)(v).
The composition yields (G, G') € E(trut)(z) o E(trut)(v) = E(trut)(zv). This
completes the proof of the claim.

From the just proved claim follows directly that point 2 implies point 3.

Furthermore, let w € L be an application sequence of (G,G’) with (G,G') €
SEM(I) x SEM(T). Then by definition there is an interleaving sequence in trut
from G to G’ with (G,G') € SEM(I) x SEM(T), and by the claim, (G,G') €
SEME(irur)(L). Hence, (G,G") € SEM(trut). This completes the proof. n}

15.3 Shortest Paths—An Example

In this section, we specify the shortest-path algorithm of Floyd (cf. [12]) as a
graph transformation unit to illustrate the usefulness of the concept. The algo-
rithm is informally described in the next subsection. Its specification in form
of a transformation unit is presented in Subsection 15.3.3 after the underlying
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graph transformation approach is introduced. The rest of the section concerns
the correctness and complexity of the specified algorithm. In Subsection 15.3.4,
we discuss the graphtheoretic background of the algorithm more formally to
be able to prove correctness of the specification in Subsection 15.3.5 (together
with 15.3.7). Finally, the issue of complexity is studied in Subsection 15.3.6.

15.3.1 Informal Description of the Algorithm

Given a directed graph G and a pair v and v’ of nodes, the algorithm computes
the distance of a shortest path from v to v’ in G. The main idea is to com-
pute the distance of a shortest path from v to v’ that avoids certain nodes in
intermediate steps from the distances of shortest paths that avoid more nodes.

In more detail, the shortest paths from v to v’ that avoid all nodes in interme-
diate steps are the edges from v to v’ with minimum distance. Starting with
these edges and distances, one may admit more and more nodes as intermedi-
ate ones. Whenever a new intermediate node v is admitted, one adds up the
distance of the edge from v to ¥ and the distance of the edge from v to v’
(if there are any) and labels a new edge from v to v with this sum. If there
is already an edge, the one with the smaller distance is kept. The algorithm
terminates after all nodes are admitted. Then an edge from v to v’ is labelled
with the distance of a shortest path from v to v' in the original graph, and
there is no edge from v to v’ if originally there is no path from v to v'. A formal
treatment of the shortest-path algorithm is given in Subsection 15.3.4.

15.3.2  Graph Transformation Approach

For the purposes of this illustration, a particular graph transformation ap-
proach is tailored. But the example is easily adapted to most of the general
graph transformation approaches one encounters in the literature.

1. The class of graphs considered consists of directed graphs of the form
G = (V,E,s,t,1, dist) where V is the set of nodes, E is the set of edges,
s:E—Vandt: E— V are mappings associating each edge e € E with
a source s(e) and a target t(e), I: V — {0,1,2} is a node labelling and
dist : E — IN is an edge labelling, called distance. Loops are forbidden,
i.e. there is no edge e with s(e) = t(e). The distance is essential, the node
labelling serves only auxiliary purposes.

Let G = (V,E,s,t,l,dist) and G' = (V', E', s',¢',l', dist")
G is a subgraph of G' if V C V!|E C F' and s() s'(
and dist(e) = dist'(e) for all e € E as well as I(v) = (v

be two graphs.
), t(e) = t'(e)

e
) forall v e V.
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G and G’ are isomorphic if there are bijective mappings f : V' — V' and
g: E - E' with f(s(e)) = s'(g(c)), F(t(e)) = #(g(¢)) and dist(e) =
dist'(g(e)) for all e € E as well as I[(v) = I'(f(v)) for all v € V.

The class of rules considered consists of pairs of graphs r = (L, R) where
L and R share the set of nodes. Moreover, the left-hand side L of r may
be equipped with an extra context edge.

Rules are presented in the form L — R where an extra context edge in
L is dashed. Nodes of L and R are drawn in the same fill style if they are
equal. A node label is omitted if it is parametric, i.e. if it can be choosen
arbitrarily before applying the rule.

A rule r = (L, R) is applied to a graph G directly deriving G' in four
steps: (1) look for a subgraph Ly of G isomorphic to L, (2) remove the
edges of Ly from G, (3) add the edges of R (by using the isomorphism
between L and Ly to place the edges), and (4) change the node labels
where they are different in L and R (again by using the isomorphism). If
the left-hand side has got an extra context edge, this serves as a negative
context condition meaning that the direct derivation is only admitted
if G does not contain such an edge between the respective nodes. This

altogether is denoted by G =, G'.

The only two used graph class expressions are the restrictions of the
node label alphabet to {0} and {2} respectively. If the two expressions
are denoted by node label i for i € {0,2}, SEM(node label i) contains all
graphs the nodes of which are constantly labelled with 3.

The used control conditions are regular expressions and as long as pos-
sible where the latter applies the rules of a transformation unit as long
as possible (cf. 15.2.5.5).

In the following, transformation units are presented by indicating the compo-
nents with respective keywords. Trivial components (i.e. no import, no rules,
the graph class expression all, and the control condition true) are omitted.

15.3.8 Specification of the Algorithm

Floyd’s algorithm is specified in terms of transformation units following the
informal description of the algorithm. To be able to distinguish between for-
bidden nodes, a just admitted node and formerly admitted nodes, the node
labels 0,1 and 2 resp. are used. Initially, all nodes carry the 0-label.

The main transformation unit shortest-path uses the transformation units min-
imum, sum, change(0,1) and change(1,2) in a certain order which is given by
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a regular control expression. The transformation unit minimum takes care of
parallel edges. Its control condition as long as possible makes sure that all
parallel edges are removed. The transformation unit sum sums up successive
edges if their intermediate node is 1-labeled. Here the control condition as
long as possible makes sure that all possible summations are performed, while
the negative context condition associated to the rule prevents that the same
summation is done twice. Finally, change(i, j) relabels a node from i to j. The
control condition once guarantees that the rule of the transformation unit is
applied exactly once in each of its derivations. The term once is a synonym for
the rule considered as a regular expression. Note that in the transformation
units minimum and sum the edge labels as well as most of the node labels of
the rules are parametric, i.e. they can be choosen arbitrarily before each rule
application.

Wherever parallel edges occur, only an edge with the minimum label is kept.
This is achieved by the transformation unit minimum.

minimum
rules: z
min(z,y)
< o —
Yy
(z,y € N)
conds: as long as possible

The summations of the distances of successive edges is performed by the trans-
formation unit sum whenever the intermediate node is labelled with 1.

sum
rules: z 1 z 1 Yy
S ae c S g
r+y r+y
(z,y € IN)
conds: as long as possible

Before sum is applied, a node with label 0 gets label 1, and afterwards this
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label is changed into 2 by using the transformation unit change(i,j) for any
two labels 4, j.

change(i, )
rules:
7 J
[ J — [ ]
conds: once

After minimum has done its job once, the described sequence of transformation
units
change(0, 1), sum, change(1,2), minimum

can be iterated until all nodes are admitted. This yields the shortest-path
algorithm.

shortest-path

initial: node label 0
uses: change(0, 1), change(1,2), sum, minimum
conds:  minimum ; (change(0,1); sum ; change(1,2); minimum)*

terminal: node label 2

Figure 15.1 shows an interleaving sequence of shortest-path where the effect of
the change units are not presented separately, but composed with minimum.
Note that the regular expression ch(1,2); min; ch(0,1) in the picture is an
abbreviation for the control condition change(1,2); minimum ; change(0,1).

15.3.4  Graphtheoretic Background

To facilitate the correctness proof for the algorithm, the graphtheoretic back-
ground is needed explicitly.

Let (V,E,s,t) be an unlabelled directed graph without loops, and let dist :
E — N be a distance function on the edges.

A sequence of edges p = e ---e, (n > 1), is a path from v to v' with dist(p) =
> dist(e;) if s(er) = v, t(e,) = v' and t(e;) = s(ejpq) fori =1,...,n— 1.
i=1
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L4 9 9—4—»?\
2 1 4 21 ~? minimum ; change(0,1) 1 4 21 ~sum
\lgl—y }g1—>£/
0 0 0 0
1&4 :
6/
1 2 1 ~ch(1,2) ;min; ch(0,1) ~* sum
= !
o 1
0 6 0
0 7 2 2
‘é‘l 1b4—>
A A
1 21 ~ch(1,2); min; ch(0,1) 1 21 ~sum
N EAN
«—1 ) ZB R
0 19 | 0 2
11 4 3 ?b4 3
ENZA o T
1 21 ~ch(1,2);min; ch(0,1) 1 21 ~sum
) 2 Y 2
1#1 1#1—»
0 2 1 2
2 3 2 2 2
4 q 33—
N A
1 21 ~ change(1,2) ; minimum, 1 2 1
LR Y g
1#1 1#1—»
_zle 2 2

Figure 15.1: Example of an interleaving sequence in shortest_path
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The set of the latter nodes {t(e1),...,t(en—1}, called intermediate nodes, is
denoted by inter(p). Moreover, for v € V, the empty sequence A is considered
as a path from v to v with dist(\) = 0 and inter(\) = 0. For U C V, a path p
is said to avoid U if inter(p) NU = .

Let PATH (v,v',U) denote the set of all paths from v to v' avoiding U. If
PATH (v,v',U) # 0, the minimum distance is denoted by short(v,v’,U), i.e.

short(v,v',U) = min{dist(p) | p € PATH (v,v',U)}.

A path py € PATH (v,v',U) with dist(po) = short(v,v',U) is called short-
est path from v to v’ avoiding U. (Note that short(v,v',U) is undefined if
PATH (v,v",U) = 0.)

PATH (v,v',0) consists of all paths from v to v’ such that short(v,v’, ) is the
minimum distance of all paths from v to v'. PATH (v,v,U) contains the empty
path X such that short(v,v,U) =0 for all v € V and U C V. PATH (v,v",V)
with v # v’ consists of all edges e with s(e) = v and t(e) = v'. If this set of
edges is denoted by E(v,v'), one has

short(v,v', V) = min{dist(e) | e € E(v,v")}

for v #v' and E(v,v') # 0.

Let PATH (v,v',U) # () with v # v' and U = U U {v} for some 7 € V — U.
Then the following hold.

(1) It PATH (v, v',T) # 0, then

short(v,v',U) < short(v,v',U)

because PATH (v,v',U) C PATH (v,v',U).
(2) If PATH (v,7,U) # 0 # PATH (v,0v',U), then

short(v,v',U) < short(v,7,U) + short(v,v',U)

because the composition of a path from v to 7 avoiding U with a path
from v to v’ avoiding U yields a path from v to v’ avoiding U.

(3) If po = e1---e, is a shortest path from v to v’ avoiding U and 7 &
inter(po), then pg € PATH (v,v',U), and hence

short(v,v',U) < dist(po) = short(v,v',U).
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(4) Otherwise U € inter(po). In this case, there are indices i and j such that
e1---e; € PATH(v,5,U) and e; - --e, € PATH(T,v',U) where e; is the
first edge on pg entering v and e; is the last one leaving . Hence i < j
and

short(v,0,U) + short(v,v',U) < dist(er -+ -e;) + dist(e; - ey)
< dist(po)
= short(v,v',U).

(5) Altogether, one gets either

short(v,v',U) = short(v,v',U)

or

short(v,v',U) = short(v,v,U) + short(v,v',U).
(6) And if both right-hand sides are defined, one has

short(v,v',U) = min{short(v,v',U), short(v,v,U) + short(v,v',U)}.

15.3.5 Correctness

In this section, the correctness of the transformation unit shortest-path is shown
with respect to the function short. To achieve this, the interleaving seman-
tics of all involved transformation units are characterized in graph-theoretic
terms. Given a graph G = (V, E, s, t,1, dist), its components may be denoted
by Vg, Eq, sa,ta,lg and dists respectively.

1. The interleaving sequences of change(i,j) are the direct derivations in
which the only rule is applied to an arbitrary graph because nothing is
imported and there is no restriction of initial and terminal graphs, but
exactly one rule application is allowed. If the rule is applied, a node with
label i gets label j obviously. Hence one gets:

(G,H) € SEM(change(i,j)) iff V¢ = Vu,Eg = Eg, sq =
sH, ta = ty, distg = distg and there is some vy € Vg with
la(ve) =i, lg(vo) = j and lg(v) = ly(v) for all v # vy.
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2. If the rule of the transformation unit minimum is applied, two parallel

edges are replaced by one edge labelled with the minimum distance of the
replaced edges. The control condition makes sure that this is iterated as
long as possible such that resulting graphs are simple (i.e. without parallel
edges). This leads to the following characterization of the interleaving
semantics of minimum.

(G,H) € SEM(minimum) iff Vg = Vg, lg = g, and for all
v,v' € Vg Eg(v,v') # 0 iff |Eg(v,v')] = 1 and distg(ep) =
min{dist;(e) | e € Eg(v,v')}, where {eg} = Eg(v,v').®

If the rule of the transformation unit sum is applied, a new edge from a
node v to a node v’ is added with the label z + y provided that there is
not already such an edge and there are an z-labelled edge from v some
node T (with label 1) and a y-labelled edge from v to v'. Due to the
control condition this is iterated as long as possible. In other words, one
gets the following characterization of the interleaving semantics of sum.

(G,H) € SEM(sum) iff Vg = Vi, lg = g, E¢ C En, s¢ =
SH|EBe, ta = tH|EB., distg = distg|g,, and for all v,v" € Vi
eo € Eg(v,v') — Eg(v,v") with distg(eg) = c iff there are
T € Vg with Ig(T) = 1,e € Eg(v,0), ¢ € Eg(v,v') with
distg(e) + distg(e') = ¢ and there is no € € Eg(v,v') with
distg(e) = ¢.”

(G, H) € SEM(shortest-path) means according to the control condition
that there is an interleaving sequence of the form G, Gy, ... , G4, for some
n € IN with G4, = H and

(1) (G,Gy) € SEM(minimum),

(21) (Gas,Gair1) € SEM(change(0,1))

(31)  (Gais1,Guair2) € SEM(sum) o ~
(4i) (Gait2,G4ir3) € SEM(change(1,2)) fori=0,...,n—1L
(51) (G4it3,Gaiya) € SEM(minimum)

Due to 1. to 3., the set of nodes is invariant.

G is an initial graph meaning that lg(v) = 0 for all v € V. Using
again the characterizations in 1. to 3., one gets l¢ = lg,, and, for i =

81Ep (v,v")| denotes the cardinality of Eg (v,v").
9For a function f: A — B and a set C C A the restriction of f to C is denoted by f|c.
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0,...,n =1, lg,y, = lGsiss lGars = lga s Moreover there is a node
Vit1 € VG4i with lG4i (Ui+1) =0, lG4i+1 (Ui+1) =1, lG4i+3 (Ui+1) =2as
well as lg,; (v) = lgyy, (v) and lg,,,,(v) = lg,, 4 (v) for all v # viq1.
Moreover, G4, = H is a terminal graph such that lg,, (v) = 2 for all
v € Vig,, = Vi = V. Hence n is the number of nodes because a single

node is relabeled for each i = 0,... ,n — 1.
Let Vo = 0 and V; = {v1,...,v;} for j = 1,...,n. Then the following
holds for j = 0,... ,n, for v,v" € Vg,, with v # v' and for some ¢ € IN :

eo € Eq,; (v,v") with distg,; (eo) = c iff short(v,v',Va —V;) =c.

The proof of this statement can be found in Subsection 15.3.7.

For n = j, this statement provides a characterization of the interleaving
semantics of the transformation unit shortest-path.

(G,H) € SEM(shortest-path) iff V¢ = Vi, lg(v) = 0 and
lg(v) = 2 for all v € Vi, H is simple, and, for all v,v’ € Vg
with v # ¢' and for some ¢ € IN, there is some eq € Eg(v,v')
with dist g (eg) = ¢ iff short(v,v',0) = c.

In other words, shortest-path computes the distances of shortest paths in

G.

15.3.6 Complexity

The length of a derivation reflects the complexity of the process to a certain
degree because its products with lower and upper bounds for the cost of a
direct derivation give corresponding bounds for the derivation. The length
of derivations can be generalized to interleaving sequences (keeping in mind
that derivations of different lengths may yield the same pair of graphs in the
interleaving semantics).

Let (G,H) € SEM(tg) for some transformation unit without import. Then
u(G, H) denotes the least upper bound of lengths of derivations from G to H
(provided that the upper bound exists).

Let s = Go,...,G, be an interleaving sequence in the transformation

unit ¢ and let t1,...,t; be the import units of ¢. Let, for i = 1,...,n,

’Ual(Gi_l,Gi) = u(Gi_l,Gi) if (Gi—laGi) € SEM(tji) for some Ji € {1, . ,k}
n

and val(Gi_1,G;) = 1 otherwise. Then val(s) = > val(G;_1,G;) is called the
i=1

value of s.
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Let (G, H) € SEM(t). Then u(G, H) denotes the least upper bound of values
of interleaving sequences from G to H in ¢ (provided that the upper bound
exists).

Finally, let G be some initial graph of ¢. Then u(G), called the upper length
bound of G, denotes the least upper bound of the u(G, H) for all graphs H
with (G, H) € SEM(t) provided that such a graph and the bound exist.

Now the upper length bound for the initial graphs of shortest-path is presented.
Let G be such a graph, n its number of nodes and m its multiplicity, i.e. the
smallest number of edges one has to remove to transform G into a simple graph.
Then u(G) is of the order maz(m,n?).

This can be seen as follows. Consider the interleaving sequence in 4. (there is
always one, and all have this form). Then on gets: (1) u(G,Go) = m because
each application of the rule of minimum decreases the multiplicity by 1.

(2i) u(G4i,G4it1) = 1 because of the control condition of change(0,1).

(3i) u(Gait1,Gair2) < (n—1)-(n—2) because v;11 is the only 1-labelled node
which may be adjacent to any of the (n—1)-(n— 2) pairs of other nodes. Hence
there may be as many occurrences for the rule of sum. But no occurrence can
be used twice because of the negative application condition.

(4i) u(G4i12,G4i43) = 1 because of the control condition of change(1,2).

(51) u(Gairs, Gaira) < (n—1)-(n—2) because the derivation in (3i) produces up
to (n—1)-(n —2) new edges that may be parallel to old ones. Hence minimum
takes up to (n — 1) - (n — 2) rule applications to get rid of this multiplicity.

Altogether, this amounts to

WG H) <m+ S 1+m-Dn-2+1+n-1)n-2)
i=0
=m+2n+2n(n—1)(n—-2)

for all H with (G, H) € SEM(shortest-path) proving the statement for u(G).

The upper length bounds for shortest-path are in the order of upper bounds
for the computational costs because all involved derivations can be organized
in such a way that the cost of a direct derivation is constant. For this purpose,
one needs direct access to the nodes making the steps (2i) and (4i) constant
as well as to the pairs of nodes making the direct derivations in the other
steps constant. This means that the transformation unit specification of Floyd’s
algorithm is exactly as efficient as the versions of the algorithm in the literature.
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15.3.7 Completing the Proof

This subsection provides the proof of the statement of 15.3.5.4. It is done by
induction on j.

For j = 0, e € Eg,(v,v') means due to 2. and Subsection 15.3.4 that
we have distg,(eg) = min{distg(e) | e € Eg(v,v")} = short(v,v',Vg) =
short(v,v', Vg — Vo).

Assume that the statement holds for some j > 0 and consider j + 1.
If e € Eg,;,,(v,v"), then either (1) eq € Eg,;,,(v,v") or (2) there are
e1.e2 € Eg,,,,(v,v") with distq,,,,(e0) = min{dista,,,,(e1), dista,, ,(e2)}
(cf. 2.). Moreover, Eq,, ., = Eq,; .-

In the first case, either (1.1) eq € Eg,,,,(v,v") or (1.2) there are e3 €
EGy.. (v,vj41) and e4 € Eg,,,, (vj+1,v") with distg,,,,(eo) = distg,,,, (e3) +
dista,;,, (es) (cf. 3.).

In the second case, one of the edges say e;, belongs to G4;41, and the other
edge is constructed by the application of the sum-rule because Gy, is a simple
graph as a result of minimum, G4, is simple as a relabelling of G4; and sum
adds at most one edge per pair of nodes. This means e; € Eg,;,,(v,v") and
there are e3 € Eq,,,,(v,vj41) and eq € Eq,;,, (vj+1,v") with distg,;,.(e2) =
dista,,,, (e3) + distg,;,, (es).

Moreover, Eg,;,, (v,v') = Eq,;.

Therefore the induction hypothesis can be applied in all cases yielding the
following;:

(1.1) dista,, (eo) = short(v,v', Vg = Vj),

(1.2) distq,,(e3) = short(v,vj11,Va — Vj) and distq,;(es) = short(vjyi,v',
VG - V])a

(2) distg,;(e1) = short(v,v', Vg = Vj), distg,,(e3) = short(v,vjy1,Ve — Vj)
and distg,; (es) = short(vj1,v', Vg = Vj).

If Eq,;(v,vj41) = 0 or Eg,;(vjy1,v") = 0, then short(v,vj;1,Va — Vj) or
short(vjy1,v', Vg —V;) is undefined (otherwise there would be an edge from v
to vjy1 and vj41 to v'). Hence short(v,v', Vg — Vit1) = short(v,v', Vg —V;) as
shown in Subsection 15.3.4. This yields together with the other parts of case
(1.1):

dist,,,, (eo) = dista,; (eg) = short(v,v', Vg — V) = short(v,v', Vi — Vji1).

This remains true even if Eg, (v,vj41) # 0 # FEg,;(vj+1,v') because
dista,;(e0) = dista,,;(e3) + distg,,(es) for e3 € Eg, (v,vj41) and es €



628 CHAPTER 15. TRANSFORMATION UNITS AND MODULES

Eq,;(vj41,v") otherwise the sum-step (3j) would produce a new edge from
v to v’ which is either case (1.2) or (2)).

In case (1.2), Eq,, (v,v") = 0 because otherwise one would be faced with case
(2). Using the result in Subsection 15.3.4 (together with the reasoning in (1.2)),
one gets:

dista,,,,(e0) = dista,,(es)+ dista,, (es)
short(v,vjt1, Vg — V;) + short(vjp1,v', Vo = V;),
short(v,v', Vg — Vjq1).

It remains case (2) where one gets analogously:

distg,;,,(e0) = min{distg,; ,(e1), dista,; ,(e2)}

= min{distq,, (e1), distg,; (e3) + distg,; (e4)}
min{short(v,v', Vg —V;),
short(v,vjt1, Vg — Vj) + short(vjz1,v', Vo — V;)}
short(v,v', Vg — Vit1).

Conversely, let short(v,v',Vg — Vj41) = ¢ Then there is some p, €
PATH (v,v', Vg — Vj41) with distg(po) = c. If vjy1 & inter(po), then py €
PATH (v,v', Vg — V;) and hence short(v,v', Vg — V;) = short(v,v', Vg — Vj11)
(cf. Subsection 15.3.4). By induction hypothesis, one gets eq € Eg,, (v,v') with
dista,; (eo) = c. If eg is still in G444, one is done. If eg is not in G'yj4 4, then the
following happens: There are e; € Eg,;,,(v,vj41) and ex € Eg,;,, (vjy1,0')
with d = distq,;,, (e1) + distg,,,, (e2) # c such that sum in step (3j) produces
es € Eg,;,.(v,v") with distg,,,,(es) = d. Therefore, ey and ey are replaced by
minimum in step (5j) by es € Eq,,.,(v,v") with dista,,.,(es) = min{c,d}.
By induction hypothesis and the results in Subsection 15.3.4, one gets

d = short(v,vj11, Ve — V;) + short(vjy1,v', Vo = Vj)
> short(v,v', Vg — Vjy1) = ¢

such that one is done again.

It remains the case vj;1 € inter(pp). Using the observations in Subsec-
tion 15.3.4, one gets
short(v,vjt1, Vo — Vj) + short(vjy,v', Vo = Vj) = c.

By induction hypothesis, there are e; € Eg,, (v,vj41) with di = distg,;(e1) =
short(v,vjt1,Va — V;) and ey € Eg,;(vjy1,v") with dy = distg,;(e2) =
short(vjy1,v', Vg = Vj).
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After step (3j), this guarantees some e3 € Eg,,,,(v,v') with distq,, ,(e3) =
di +dy = c. If e3 is still in G4, one is done again. Otherwise there is eg €
Eg,, (v,v") with d = distg,, (eo) # ¢, and minimum produces es € Eg,;,,(v,v")
with distq,;,,(e5) = min{c,d} in step (5j). By induction hypothesis, and the
results in Subsection 15.3.4, one gets

d = short(v,v', Vg = V;) > short(v,v', Vg — Vj41) = ¢

such that one is done also in this last case.

This completes the proof.

15.4 Transformation Modules

In the sample specification above, the transformation unit shortest-path is the
unit of interest while all the others are of an auxiliary nature. Moreover, the
shortest-path algorithm may be part of a route planning system providing fur-
ther graph algorithms. Clearly, a specification language based on graph trans-
formation should provide the means to put together several transformation
units if they belong to the same application and to distinguish between main
and auxiliary transformation units. This is accomplished by the notion of a
transformation module that combines a set of transformation units. Some of
them may be indicated as members of the export interface whereas the rest
is hidden. In addition, there may be an import interface consisting of formal
parameter units being transformation units of which only initial and terminal
graphs are specified. This allows to leave parts of a system unspecified. They
may be filled in later by instantiation.

The following notion of a module is a variant of the simple modules as proposed
by Heckel et al. [17], who use a lightened form of units.

15.4.1 Formal Parameter Units and Modules

A transformation unit formal is a formal parameter unit if Urorma = 0,
Riorma = (), and Cformat = true. While the semantic relation of formal
is empty, the binary relation SEM(Itormar) X SEM(Tformar) describes the
upper bound of any actual parameter unit actual subject to the condition
SEM(actual) g SEM(Iformal) X SEM(Tformal)-

A transformation module is a triple MOD = (IMPORT,BODY, EXPORT)
where IM PORT is a set of formal parameter units, BODY is a set of trans-
formation units each of which using only units from BODY and IM PORT,
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i.e. Uy CIMPORT UBODY for eacht € BODY, and EX PORT is a subset
of BODY UIMPORT.

Based on the interleaving semantics of transformation units, the semantics
of a transformation module MOD = (IMPORT,BODY,EXPORT) is eas-
ily defined. Choosing a relation SEM(im) C SEM(I;ym) x SEM(T;y,) for each
im € IMPORT, SEM(t) for each t € BODY — IMPORT is the interleaving
semantics as defined level by level in the second section. Then SEM(MOD) is
just the restriction to the export interface, i.e. the family of relations SEM(ex)
for each ex € EXPORT.

15.4.2  Composition of Modules

If one wants to instantiate some of the formal parameter units of a given
module, one can choose exported transformation units of another module
as actual parameters. Let MOD = (IMPORT,BODY,EXPORT) and
MOD' = (IMPORT',BODY',EXPORT") be two transformation modules
and a: IMPORT — EXPORT' be a partial mapping assigning export units
of MOD' to some import units of MOD. Then a composition MOD o, MOD'
can be constructed by merging IM PORT and EX PORT' with respect to a.
In more detail, the domain of definition dom, of a is removed from IM PORT,
BODY and EXPORT are actualized according to a, meaning that each
im € dom, is replaced by a(im) wherever it occurs in BODY and EX PORT.
Denoting the results by a(BODY') and a(EX PORT) resp., everything else is
kept as it is. This yields

MOD o, MOD' = ((IMPORT — dom,)U IMPORT",
a(BODY) U BODY",
a(EX PORT)).

Alternatively, one could keep the export interface EX PORT' in addition as
export of the composition.

Obviously, the composition is again a transformation module such that one
can get rid of all formal parameter units eventually by repeated composition.

15.4.3 Ezxample

Floyd’s algorithm as specified in the previous section can be represented as the
transformation module
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Floyd
import: —

body: shortest-path, minimum, sum,
change(0,1), change(1,2)

export:  shortest-path

where the units minimum, sum, change(0,1), and change(1,2) are hidden and
only the shortest-path unit is exported. Nothing is imported because the five
units are completely defined by themselves.

As an illustration of the use of formal import parameters, consider the module
2-nodes which imports the formal parameter unit

relabel
initial: node label 0

terminal: node label 2

and the body of which consists of the three transformation units pre, post, and
A_to_B where the latter is exported. The unit pre adds to an arbitrary initial
graph two new nodes A and B, an edge from A to some old node and an edge
from another old node to B. Moreover, the new edges get the distances 0 and
all nodes are labelled with 0. The unit post removes all nodes except A and B
and all edges except those connecting A and B. The explicit specifications of
pre and post are omitted. Finally, the unit A_to_B is given by

A_to_B
uses: pre, relabel, post
conds: pre ; relabel ; post

The module 2-nodes may be seen as a kind of query concerning two nodes
of a graph depending on the actual choice for relabel. Let SEM(relabel) be
some relation between graphs with 0-labeled nodes and graphs with 2-labeled
nodes. Then the semantic relation of A_to_B, which is also the semantics of the
module takes an arbitrary graph, distinguishes two nodes through the call of
pre, applies SEM(relabel) and restricts the result to the distiguished nodes (as
far as they are still present). If one chooses particularly SEM(shortest-path),
one gets the distance of the shortest path between the two distinguished nodes.
Clearly, other actual parameters yield other answers.
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The instantiation of relabel by shortest-path can be done explicitly by compo-
sition

2-nodes o Floyd
import: —

body: pre, post, A_to_B, shortest-path,
minimum, sum, change(0,1), change(1,2)

export: A_to_B

where the actualized form of A_to_B is

A_to_ B
uses: pre, shortest-path, post

conds: pre ; shortest-path; post

All other units are not affected by the instantiation. The actualization mapping
is omitted because relabel is the only formal parameter and shortest-path the
only exported unit that can be assigned. (]

15.5 Conclusion

In this chapter, we have introduced and illustrated the syntactic and semantic
features of transformation units and transformation modules as structuring
concepts for graph transformation systems. We have restricted ourselves to
the case of acyclic use relations. The more complicated case of networks of
transformation units which may use each other arbitrarily is studied in Kre-
owski, Kuske, and Schiirr [22]. In this case, the semantic relations of the units
in the network are aggregated by iterated interleaving semantics and yield a
fixed point semantics under suitable assumptions on the control conditions.
Moreover, the reader can find an investigation of operations on transformation
units and corresponding operations on semantic relations in [21].

Transformation units and modules are the main structuring concepts of the
rule and graph centered specification language GRACE (see [1,32,21]) which
is not based on a particular graph transformation approach as other graph
transformation languages. GRACE is planned as a visual language with a
graphical interface that supports the visualized edition of graphs and rules
and the animated execution of interleaving sequences. Moreover, GRACE



REFERENCES 633

will provide an explanation component supporting structured correctness of
proofs in particular. There is a very first experimental implementation of
GRACE available: GRACEland provides a 3D editor and interpreter for the
GRACE language including transformation units and modules, but is not yet
approach-independent. The system is part of Martin Faust’s diploma thesis
(see http://www.informatik.uni-bremen.de/grp/ag-ti/GRACEland for more
details).

In Chapter 17, transformation units and (a variant of) transformation mod-
ules are compared with other module concepts within the framework of graph
transformation in various respects. It should be noted that most other notions
are based on particular graph transformation approaches. Moreover, the com-
parison does not concern the semantic level explicitly while in our presentation
the semantics is essential.

Although transformation units and transformation modules seem to work very
well, they do not cover all aspects and needs of structuring. First, they allow
to structure the set of rules of a graph transformation system, but the graphs
are kept as whole entities which may get very large. A compatible structuring
concept for cutting large graphs into small pieces is missing. Second, the un-
derlying graph transformation approach may provide parallel rules and in this
way parallel applications of rules. In all other respects, the interleaving seman-
tics is sequential and does not describe concurrent system activities. Third, the
interleaving semantics yields binary relations on graphs. This includes graph
language generation and recognition if one fixes the first or second component
of the relation. But what about n-ary relations on graphs with n > 2 or rela-
tions involving other data types than graphs? Fourth, the introduced notions
are approach-independent. But all transformation units within a module are
based on the same approach. The interconnection and interaction of units and
modules would become more sophisticated if one would allow the coexistence
of various approaches within a module supporting the switch from directed to
undirected graphs for example. Fifth, a specification in terms of transformation
modules describes the sytem on a fixed level of abstraction. A compatible no-
tion of refinement is needed if one wants to get rid of this restriction (cf. [14]).
There is still a lot to do. Future research will fill these and further deficiencies
in one way or other.
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