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Chapter 15GRAPH TRANSFORMATION UNITSAND MODULESH.-J. KREOWSKI S. KUSKEUniversit�at Bremen, Fachbereich 3Postfach 33 04 40, D-28334 Bremen, Germanyemail: fkreo, kuskeginformatik.uni-bremen.deThe aim of this chapter is to introduce the notions of transformation units andtransformation modules as means of constructing large graph transformation sys-tems from small ones in a structured and systematic way. A transformation unitcomprises a set of rules, descriptions of initial and terminal graphs, and a controlcondition. Moreover, it may use other transformation units for structuring pur-poses. Its semantics is a binary relation between initial and terminal graphs whichis given by interleaving ordinary direct derivation steps with calls of importedtransformation units. Putting transformation units together yields transformationmodules. A module may have an import interface consisting of formal parameterunits and an export interface consisiting of the units that are made available to theenvironment. The formal parameter units can be instantiated by exported unitsof other modules. The introduced framework is independent of a particular graphtransformation approach and, therefore, it may enhance the usefulness of graphtransformations in many contexts.Contents15.1 Introduction . . . . . . . . . . . . . . . . . . . . 60615.2 Transformation Units . . . . . . . . . . . . . . 60715.3 Shortest Paths|An Example . . . . . . . . . . 61615.4 Transformation Modules . . . . . . . . . . . . . 62915.5 Conclusion . . . . . . . . . . . . . . . . . . . . . 632References . . . . . . . . . . . . . . . . . . . . . . . . . 633
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606 CHAPTER 15. TRANSFORMATION UNITS AND MODULES15.1 IntroductionThe signi�cance of graphs and rules in many areas of computer science isevident: On the one hand, graphs constitute appropriate means for the de-scription of complex relationships between objects. Trees, Petri nets, circuitdiagrams, data 
ow graphs, state charts, and entity-relationship diagrams aresome typical examples. On the other hand, rules are used to describe \permit-ted" actions on objects as, for example, in the areas of functional and logicprogramming, formal languages, algebraic speci�cation, theorem proving, andrule-based systems.The intention of bringing graphs and rules together|motivated by severalapplication areas|has led to the theory of graph grammars and graph trans-formation (see volume I of the Handbook and [3,10,11,9,30,1,5] for a survey).A wide spectrum of approaches exists within this theory and some of them areimplemented (see, for example, Progres [31], GraphEd [18], Dactl [13], andAgg [26]) and Chapters 13 and 14 of this volume.With the aim of enhancing the usefulness of graph transformation, we intro-duce approach-independent structuring methods for building up large systemsof graph transformation rules from small pieces. The methods are based on thenotion of a transformation unit and its interleaving semantics. A transforma-tion unit is allowed to use other units such that a system of graph transforma-tion rules can be structured and existing transformation units can be re-used.To make the structuring more 
exible, a cluster of transformation units canbe encapsulated into a module. This allows to distinguish between main unitsto be exported and made available to the environment and auxiliary unitsthat are hidden in the body. Moreover, a module can import formal parameterunits that allow to leave parts of a system unspeci�ed for later actualization.Transformation units and modules are basic concepts of the new graph andrule centered language Grace that is being developed by researchers fromBerlin, Bremen, Erlangen, M�unchen, Oldenburg, and Paderborn (see also [21,1,32,22]). Nevertheless, the notion is meaningful in its own right because { in-dependently of Grace { it can be employed as a structuring principle in mostgraph transformation approaches one encounters in the literature where graphtransformation is often called graph rewriting.The chapter is organized as follows. In Section 15.2 we discuss the notion of atransformation unit together with its interleaving semantics. In Section 15.3,the concepts of a transformation unit are illustrated with the sample speci�ca-tion of a shortest-path algorithm. Finally, we introduce the notion of transfor-mation modules and their composition in Section 15.4. The chapter ends withsome concluding remarks.



15.2. TRANSFORMATION UNITS 60715.2 Transformation UnitsThe key operation in graph transformation approaches is the direct derivationbeing the transformation of a graph into a graph by applying a rule. In otherwords, each rule yields a binary relation on graphs. Hence, each set of rulesspeci�es a binary relation on graphs by iterated rule applications. This deriva-tion process is highly non-deterministic in general and runs on arbitrary graphswhich is both not always desirable. For example, if one wants to generate graphlanguages, one may start in a particular axiom and end with certain terminalobjects only. Or if a more functional behaviour is required, one may preferto control the derivation process and to cut down its non-determinism. Thelatter can be achieved by control mechanisms for the derivation process likeapplication conditions or programmed graph transformation (see, e.g., [2,29,8,23,27,34,20,24,16,28,33], cf. also [6] for regulation concepts in string grammars)and the former by the use of graph class expressions that specify subclassesof graphs. Moreover, in practical cases, one may have to handle hundreds orthousands of rules which cannot be done in a transparent and reasonable waywithout a structuring principle.To cover all these aspects, we introduce the notion of a transformation unitthat allows to specify new rules, initial and terminal graphs, as well as a controlcondition, and to import other transformation units. Semantically, a transfor-mation unit describes a graph transformation, i.e. a binary relation on graphsgiven by the interleaving of the imported graph transformations with eachother and with rule applications. Moreover, interleaving sequences must startin initial graphs, end in terminal graphs and satisfy the control condition. Ifnothing is imported, the interleaving semantics coincides with the derivationrelation.To make the concept independent of a particular graph transformation frame-work, we assume an abstract notion of a graph transformation approach com-prising a class of graphs, a class of rules, a rule application operator, a class ofgraph class expressions, and a class of control conditions. The semantic e�ectof control conditions depends on so-called environments. In this way, it can bede�ned without forward reference to transformation units.Examples of graph class expressions and control conditions are given after theintroduction of transformation units and their interleaving semantics. At theend of this section, we consider a certain class of control conditions whichconsists of languages over rules and transformation units and point out itsrelation to interleaving sequences.



608 CHAPTER 15. TRANSFORMATION UNITS AND MODULES15.2.1 Graph Transformation ApproachA graph transformation approach is a system A = (G;R;); E ; C) where� G is a class of graphs,� R is a class of rules,� ) is a rule application operator yielding a binary relation )r � G � Gfor every r 2 R,� E is a class of graph class expressions such that each e 2 E speci�es asubclass SEM(e) � G, and� C is a class of elementary control conditions over some set ID of identi�erssuch that each c 2 C speci�es a binary relation SEME(c) � G � G foreach mapping E : ID �! 2G�G .1A pair (G;G0) 2)r, usually written asG)r G0, establishes a direct derivationfrom G to G0 through r. For a set P � R the union of all relations )r(r 2 P ) is denoted by )P and its re
exive and transitive closure by )�P . Apair (G;G0) 2 )�P , usually written as G )�P G0, is called a derivation fromG to G0 over P . A mapping E : ID �! 2G�G is called an environment. In thefollowing, we will use boolean expressions over C as control conditions withelementary control conditions as basic elements and disjunction, conjunction,and negation as boolean operators. Moreover, we make use of the constant true.The semantic relations of elementary control conditions are easily extended toboolean expressions bySEME(true) = G � G;SEME(e1 _ e2) = SEME(e1) [ SEME(e2);SEME(e1 ^ e2) = SEME(e1) \ SEME(e2);SEME(e) = G � G � SEME(e):The set of control conditions over C is denoted by B(C).Note that we refer to the meaning of graph class expressions and control con-ditions by the overloaded operator SEM. This should do no harm because it isalways clear from the context which is which.All the graph grammar and graph transformation approaches one encountersin the literature provide notions of graphs and rules and a way of directlyderiving a graph from a graph by applying a rule (cf. e.g. [7,29,19,4,23,31,18,15,25]). Therefore, all of them can be considered as graph transformationapproaches in the above sense if one chooses the components E and C in some1The power set of a set S is denoted by 2S .



15.2. TRANSFORMATION UNITS 609standard way. The singleton set fallg with SEM(all ) = G may provide the onlygraph class expression, and the class of elementary control conditions may beempty. Non-trivial choices for E and C are discussed in Subsections 15.2.4 and15.2.5.15.2.2 Transformation UnitsA transformation unit encapsulates a speci�cation of initial graphs, a set ofidenti�ers referring to transformation units to be used, a set of rules, a controlcondition, and a speci�cation of terminal graphs.Let A = (G;R;); E ; C) be a graph transformation approach. A transformationunit over A is a system trut = (I ;U ;R;C ;T ) where I ;T 2 E , U is a �nite setof identi�ers, R � R is a �nite set of rules, and C 2 B(C). The componentsof trut may be denoted by Utrut , Itrut , Rtrut , Ctrut , and Ttrut , respectively.The class of all transformation units over A is denoted by TA. The componentU may be seen as a set of formal parameters that can be instantiated bytransformation units.To keep the technicalities simple, one may assume that only de�ned transfor-mation units are imported. Hence, initially, U must be chosen as the empty setyielding unstructured transformation units without import. Such transforma-tion units of level 0 may be used in transformation units of level 1. Iteratively,one obtains a transformation unit of level i + 1 for some i 2 IN if one im-ports transformation units up to level i. In this way, the import structures oftransformation units become acyclic. This provides a principle of hierarchicalstructuring. The case of an arbitrary import structure is studied in [22].If I speci�es a single graph (cf. item 1 of 15.2.4), U is empty, and C is theconstant true, one gets the usual notion of a graph grammar (in which approachever) as a special case of transformation units.15.2.3 Interleaving SemanticsThe semantics of a transformation unit is a graph transformation, i.e. a binaryrelation on graphs containing a pair (G;G0) of graphs if, �rst, G is an initialgraph and G0 is a terminal graph, second, G0 can be obtained from G by inter-leaving direct derivations with the graph transformations speci�ed by the usedtransformation units, and third, the pair is allowed by the control condition.Let trut = (I ;U ;R;C ;T ) be a transformation unit over the graph transfor-mation approach A = (G;R;); E ; C). Assume that the set ID of identi�ers



610 CHAPTER 15. TRANSFORMATION UNITS AND MODULESassociated to C contains the disjoint union of U and R. Let the interleaving se-mantics SEM(t) � G�G for t 2 U be already de�ned. Let E(trut) : ID ! 2G�Gbe de�ned by E(trut)(r) = )r for r 2 R, E(trut)(t) = SEM(t) for t 2 U , andE(trut)(id ) = fg, otherwise. Then the interleaving semantics SEM(trut) oftrut consists of all pairs (G;G0) 2 G � G such that1. G 2 SEM(I ) and G0 2 SEM(T ),2. there are graphs G0; : : : ; Gn 2 G with G0 = G, Gn = G0, and for i =1; : : : ; n, Gi�1 )r Gi for some r 2 R or (Gi�1; Gi) 2 SEM(t) for somet 2 U ,3. (G;G0) 2 SEME(trut)(C).The sequence of graphs in point 2 is called an interleaving sequence in trutfrom G to G0. Let RIS trut denote the binary relation given by interleavingsequences, i.e. RIS trut = ()R [St2U SEM(t))�. Then the interleaving seman-tics of trut is de�ned as the intersection of RIS trut with SEM(I ) � SEM(T )and SEME(trut)(C ). Note that all three relations may be incomparable witheach other. For example, (G;G0) 2 SEME(trut)(C) does not imply in generalthat there is an interleaving sequence in trut from G to G0, and vice versa.A control condition C speci�es a binary predicate depending on other binarygraph relations through the notion of environments, but independent of a par-ticular transformation unit. As a component of trut , only the environment oftrut given by E(trut) is e�ective, meaning that C can restrict the semanticsby specifying certain properties of the direct derivation relations of rules intrut , the interleaving semantics of imported transformation units, and the in-terrelation of all of them. If transformation units are employed as structuringconcepts in a speci�cation language, it would be reasonable to assume thatrules may be named and that only their names belong to the set of identi�ersrather than the rules themselves. But the naming of rules is not needed here.The de�nition of the interleaving semantics follows the recursive de�nition oftransformation units. Hence, its well-de�nedness follows easily by an inductionon the import structure, i.e. on the levels of transformation units.Initially, if U is empty, an interleaving sequence is just a derivation such thatone gets in this caseSEM(trut) = )�R \ (SEM(I )� SEM(T )) \ SEME(trut)(C ):In other words, interleaving semantics generalizes the ordinary semantics ofsets of rules given by derivations.If I is a single graph (specifying itself as initial graph in the sense of 15.2.4.1),the �rst component of the interleaving semantics of trut is insigni�cant. Then



15.2. TRANSFORMATION UNITS 611all second components form a graph language that can be considered as thelanguage generated by the transformation unit, i.e.L(trut) = fG 2 SEM(T ) j (I;G) 2 SEM(trut)g:In this case, the transformation unit is called language-generating. If, further-more, U is empty and C is true, trut is a graph grammar (cf. Subsection 15.2.2),and its generated language consists, as usual, of all terminal graphs derivablefrom the initial graph, i.e.L(trut) = fG 2 SEM(T ) j I )�R Gg:In this sense, the interleaving semantics covers the usual notion of graph lan-guages generated by graph grammars.The interleaving semantics of a transformation unit is de�ned for any choiceof the imported transformation units. If one �xes the import, the interleavingsemantics is a binary relation on graphs. But if one does not �x the import,the interleaving semantics can be considered as an operator yielding a binaryrelation on graphs for each choice of binary relations on graphs for the importparameters.15.2.4 Graph Class ExpressionsThere are various standard ways to choose graph class expressions that can becombined with many classes of graphs and hence used in many graph trans-formation approaches.1. In most cases, one deals with some kind of �nite graphs with some explicitrepresentations. Then single graphs (or �nite enumerations of graphs)may serve as graph class expressions. Semantically, each graph G rep-resents itself, i.e. SEM(G) = fGg. The axiom of a graph grammar is atypical example of this type.2. A graph G is reduced with respect to a set of rules P � R if there isno G0 2 G with G )r G0 and r 2 P . In this way, P can be consideredas a graph class expression with SEM(P ) = RED(P ) being the set ofall reduced graphs with respect to P . Reducedness is often used in termrewriting and term graph rewriting as a halting condition.3. If G is a class of labelled graphs with label alphabet �, then a set T � � isa suitable graph class expression specifying the graph class SEM(T ) = GTconsisting of all graphs labelled in T only. This way of distinguishingterminal objects is quite popular in formal language theory.



612 CHAPTER 15. TRANSFORMATION UNITS AND MODULES4. Graph theoretic properties can be used as graph class expressions. In par-ticular, monadic second order formulas for directed graphs, hypergraphsor undirected graphs are suitable candidates (see e.g. [4]).5. Graph schemata, as used in the graph transformation approachProgresare graph class expressions that allow to specify generic graph classes (seeChapter 13 for more details).6. A language-generating transformation unit trut as introduced in Subsec-tion 15.2.3 can be used as a graph class expression with SEM(trut) =L(trut).15.2.5 Control ConditionsA control condition is meant to restrict the derivation process. A typical ex-ample is to allow only interleaving sequences where the sequences of appliedrules and called transformation units belong to a particular control language.Therefore, a regular expression over the set of identi�ers can be considered as acontrol condition because it speci�es a language. In general, every descriptionof a binary relation on graphs may be used as a control condition. Here, wegive some examples.1. Let E : ID ! 2G�G be an environment. Then E can be extended to theset of languages over ID , i.e. the power set of the set of strings overID in a natural, straight-forward way. bE : 2ID� ! 2G�G is de�ned bybE(L) = Sw2LE(w) for L � ID� where E : ID� ! 2G�G is recursivelygiven by E(�) = �G, and E(xv) = E(x)�E(v) for x 2 ID and v 2 ID�.2Hence, L can be used as control condition with SEME(L) = bE(L) for allE : ID ! 2G�G . In this case, the class of elementary control conditions is2ID� . We refer to conditions in this class as control conditions of languagetype.2. As a consequence of point 1, every grammar, automaton or expression xwhich speci�es a language L(x) over ID can serve as a control conditionwith SEME(x) = SEME(L(x)) = bE(L(x)) for all environments E.3. In particular, the class of regular expressions over ID can be used for thispurpose. For explicit use below, REG(ID) is recursively given by ;; � 2REG(ID), ID � REG(ID), and (e1 ; e2), (e1 j e2), (e�) 2 REG(ID) ife; e1; e2 2 REG(ID). To save parentheses we assume that � has a stronger2�G denotes the identity relation on G. Given �; �0 � G�G, the sequential composition of� and �0 is de�ned as usual by ���0 = f(G;G00) j (G;G0) 2 � and (G0;G00) 2 �0 for some G0 2Gg.



15.2. TRANSFORMATION UNITS 613binding than ; which in turn has a stronger binding than j.3 The languageL(e) speci�ed by some regular expression e is de�ned as L(;) = fg,L(�) = f�g, L(id) = fidg for all id 2 ID , L(e1 ; e2) = L(e1) � L(e2),L(e1 j e2) = L(e1) [ L(e2) and L(e�) = L(e)�.44. A pair (G;G0) of graphs is reduced with respect to a control conditionc 2 C and an environment E if there is no graph G00 with (G0; G00) 2SEME(c). Thus, c ! de�nes a control condition where SEME(c !) is theset of all pairs in SEME(c) which are reduced with respect to c and E.5. A special case of such a control condition corresponds to the notion ofreduced graphs and is given by a set of rules R. R ! means that the rulesof R must be applied as long as possible.6. Each transformation unit trut can serve as a control condition because se-mantically it speci�es a binary relation on graphs. For each environmentE, the semantics of the control condition trut is given by the semanticsof trut , i.e. by all pairs (G;G0) of graphs such that G can be transformedinto G0 with the transformation unit trut .7. Each pair (e1; e2) 2 E � E de�nes a binary relation on graphs bySEM((e1; e2)) = SEM(e1)� SEM(e2) and, therefore, it can be used as acontrol condition which is independent of the choice of an environment,i.e. SEME((e1; e2)) = SEM((e1; e2)) for all environments E. In partic-ular, let trut = (I; U;R;C; T ) be a transformation unit. Then the pair(I; T ) forms a control condition.8. For readers familiar with the graph transformation languageProgres, itshall be mentioned that the deterministic and non-deterministic controlstructures of Progres serve as control conditions. They allow to de�neimperative commands over control conditions.9. Another type of control conditions are priorities among the rules of atransformation unit. See Litovski and M�etivier [24] for a particular ap-proach of this kind.As the following observation shows, the semantic relations given by regularexpressions as control conditions can be constructed easily according to therecursive structure of regular expressions without reference to the languagesgenerated by the expressions.3While ; denotes the empty set fg, the expression � denotes the regular set f�g. We prefera direct reference to f�g rather than to use ;�.4Given L;L0 � ID�, the concatenation of L and L0 is de�ned as usual by L � L0 =fww0 j w 2 L ; w0 2 L0g, and the Kleene closure of L is de�ned as usual by L� = S1i=0 Liwhere L0 = f�g and Li+1 = L � Li.



614 CHAPTER 15. TRANSFORMATION UNITS AND MODULESObservation 15.2.1For all environments E, all id 2 ID and all e; e1; e2 2 REG(ID) the followingholds.1. SEME(;) = fg.2. SEME(�) = �G.3. SEME(id ) = E(id).4. SEME(e1 ; e2) = SEME(e1) � SEME(e2).5. SEME(e1 j e2) = SEME(e1) [ SEME(e2).6. SEME(e�) = SEME(e)�.5Proof1. SEME(;)=def bE(fg)=def fg.62. SEME(�)=def bE(f�g)=defE(�)=def�G.3. SEME(id )=def bE(fidg)=defE(id )=defE(id).4. To show this, we use the following statement which is shown by inductionon the length of w1. Let w1; w2 2 ID�; then E(w1w2) = E(w1) �E(w2).E(�w2)=defE(w2) = �G � E(w2)=defE(�) � E(w2). Assume that thestatement holds for w1 2 ID�, and consider some a 2 ID . ThenE(aw1w2)=defE(a) � E(w1w2)=indE(a) � (E(w1) � E(w2)) = (E(a) �E(w1)) �E(w2)=defE(aw1) �E(w2).7 Now we getSEME(e1 ; e2)=def bE(L(e1) � L(e2))=def Sw12L(e1);w22L(e2)E(w1w2)= Sw12L(e1);w22L(e2)E(w1) �E(w2)= Sw12L(e1)E(w1) �Sw22L(e2)E(w2)=def bE(L(e1)) � bE(L(e2))=def SEME(e1) � SEME(e2):5. SEME(e1 j e2)=def bE(L(e1) [ L(e2))=def Sw2L(e1)[L(e2)E(w)= Sw12L(e1)E(w1) [Sw22L(e2)E(w2)=def bE(L(e1)) [ bE(L(e2))=def SEME(e1) [ SEME(e2):6. To show point 6, we �rst prove by induction on i that for i � 0,bE(L(e)i) = SEME(e)i. If i = 0 we havebE(L(e)0)=def bE(f�g)=2 :�G=def SEME(e)0:5For � � G � G, �� denotes the re
exive and transitive closure of � that is �� = S1i=0 �iwhere �0 = �G and �i+1 = � � �i.6=def stands for equal by de�nition.7=ind stands for equal by induction hypothesis.



15.2. TRANSFORMATION UNITS 615Moreover,bE(L(e)i+1)=def bE(L(e) � L(e)i)=4 : bE(L(e)) � bE(L(e)i)=indSEME(e) � SEME(e)i=def SEME(e)i+1:Hence,SEME(e�)=def bE(L(e)�)=def bE(S1i=0 L(e)i) = S1i=0 bE(L(e)i)= S1i=0 SEME(e)i=def SEME(e)�: ut15.2.6 Application SequencesIn interleaving sequences, rules are applied and imported transformation unitsare called in some order. Such sequences of applied rules and called transfor-mation units help to clarify the role of control conditions of the language typeas de�ned in 15.2.5.1.Let trut = (I ;U ;R;C ;T ) be a transformation unit over some graph trans-formation approach A = (G;R;); E ; C). Assume that U and R are disjointsubsets of the set ID associated to C. Then x1 � � �xn 2 (U [R)� (xi 2 U [R)is called an application sequence of (G;G0) 2 G�G if there is an interleaving se-quence G0; : : : ; Gn with G0 = G, Gn = G0 and, for i = 1; : : : ; n, Gi�1 )xi Giif xi 2 R and (Gi�1; Gi) 2 SEM(xi) if xi 2 U . In the case n = 0, the applica-tion sequence is the empty string �.Using these notions and notations, the following observation states that a lan-guage overU [R, used as a control condition due to 15.2.5.1, controls the orderin which rules are applied and imported transformation units are actually used.Observation 15.2.2Let C = 2ID� be the class of control conditions of language type, and lettrut = (I ;U ;R; L;T ) with L � (U [ R)� � ID�. Then for all G;G0 2 G, thefollowing statements are equivalent.1. (G;G0) 2 SEM(trut).2. (G;G0) 2 SEME(trut)(L) \ SEM(I)� SEM(T ).3. There is an application sequence w of (G;G0) with w 2 L and (G;G0) 2SEM(I)� SEM(T ).ProofLet (G;G0) 2 SEM(trut). Then by de�nition, there is an interleaving sequence



616 CHAPTER 15. TRANSFORMATION UNITS AND MODULESin trut from G to G0, (G;G0) 2 SEME(trut)(L), and (G;G0) 2 SEM(I) �SEM(T ). Hence, point 1 implies point 2.To show that point 2 implies point 3 and that point 3 implies point 1, we prove�rst the following claim:(G;G0) 2 SEME(trut)(L) i� there is an application sequence w 2 L of (G;G0).By de�nition, we have (G;G0) 2 SEME(trut)(L) = \E(trut)(L) i� (G;G0) 2E(trut)(w) for some w 2 L. We show now by induction on the structure of wthat (G;G0) 2 E(trut)(w) i� w is an application sequence of (G;G0).If w = �, we get (G;G0) 2 E(trut)(�) i� (G;G0) 2 �G i� G = G0 i� � is anapplication sequence of (G;G0).Assume now that the statement holds for v 2 (U [ R)�.And consider w = xv with x 2 U [ R. Then (G;G0) 2 E(trut)(xv) =E(trut)(x) � E(trut)(v), means that there is some G 2 G with (G;G) 2E(trut)(x) and (G;G0) 2 E(trut)(v). The latter implies by induction that v isan application sequence of (G;G0) such that there is an interleaving sequenceG0; : : : ; Gn with G = G0 and G0 = Gn. The former means G )x G if x 2 Rand (G;G) 2 SEM(x) if x 2 U . Altogether, G;G0; : : : ; Gn de�nes an inter-leaving sequence with xv as corresponding application sequence. Conversely,an application sequence xv of (G;G0) is related to an interleaving sequenceG0; : : : ; Gn with G = G0, G0 = Gn and, in particular, G0 )x G1 if x 2 Rand (G0; G1) 2 SEM(x) if x 2 U such that (G;G1) 2 E(trut)(x) in any case.Moreover, v is an application sequence of (G1; Gn) because G1; : : : ; Gn is aninterleaving sequence. By induction hypothesis, we get (G1; G0) 2 E(trut)(v).The composition yields (G;G0) 2 E(trut)(x) �E(trut)(v) = E(trut)(xv). Thiscompletes the proof of the claim.From the just proved claim follows directly that point 2 implies point 3.Furthermore, let w 2 L be an application sequence of (G;G0) with (G;G0) 2SEM(I)�SEM(T ). Then by de�nition there is an interleaving sequence in trutfrom G to G0 with (G;G0) 2 SEM(I) � SEM(T ), and by the claim, (G;G0) 2SEME(trut)(L). Hence, (G;G0) 2 SEM(trut). This completes the proof. ut15.3 Shortest Paths|An ExampleIn this section, we specify the shortest-path algorithm of Floyd (cf. [12]) as agraph transformation unit to illustrate the usefulness of the concept. The algo-rithm is informally described in the next subsection. Its speci�cation in formof a transformation unit is presented in Subsection 15.3.3 after the underlying



15.3. SHORTEST PATHS|AN EXAMPLE 617graph transformation approach is introduced. The rest of the section concernsthe correctness and complexity of the speci�ed algorithm. In Subsection 15.3.4,we discuss the graphtheoretic background of the algorithm more formally tobe able to prove correctness of the speci�cation in Subsection 15.3.5 (togetherwith 15.3.7). Finally, the issue of complexity is studied in Subsection 15.3.6.15.3.1 Informal Description of the AlgorithmGiven a directed graph G and a pair v and v0 of nodes, the algorithm computesthe distance of a shortest path from v to v0 in G: The main idea is to com-pute the distance of a shortest path from v to v0 that avoids certain nodes inintermediate steps from the distances of shortest paths that avoid more nodes.In more detail, the shortest paths from v to v0 that avoid all nodes in interme-diate steps are the edges from v to v0 with minimum distance. Starting withthese edges and distances, one may admit more and more nodes as intermedi-ate ones. Whenever a new intermediate node v is admitted, one adds up thedistance of the edge from v to v and the distance of the edge from v to v0(if there are any) and labels a new edge from v to v0 with this sum. If thereis already an edge, the one with the smaller distance is kept. The algorithmterminates after all nodes are admitted. Then an edge from v to v0 is labelledwith the distance of a shortest path from v to v0 in the original graph, andthere is no edge from v to v0 if originally there is no path from v to v0: A formaltreatment of the shortest-path algorithm is given in Subsection 15.3.4.15.3.2 Graph Transformation ApproachFor the purposes of this illustration, a particular graph transformation ap-proach is tailored. But the example is easily adapted to most of the generalgraph transformation approaches one encounters in the literature.1. The class of graphs considered consists of directed graphs of the formG = (V;E; s; t; l; dist) where V is the set of nodes, E is the set of edges,s : E ! V and t : E ! V are mappings associating each edge e 2 E witha source s(e) and a target t(e); l : V ! f0; 1; 2g is a node labelling anddist : E ! IN is an edge labelling, called distance. Loops are forbidden,i.e. there is no edge e with s(e) = t(e): The distance is essential, the nodelabelling serves only auxiliary purposes.Let G = (V;E; s; t; l; dist) and G0 = (V 0; E0; s0; t0; l0; dist0) be two graphs.G is a subgraph of G0 if V � V 0; E � E0 and s(e) = s0(e); t(e) = t0(e)and dist(e) = dist0(e) for all e 2 E as well as l(v) = l0(v) for all v 2 V:



618 CHAPTER 15. TRANSFORMATION UNITS AND MODULESG and G0 are isomorphic if there are bijective mappings f : V ! V 0 andg : E ! E0 with f(s(e)) = s0(g(e)); f(t(e)) = t0(g(e)) and dist(e) =dist0(g(e)) for all e 2 E as well as l(v) = l0(f(v)) for all v 2 V:2. The class of rules considered consists of pairs of graphs r = (L;R) whereL and R share the set of nodes. Moreover, the left-hand side L of r maybe equipped with an extra context edge.Rules are presented in the form L �! R where an extra context edge inL is dashed. Nodes of L and R are drawn in the same �ll style if they areequal. A node label is omitted if it is parametric, i.e. if it can be choosenarbitrarily before applying the rule.3. A rule r = (L;R) is applied to a graph G directly deriving G0 in foursteps: (1) look for a subgraph L0 of G isomorphic to L; (2) remove theedges of L0 from G; (3) add the edges of R (by using the isomorphismbetween L and L0 to place the edges), and (4) change the node labelswhere they are di�erent in L and R (again by using the isomorphism). Ifthe left-hand side has got an extra context edge, this serves as a negativecontext condition meaning that the direct derivation is only admittedif G does not contain such an edge between the respective nodes. Thisaltogether is denoted by G)r G0:4. The only two used graph class expressions are the restrictions of thenode label alphabet to f0g and f2g respectively. If the two expressionsare denoted by node label i for i 2 f0; 2g; SEM(node label i) contains allgraphs the nodes of which are constantly labelled with i:5. The used control conditions are regular expressions and as long as pos-sible where the latter applies the rules of a transformation unit as longas possible (cf. 15.2.5.5).In the following, transformation units are presented by indicating the compo-nents with respective keywords. Trivial components (i.e. no import, no rules,the graph class expression all, and the control condition true) are omitted.15.3.3 Speci�cation of the AlgorithmFloyd's algorithm is speci�ed in terms of transformation units following theinformal description of the algorithm. To be able to distinguish between for-bidden nodes, a just admitted node and formerly admitted nodes, the nodelabels 0; 1 and 2 resp. are used. Initially, all nodes carry the 0-label.The main transformation unit shortest-path uses the transformation units min-imum, sum, change(0; 1) and change(1; 2) in a certain order which is given by



15.3. SHORTEST PATHS|AN EXAMPLE 619a regular control expression. The transformation unit minimum takes care ofparallel edges. Its control condition as long as possible makes sure that allparallel edges are removed. The transformation unit sum sums up successiveedges if their intermediate node is 1-labeled. Here the control condition aslong as possible makes sure that all possible summations are performed, whilethe negative context condition associated to the rule prevents that the samesummation is done twice. Finally, change(i; j) relabels a node from i to j: Thecontrol condition once guarantees that the rule of the transformation unit isapplied exactly once in each of its derivations. The term once is a synonym forthe rule considered as a regular expression. Note that in the transformationunits minimum and sum the edge labels as well as most of the node labels ofthe rules are parametric, i.e. they can be choosen arbitrarily before each ruleapplication.Wherever parallel edges occur, only an edge with the minimum label is kept.This is achieved by the transformation unit minimum.minimumrules: �!xy min(x; y)(x; y 2 IN)conds: as long as possibleThe summations of the distances of successive edges is performed by the trans-formation unit sum whenever the intermediate node is labelled with 1.sumrules: �!1x yx+ y 1x yx+ y(x; y 2 IN)conds: as long as possibleBefore sum is applied, a node with label 0 gets label 1, and afterwards this



620 CHAPTER 15. TRANSFORMATION UNITS AND MODULESlabel is changed into 2 by using the transformation unit change(i; j) for anytwo labels i; j: change(i ; j )rules: �!i jconds: onceAfter minimum has done its job once, the described sequence of transformationunits change(0; 1); sum; change(1; 2);minimumcan be iterated until all nodes are admitted. This yields the shortest-pathalgorithm.shortest-pathinitial: node label 0uses: change(0; 1); change(1; 2); sum;minimumconds: minimum ; (change(0; 1) ; sum ; change(1; 2) ; minimum)�terminal: node label 2Figure 15.1 shows an interleaving sequence of shortest-path where the e�ect ofthe change units are not presented separately, but composed with minimum.Note that the regular expression ch(1; 2) ; min ; ch(0; 1) in the picture is anabbreviation for the control condition change(1; 2) ; minimum ; change(0; 1).15.3.4 Graphtheoretic BackgroundTo facilitate the correctness proof for the algorithm, the graphtheoretic back-ground is needed explicitly.Let (V;E; s; t) be an unlabelled directed graph without loops, and let dist :E ! IN be a distance function on the edges.A sequence of edges p = e1 � � � en (n � 1); is a path from v to v0 with dist(p) =nPi=1dist(ei) if s(e1) = v; t(en) = v0 and t(ei) = s(ei+1) for i = 1; : : : ; n � 1:



15.3. SHORTEST PATHS|AN EXAMPLE 621
00 00141 4 22 1 ;minimum ; change(0;1) 00 10141 4 2 1 ;sum
00 10141 4 26 6 1 ;ch(1;2) ;min ; ch(0;1) 00 21141 4 26 1 ;sum
00 21141 4 26 27 1 ;ch(1;2) ;min ; ch(0;1) 01 22121 4 26 1 ;sum
01 22121 4 26 1 ;ch(1;2) ;min ; ch(0;1) 12 22121 4 26 1 ;sum
12 22121 4 26 32 1 ;change(1;2) ;minimum 22 22121 3 22 1Figure 15.1: Example of an interleaving sequence in shortest path



622 CHAPTER 15. TRANSFORMATION UNITS AND MODULESThe set of the latter nodes ft(e1); : : : ; t(en�1g, called intermediate nodes, isdenoted by inter(p): Moreover, for v 2 V; the empty sequence � is consideredas a path from v to v with dist(�) = 0 and inter(�) = ;: For U � V; a path pis said to avoid U if inter(p) \ U = ;:Let PATH (v; v0; U) denote the set of all paths from v to v0 avoiding U: IfPATH (v; v0; U) 6= ;; the minimum distance is denoted by short(v; v0; U); i.e.short(v; v0; U) = minfdist(p) j p 2 PATH (v; v0; U)g:A path p0 2 PATH (v; v0; U) with dist(p0) = short(v; v0; U) is called short-est path from v to v0 avoiding U: (Note that short(v; v0; U) is unde�ned ifPATH (v; v0; U) = ;:)PATH (v; v0; ;) consists of all paths from v to v0 such that short(v; v0; ;) is theminimum distance of all paths from v to v0: PATH (v; v; U) contains the emptypath � such that short(v; v; U) = 0 for all v 2 V and U � V: PATH (v; v0; V )with v 6= v0 consists of all edges e with s(e) = v and t(e) = v0: If this set ofedges is denoted by E(v; v0); one hasshort(v; v0; V ) = minfdist(e) j e 2 E(v; v0)gfor v 6= v0 and E(v; v0) 6= ;:Let PATH (v; v0; U) 6= ; with v 6= v0 and U = U [ fvg for some v 2 V � U:Then the following hold.(1) If PATH (v; v0; U) 6= ;; thenshort(v; v0; U) � short(v; v0; U)because PATH (v; v0; U) � PATH (v; v0; U):(2) If PATH (v; v; U) 6= ; 6= PATH (v; v0; U); thenshort(v; v0; U) � short(v; v; U) + short(v; v0; U)because the composition of a path from v to v avoiding U with a pathfrom v to v0 avoiding U yields a path from v to v0 avoiding U:(3) If p0 = e1 � � � en is a shortest path from v to v0 avoiding U and v 62inter(p0); then p0 2 PATH (v; v0; U); and henceshort(v; v0; U) � dist(p0) = short(v; v0; U):



15.3. SHORTEST PATHS|AN EXAMPLE 623(4) Otherwise v 2 inter(p0): In this case, there are indices i and j such thate1 � � � ei 2 PATH (v; v; U) and ej � � � en 2 PATH (v; v0; U) where ei is the�rst edge on p0 entering v and ej is the last one leaving v: Hence i � jand short(v; v; U) + short(v; v0; U) � dist(e1 � � � ei) + dist(ej � � � en)� dist(p0)= short(v; v0; U):(5) Altogether, one gets eithershort(v; v0; U) = short(v; v0; U)or short(v; v0; U) = short(v; v; U) + short(v; v0; U):(6) And if both right-hand sides are de�ned, one hasshort(v; v0; U) = minfshort(v; v0; U); short(v; v; U) + short(v; v0; U)g:15.3.5 CorrectnessIn this section, the correctness of the transformation unit shortest-path is shownwith respect to the function short. To achieve this, the interleaving seman-tics of all involved transformation units are characterized in graph-theoreticterms. Given a graph G = (V;E; s; t; l; dist); its components may be denotedby VG; EG; sG; tG; lG and distG respectively.1. The interleaving sequences of change(i; j) are the direct derivations inwhich the only rule is applied to an arbitrary graph because nothing isimported and there is no restriction of initial and terminal graphs, butexactly one rule application is allowed. If the rule is applied, a node withlabel i gets label j obviously. Hence one gets:(G;H) 2 SEM(change(i; j)) i� VG = VH ; EG = EH ; sG =sH ; tG = tH ; distG = distH and there is some v0 2 VG withlG(v0) = i; lH(v0) = j and lG(v) = lH(v) for all v 6= v0:



624 CHAPTER 15. TRANSFORMATION UNITS AND MODULES2. If the rule of the transformation unit minimum is applied, two paralleledges are replaced by one edge labelled with the minimum distance of thereplaced edges. The control condition makes sure that this is iterated aslong as possible such that resulting graphs are simple (i.e. without paralleledges). This leads to the following characterization of the interleavingsemantics of minimum.(G;H) 2 SEM(minimum) i� VG = VH ; lG = lH ; and for allv; v0 2 VG EG(v; v0) 6= ; i� jEH(v; v0)j = 1 and distH(e0) =minfdistG(e) j e 2 EG(v; v0)g, where fe0g = EH(v; v0).83. If the rule of the transformation unit sum is applied, a new edge from anode v to a node v0 is added with the label x+ y provided that there isnot already such an edge and there are an x-labelled edge from v somenode v (with label 1) and a y-labelled edge from v to v0: Due to thecontrol condition this is iterated as long as possible. In other words, onegets the following characterization of the interleaving semantics of sum.(G;H) 2 SEM(sum) i� VG = VH ; lG = lH ; EG � EH ; sG =sH jEG ; tG = tH jEG ; distG = distH jEG ; and for all v; v0 2 VGe0 2 EH(v; v0) � EG(v; v0) with distH(e0) = c i� there arev 2 VG with lG(v) = 1; e 2 EG(v; v); e0 2 EG(v; v0) withdistG(e) + distG(e0) = c and there is no e 2 EG(v; v0) withdistG(e) = c:94. (G;H) 2 SEM(shortest-path) means according to the control conditionthat there is an interleaving sequence of the formG;G0; : : : ; G4n for somen 2 IN with G4n = H and(1) (G;G0) 2 SEM(minimum);(2i) (G4i; G4i+1) 2 SEM(change(0; 1))(3i) (G4i+1; G4i+2) 2 SEM(sum)(4i) (G4i+2; G4i+3) 2 SEM(change(1; 2))(5i) (G4i+3; G4i+4) 2 SEM(minimum) 9>>=>>; for i = 0; : : : ; n� 1:Due to 1. to 3., the set of nodes is invariant.G is an initial graph meaning that lG(v) = 0 for all v 2 VG: Usingagain the characterizations in 1. to 3., one gets lG = lG0 ; and, for i =8jEH(v; v0)j denotes the cardinality of EH(v; v0).9For a function f : A! B and a set C � A the restriction of f to C is denoted by f jC .



15.3. SHORTEST PATHS|AN EXAMPLE 6250; : : : ; n � 1; lG4i+1 = lG4i+2 ; lG4i+3 = lG4i+4 : Moreover there is a nodevi+1 2 VG4i with lG4i(vi+1) = 0; lG4i+1(vi+1) = 1; lG4i+3(vi+1) = 2 aswell as lG4i(v) = lG4i+1(v) and lG4i+2(v) = lG4i+3(v) for all v 6= vi+1:Moreover, G4n = H is a terminal graph such that lG4n(v) = 2 for allv 2 VG4n = VH = VG: Hence n is the number of nodes because a singlenode is relabeled for each i = 0; : : : ; n� 1:Let V0 = ; and Vj = fv1; : : : ; vjg for j = 1; : : : ; n: Then the followingholds for j = 0; : : : ; n; for v; v0 2 VG4j with v 6= v0 and for some c 2 IN :e0 2 EG4j (v; v0) with distG4j (e0) = c i� short(v; v0; VG � Vj) = c:The proof of this statement can be found in Subsection 15.3.7.For n = j; this statement provides a characterization of the interleavingsemantics of the transformation unit shortest-path.(G;H) 2 SEM(shortest-path) i� VG = VH ; lG(v) = 0 andlH(v) = 2 for all v 2 VG; H is simple, and, for all v; v0 2 VGwith v 6= v0 and for some c 2 IN; there is some e0 2 EH(v; v0)with distH(e0) = c i� short(v; v0; ;) = c:In other words, shortest-path computes the distances of shortest paths inG:15.3.6 ComplexityThe length of a derivation re
ects the complexity of the process to a certaindegree because its products with lower and upper bounds for the cost of adirect derivation give corresponding bounds for the derivation. The lengthof derivations can be generalized to interleaving sequences (keeping in mindthat derivations of di�erent lengths may yield the same pair of graphs in theinterleaving semantics).Let (G;H) 2 SEM(t0) for some transformation unit without import. Thenu(G;H) denotes the least upper bound of lengths of derivations from G to H(provided that the upper bound exists).Let s = G0; : : : ; Gn be an interleaving sequence in the transformationunit t and let t1; : : : ; tk be the import units of t. Let, for i = 1; : : : ; n;val(Gi�1; Gi) = u(Gi�1; Gi) if (Gi�1; Gi) 2 SEM(tji) for some ji 2 f1; : : : ; kgand val (Gi�1; Gi) = 1 otherwise. Then val(s) = nPi=1val (Gi�1; Gi) is called thevalue of s:



626 CHAPTER 15. TRANSFORMATION UNITS AND MODULESLet (G;H) 2 SEM(t): Then u(G;H) denotes the least upper bound of valuesof interleaving sequences from G to H in t (provided that the upper boundexists).Finally, let G be some initial graph of t. Then u(G); called the upper lengthbound of G; denotes the least upper bound of the u(G;H) for all graphs Hwith (G;H) 2 SEM(t) provided that such a graph and the bound exist.Now the upper length bound for the initial graphs of shortest-path is presented.Let G be such a graph, n its number of nodes and m its multiplicity, i.e. thesmallest number of edges one has to remove to transformG into a simple graph.Then u(G) is of the order max (m;n3):This can be seen as follows. Consider the interleaving sequence in 4. (there isalways one, and all have this form). Then on gets: (1) u(G;G0) = m becauseeach application of the rule of minimum decreases the multiplicity by 1.(2i) u(G4i; G4i+1) = 1 because of the control condition of change(0; 1).(3i) u(G4i+1; G4i+2) � (n�1) � (n�2) because vi+1 is the only 1-labelled nodewhich may be adjacent to any of the (n�1) �(n�2) pairs of other nodes. Hencethere may be as many occurrences for the rule of sum. But no occurrence canbe used twice because of the negative application condition.(4i) u(G4i+2; G4i+3) = 1 because of the control condition of change(1; 2).(5i) u(G4i+3; G4i+4) � (n�1)�(n�2) because the derivation in (3i) produces upto (n�1) � (n�2) new edges that may be parallel to old ones. Hence minimumtakes up to (n� 1) � (n� 2) rule applications to get rid of this multiplicity.Altogether, this amounts tou(G;H) � m+ n�1Pi=0 (1 + (n� 1)(n� 2) + 1 + (n� 1)(n� 2))= m+ 2n+ 2n(n� 1)(n� 2)for all H with (G;H) 2 SEM(shortest-path) proving the statement for u(G):The upper length bounds for shortest-path are in the order of upper boundsfor the computational costs because all involved derivations can be organizedin such a way that the cost of a direct derivation is constant. For this purpose,one needs direct access to the nodes making the steps (2i) and (4i) constantas well as to the pairs of nodes making the direct derivations in the othersteps constant. This means that the transformation unit speci�cation of Floyd'salgorithm is exactly as e�cient as the versions of the algorithm in the literature.



15.3. SHORTEST PATHS|AN EXAMPLE 62715.3.7 Completing the ProofThis subsection provides the proof of the statement of 15.3.5.4. It is done byinduction on j.For j = 0; e0 2 EG0(v; v0) means due to 2. and Subsection 15.3.4 thatwe have distG0(e0) = minfdistG(e) j e 2 EG(v; v0)g = short(v; v0; VG) =short(v; v0; VG � V0).Assume that the statement holds for some j � 0 and consider j + 1:If e0 2 EG4j+4(v; v0), then either (1) e0 2 EG4j+3(v; v0) or (2) there aree1; e2 2 EG4j+3 (v; v0) with distG4j+4(e0) = minfdistG4j+3(e1); distG4j+3(e2)g(cf. 2.). Moreover, EG4j+3 = EG4j+2 :In the �rst case, either (1.1) e0 2 EG4j+1 (v; v0) or (1.2) there are e3 2EG4j+1(v; vj+1) and e4 2 EG4j+1 (vj+1; v0) with distG4j+2(e0) = distG4j+1(e3) +distG4j+1(e4) (cf. 3.).In the second case, one of the edges say e1; belongs to G4j+1; and the otheredge is constructed by the application of the sum-rule because G4j is a simplegraph as a result of minimum, G4j+1 is simple as a relabelling of G4j and sumadds at most one edge per pair of nodes. This means e1 2 EG4j+1 (v; v0) andthere are e3 2 EG4j+1(v; vj+1) and e4 2 EG4j+1 (vj+1; v0) with distG4j+2(e2) =distG4j+1(e3) + distG4j+1(e4):Moreover, EG4j+1(v; v0) = EG4j :Therefore the induction hypothesis can be applied in all cases yielding thefollowing:(1.1) distG4j (e0) = short(v; v0; VG � Vj);(1.2) distG4j (e3) = short(v; vj+1; VG � Vj) and distG4j (e4) = short(vj+1; v0;VG � Vj);(2) distG4j (e1) = short(v; v0; VG � Vj); distG4j (e3) = short(v; vj+1; VG � Vj)and distG4j (e4) = short(vj+1; v0; VG � Vj):If EG4j (v; vj+1) = ; or EG4j (vj+1; v0) = ;; then short(v; vj+1; VG � Vj) orshort(vj+1; v0; VG� Vj) is unde�ned (otherwise there would be an edge from vto vj+1 and vj+1 to v0): Hence short(v; v0; VG�Vj+1) = short(v; v0; VG�Vj) asshown in Subsection 15.3.4. This yields together with the other parts of case(1.1):distG4j+4(e0) = distG4j (e0) = short(v; v0; VG � Vj) = short(v; v0; VG � Vj+1):This remains true even if EG4j (v; vj+1) 6= ; 6= EG4j (vj+1; v0) becausedistG4j (e0) = distG4j (e3) + distG4j (e4) for e3 2 EG4j (v; vj+1) and e4 2



628 CHAPTER 15. TRANSFORMATION UNITS AND MODULESEG4j (vj+1; v0) otherwise the sum-step (3j) would produce a new edge fromv to v0 which is either case (1.2) or (2)).In case (1.2), EG4j (v; v0) = ; because otherwise one would be faced with case(2). Using the result in Subsection 15.3.4 (together with the reasoning in (1.2)),one gets:distG4j+4(e0) = distG4j (e3) + distG4j (e4)= short(v; vj+1; VG � Vj) + short(vj+1; v0; VG � Vj);= short(v; v0; VG � Vj+1):It remains case (2) where one gets analogously:distG4j+4(e0) = minfdistG4j+3(e1); distG4j+3(e2)g= minfdistG4j (e1); distG4j (e3) + distG4j (e4)g= minfshort(v; v0; VG � Vj);short(v; vj+1; VG � Vj) + short(vj+1; v0; VG � Vj)g= short(v; v0; VG � Vj+1):Conversely, let short(v; v0; VG � Vj+1) = c: Then there is some p0 2PATH (v; v0; VG � Vj+1) with distG(p0) = c: If vj+1 62 inter(p0); then p0 2PATH (v; v0; VG� Vj) and hence short(v; v0; VG� Vj) = short(v; v0; VG �Vj+1)(cf. Subsection 15.3.4). By induction hypothesis, one gets e0 2 EG4j (v; v0) withdistG4j (e0) = c: If e0 is still in G4j+4; one is done. If e0 is not in G4j+4; then thefollowing happens: There are e1 2 EG4j+1(v; vj+1) and e2 2 EG4j+1 (vj+1; v0)with d = distG4j+1(e1) + distG4j+1(e2) 6= c such that sum in step (3j) producese4 2 EG4j+2 (v; v0) with distG4j+2(e4) = d: Therefore, e0 and e4 are replaced byminimum in step (5j) by e5 2 EG4j+4(v; v0) with distG4j+4 (e5) = minfc; dg:By induction hypothesis and the results in Subsection 15.3.4, one getsd = short(v; vj+1; VG � Vj) + short(vj+1; v0; VG � Vj)� short(v; v0; VG � Vj+1) = csuch that one is done again.It remains the case vj+1 2 inter(p0): Using the observations in Subsec-tion 15.3.4, one getsshort(v; vj+1; VG � Vj) + short(vj+1; v0; VG � Vj) = c:By induction hypothesis, there are e1 2 EG4j (v; vj+1) with d1 = distG4j (e1) =short(v; vj+1; VG � Vj) and e2 2 EG4j (vj+1; v0) with d2 = distG4j (e2) =short(vj+1; v0; VG � Vj):



15.4. TRANSFORMATION MODULES 629After step (3j), this guarantees some e3 2 EG4j+2(v; v0) with distG4j+2 (e3) =d1 + d2 = c: If e3 is still in G4j+4; one is done again. Otherwise there is e0 2EG4j (v; v0) with d = distG4j (e0) 6= c; andminimum produces e5 2 EG4j+4 (v; v0)with distG4j+4(e5) = minfc; dg in step (5j). By induction hypothesis, and theresults in Subsection 15.3.4, one getsd = short(v; v0; VG � Vj) � short(v; v0; VG � Vj+1) = csuch that one is done also in this last case.This completes the proof.15.4 Transformation ModulesIn the sample speci�cation above, the transformation unit shortest-path is theunit of interest while all the others are of an auxiliary nature. Moreover, theshortest-path algorithm may be part of a route planning system providing fur-ther graph algorithms. Clearly, a speci�cation language based on graph trans-formation should provide the means to put together several transformationunits if they belong to the same application and to distinguish between mainand auxiliary transformation units. This is accomplished by the notion of atransformation module that combines a set of transformation units. Some ofthem may be indicated as members of the export interface whereas the restis hidden. In addition, there may be an import interface consisting of formalparameter units being transformation units of which only initial and terminalgraphs are speci�ed. This allows to leave parts of a system unspeci�ed. Theymay be �lled in later by instantiation.The following notion of a module is a variant of the simple modules as proposedby Heckel et al. [17], who use a lightened form of units.15.4.1 Formal Parameter Units and ModulesA transformation unit formal is a formal parameter unit if Uf ormal = ;,Rf ormal = ;, and Cf ormal = true. While the semantic relation of formalis empty, the binary relation SEM(If ormal) � SEM(Tf ormal) describes theupper bound of any actual parameter unit actual subject to the conditionSEM(actual) � SEM(If ormal)� SEM(Tf ormal).A transformation module is a triple MOD = (IMPORT;BODY;EXPORT )where IMPORT is a set of formal parameter units, BODY is a set of trans-formation units each of which using only units from BODY and IMPORT ,



630 CHAPTER 15. TRANSFORMATION UNITS AND MODULESi.e. Ut � IMPORT [BODY for each t 2 BODY , and EXPORT is a subsetof BODY [ IMPORT .Based on the interleaving semantics of transformation units, the semanticsof a transformation module MOD = (IMPORT;BODY;EXPORT ) is eas-ily de�ned. Choosing a relation SEM(im) � SEM(Iim) � SEM(Tim) for eachim 2 IMPORT , SEM(t) for each t 2 BODY � IMPORT is the interleavingsemantics as de�ned level by level in the second section. Then SEM(MOD) isjust the restriction to the export interface, i.e. the family of relations SEM(ex)for each ex 2 EXPORT .15.4.2 Composition of ModulesIf one wants to instantiate some of the formal parameter units of a givenmodule, one can choose exported transformation units of another moduleas actual parameters. Let MOD = (IMPORT;BODY;EXPORT ) andMOD0 = (IMPORT 0;BODY 0;EXPORT 0) be two transformation modulesand a : IMPORT ! EXPORT 0 be a partial mapping assigning export unitsof MOD0 to some import units of MOD. Then a composition MOD �aMOD0can be constructed by merging IMPORT and EXPORT 0 with respect to a.In more detail, the domain of de�nition doma of a is removed from IMPORT ,BODY and EXPORT are actualized according to a, meaning that eachim 2 doma is replaced by a(im) wherever it occurs in BODY and EXPORT .Denoting the results by a(BODY ) and a(EXPORT ) resp., everything else iskept as it is. This yieldsMOD �a MOD0 = ((IMPORT � doma) [ IMPORT 0;a(BODY ) [ BODY 0;a(EXPORT )):Alternatively, one could keep the export interface EXPORT 0 in addition asexport of the composition.Obviously, the composition is again a transformation module such that onecan get rid of all formal parameter units eventually by repeated composition.15.4.3 ExampleFloyd's algorithm as speci�ed in the previous section can be represented as thetransformation module



15.4. TRANSFORMATION MODULES 631Floydimport: |body: shortest-path, minimum, sum,change(0; 1), change(1; 2)export: shortest-pathwhere the units minimum, sum, change(0; 1), and change(1; 2) are hidden andonly the shortest-path unit is exported. Nothing is imported because the �veunits are completely de�ned by themselves.As an illustration of the use of formal import parameters, consider the module2-nodes which imports the formal parameter unitrelabelinitial: node label 0terminal: node label 2and the body of which consists of the three transformation units pre, post, andA to B where the latter is exported. The unit pre adds to an arbitrary initialgraph two new nodes A and B, an edge from A to some old node and an edgefrom another old node to B. Moreover, the new edges get the distances 0 andall nodes are labelled with 0. The unit post removes all nodes except A and Band all edges except those connecting A and B. The explicit speci�cations ofpre and post are omitted. Finally, the unit A to B is given byA to Buses: pre, relabel, postconds: pre ; relabel ; postThe module 2-nodes may be seen as a kind of query concerning two nodesof a graph depending on the actual choice for relabel. Let SEM(relabel ) besome relation between graphs with 0-labeled nodes and graphs with 2-labelednodes. Then the semantic relation of A to B, which is also the semantics of themodule takes an arbitrary graph, distinguishes two nodes through the call ofpre, applies SEM(relabel ) and restricts the result to the distiguished nodes (asfar as they are still present). If one chooses particularly SEM(shortest-path),one gets the distance of the shortest path between the two distinguished nodes.Clearly, other actual parameters yield other answers.



632 CHAPTER 15. TRANSFORMATION UNITS AND MODULESThe instantiation of relabel by shortest-path can be done explicitly by compo-sition 2-nodes �Floydimport: |body: pre, post, A to B, shortest-path,minimum, sum, change(0; 1), change(1; 2)export: A to Bwhere the actualized form of A to B isA to Buses: pre, shortest-path, postconds: pre ; shortest-path ; postAll other units are not a�ected by the instantiation. The actualization mappingis omitted because relabel is the only formal parameter and shortest-path theonly exported unit that can be assigned. ut15.5 ConclusionIn this chapter, we have introduced and illustrated the syntactic and semanticfeatures of transformation units and transformation modules as structuringconcepts for graph transformation systems. We have restricted ourselves tothe case of acyclic use relations. The more complicated case of networks oftransformation units which may use each other arbitrarily is studied in Kre-owski, Kuske, and Sch�urr [22]. In this case, the semantic relations of the unitsin the network are aggregated by iterated interleaving semantics and yield a�xed point semantics under suitable assumptions on the control conditions.Moreover, the reader can �nd an investigation of operations on transformationunits and corresponding operations on semantic relations in [21].Transformation units and modules are the main structuring concepts of therule and graph centered speci�cation language Grace (see [1,32,21]) whichis not based on a particular graph transformation approach as other graphtransformation languages. Grace is planned as a visual language with agraphical interface that supports the visualized edition of graphs and rulesand the animated execution of interleaving sequences. Moreover, Grace
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