
Graph-Transformation Based Support for Model
Evolution

Tom Mens1

Software Engineering Lab, Université de Mons-Hainaut
Av. du champ de Mars 6, 7000 Mons, Belgium

tom.mens@umh.ac.be

Abstract. During model-driven software development, we are inevitably con-
fronted with design models that contain a wide variety of design defects. Inter-
active tool support for improving the model quality by resolving these defects
in an automated way is therefore indispensable. In this paper, we report on the
development of such a tool, based on the underlying formalism of graph trans-
formation. Due to the fact that the tool is developed as a front-end of the AGG
Engine, a general purpose graph transformation engine, it can exploit some of its
interesting built-in mechanisms such as critical pair analyis and the ability to rea-
son about sequential dependencies. We explore how this can help to improve the
process of quality improvement, and we compare our work with related research.

Copyright notice This document is for educational use only. it is meant to serve as read-
ing material for the SegraVis Advanced School on Visual Modelling Techniques. The
document is based on a co-authored paper that has been submitted for publication else-
where. The main difference is that the current versions contains many annotations.

About this document At the end of each section, optional exercises are added to enable
the reader to gain a deeper understanding of the underlying mechanisms. For some of
the exercises, the AGG GUI will need to be used. It can be downloaded from the website
http://tfs.cs.tu-berlin.de/agg/. Other exercices may require the use of the SIRP tool that
is reported on in this paper. It can be downloaded from the SegraVis school website.
Additional reading material related to this paper can be found in [1–3].

1 Introduction

During development and evolution of design models it is often desirable to tolerate
inconsistencies in design models. Indeed, such inconsistencies are inevitable for many
reasons: (i) in a distributed and collaborative development setting, different models may
be developed in parallel by different persons; (ii) the interdependencies between mod-
els may be poorly understood; (iii) the requirements may be unclear or ambiguous at
an early design stage; (iv) the models may be incomplete because some essential infor-
mation may be deliberately left out, in order to avoid premature design decisions; (v)
the models are continuously subject to evolution; (vi) the semantics of the modeling
language itself may be poorly specified.



2 Tom Mens

All of these reasons hold in the case of UML, the de-facto general-purpose mod-
elling language [4]. Therefore, current UML modeling tools should provide better sup-
port for resolving these inconsistencies in an automated way. Other types of design
defects may also affect the quality of a model. Therefore, we suggest an automated
approach to detect and resolve, among others, the following types of defects:

– nonconformance to standards (both industry-wide and company-specific standards);
– breaches of conventions (e.g., naming conventions);
– incomplete models, that are only partially specified and still have missing items [5];
– syntactic inconsistencies, i.e., models that do not respect the syntax of the modeling

language;
– semantic inconsistencies, i.e., models that are not well-formed with respect to the

semantics of the modeling language1;
– design smells (in analogy with “bad smells”) that indicate opportunities for per-

forming a model refactoring;
– redundancies (e.g., double occurrences of a model element with the same name);
– visual problems (e.g., overlapping model elements in a diagram);
– bad practices;
– antipatterns, i.e., misuses or violations of design patterns

In addition, these problems may either be localised in a single UML diagram, or may
be caused by mismatches between different UML diagrams.

The goal is therefore to provide a general framework and associated tool support
to detect and resolve such design defects. In this paper, we suggest a transformation-
based approach to do this. More in particular, we propose to use graph transformation
technology. We report on an experiment that we have carried out and a tool that we have
developed to achieve this goal, and we discuss how our approach may be integrated into
comtemporary modeling tools.

Exercise For each type of defect mentioned above, try to find concrete examples in the
context of UML. Do this for various types of UML diagrams. Discuss your results with
your fellow students.

Exercise Do you think there are other types of defects that do not fit into the list above?
If yes, explain why and give a concrete example.

2 Suggested approach

In Figure 1 we explain the iterative process of gradually improving the quality of a
design model in an iterative way. First, defects in the model are identified. As explained
above, these defects can be of diverse nature. Next, resolutions are proposed, selected
and applied. The user may also wish to ignore or disable certain types of defects or
resolutions. This process continues until all problems are resolved or until the user is
satisfied.

1 In UML this is a common problem due to the lack of a formal semantics combined with the
fact that some parts of the semantics are deliberately left open, which makes the models subject
to interpretation.



Graph-Transformation Based Support for Model Evolution 3

Fig. 1. UML activity diagram showing the interactive process for detecting and resolving design
defects in a model.

When trying to develop tool support for this process, it is important to decide how
the design defects and their resolutions should be specified. We opted for a formal
specification, because this gives us an important added value: it allows us to analyse and
detect mutual conflicts and sequential dependencies between resolution rules, which can
be exploited to optimise the resolution process.

The particular formalism that we have chosen is the theory of graph transformation
[6, 7]. The main idea that will enable us to perform conflict and dependency analysis is
the application of theoretical results about critical pairs [8], which allow us to reason
about parallel and sequential dependencies between rules.

Exercise Extend the activity diagram of Figure 1 to take into account the following activ-
ities:

– Undoing a resolution after it has been applied;
– Ignoring certain detected design defects, such that no resolution will be proposed

for them;
– Disabling certain proposals for resolution that the user considers to be inappropriate;
– Optionally modify the model manually after a resolution step (in order to perform

manual changes that are required but that have not been taken into account by the
resolution rule.

3 Graph transformation

To perform detection and resolution of model defects, the tool relies entirely on the
underlying formalism of graph transformation.

The UML metamodel is represented by a so-called type graph. A simplified version
of the metamodel, showing a subset of UML 2.0 class diagrams, statemachine diagrams
and sequence diagrams, is given in Figure 2. The notion of design defect is incorporated



4 Tom Mens

explicitly in this type graph by the node type Conflict, which is used to identify
model defects.

Fig. 2. Simplified metamodel for UML class diagrams, state machine diagrams, expressed as a
type graph with edge multiplicities in AGG. In addition, a node type Conflict is introduced to
represent model defects.

Every UML model will be represented internally as a graph that satisfies the con-
straints imposed by the aforementioned type graph. Figure 3 shows a simple example
of a UML class diagram, represented as a graph model. More precisely, it corresponds
to a directed, typed, attributed graph. These graph representations can be generated au-
tomatically from the corresponding UML model without any loss of information. 2

Detection of design defects will be achieved by means of graph transformation rules.
For each particular defect, a graph transformation rule will be specified that detects the
defect. This is realised by searching for the occurrence of certain graph structures in
the model, as well as the absence of certain forbidden structures (so-called negative
application conditions or NACs).

A simple example of a detection rule is given in Figure 4. It detects the so-called
Dangling Type Reference defect. This occurs when an Operation contains Parameters
whose type has not (yet) been specified. The specification of this rule as a graph trans-
formation is composed of three parts. The middle pane represents the left-hand side
(LHS) of the rule, which is basically the occurrence of some Operation having a
Parameter. The leftmost pane represents a negative application condition (NAC),
expressing the fact that the Parameter of interest does not have an associated type.
Finally, the rightmost pane represents the right-hand side (RHS) of the rule, showing
the result after the transformation. In this case, the only modification is the introduction
of a Conflict node that is linked to the Parameter to show that there is a potential
design defect.

2 An experiment along these lines has been carried out by Laurent Scolas as a student project.



Graph-Transformation Based Support for Model Evolution 5

Fig. 3. Simplified UML class diagram model represented as a directed, typed, attributed graph in
AGG.

Fig. 4. Graph transformation representing the detection of a design defect of type Dangling Type
Reference.

Given a source model, we can apply all detection rules in sequence to detect all
possible design defects. By construction, the detection rules are parallel independent,
i.e., the application of a detection rule has no unexpected side effects on other detection
rules. This is because the only thing a detection rule does is introducing in the RHS a
new node of type Conflict and a new edge of type hasConflict pointing to this
node. Morever, the LHS and NAC of a detection rule never contain any Conflict
nodes and hasConflict edges.

If we apply all detection rules (only one of these has been shown in Figure 4) to
the graph of Figure 3, this graph will be annotated with nodes of type Conflict,
as shown in Figure 5, to represent all detected design defects. The type of defect is
indicated in the description attribute of each Conflict node. Observe that the
same type of conflict may occur more than once at different locations, and that the same
model element may be annotated by different types of conflicts.

Graph transformations will also be used to resolve previously detected design de-
fects. For each type of design defect, several resolution rules can be specified. Each
resolution rule has the same general form. On the left-hand side, we always find a
Conflict node that indicates the particular inconsistency that needs to be resolved.
On the right-hand side, this Conflict node will no longer be present because the rule
removes the design defect.

Figure 6 proposes three resolution rules for the Dangling Type Reference defect
mentioned previously. The first one removes the problematic parameter, the second one



6 Tom Mens

Fig. 5. Same UML class diagram model as in Figure 3, but annotated with all detected design
defects.

uses an existing class as type of the parameter, and the third one introduces a new class
as type of the parameter.

Exercise Compare the UML 2.0 metamodel for class diagrams, statemachines and se-
quence diagrams with the type graph of Figure 2. Discuss the differences. Try to extend
the type graph to make it more complete and more precise. Are there certain things in
the UML metamodel that cannot be expressed in the type graph? Why?

Exercise Take a given UML class diagram, statemachine and sequence diagram, and
represent it as a graph (such as the one in Figure 3) conforming to the type graph of
Figure 2.

Exercise Specify graph transformation rules in AGG to detect different types of design
defects (cf. Figure 4 for the Dangling Type Reference defect). Verify in AGG whether the
rule does what it is supposed to do.

Exercise Propose one or more resolution rules for the deign defects for which you have
specified a rule in the previous exercise (cf. Figure 6 for the Dangling Type Reference
resolution rules). Verify with AGG whether these resolution rules do what they are sup-
posed to do.

4 Tool support

The tool that we have selected to perform our experiments is AGG3 (version 1.4), a
state-of-the-art general purpose graph transformation tool [9]. We rely on the AGG
engine as a back-end, and we have developed a dedicated user interface on top of it to

3 See http://tfs.cs.tu-berlin.de/agg/



Graph-Transformation Based Support for Model Evolution 7

Fig. 6. Three graph transformations specifying alternative resolution rules for the Dangling Type
Reference defect.

enable the user to interactively detect and resolve design defects [10]. This tool is called
SIRP, for Simple Interactive Resolution Process. As will explained in more detail in the
discussion section, SIRP has not (yet) been integrated into a UML modeling tool for
various reasons.

Figure 7 shows a screenshot of the SIRP tool in action. It displays the detected
design defects of Figure 3 as well as the resolution rules proposed to resolve these
defects. In the screenshot, we see three resolution rules that can be selected to resolve
the occurrence of the Dangling Type Reference defect. After selecting one of these rules,
we can apply the chosen resolution, after which the model will be updated and the list
of remaining design defects will be recomputed.

According to the resolution process of Figure 1, each resolution step is followed by
a redetection phase. Currently, during redetection, we follow a brute-force approach,
and detect all design defects again from scratch. A more optimal approach would be
to come to an incremental redetection algorithm, thereby remembering those design
defects that have already been identified in a previous phase. However, when doing
this, we need to deal with a number of situations that may occur due to side effects that
may impact existing model defects:

– Orphan defects arise when certain model elements have been removed as a result
of resolving a certain design defect. In that case, some Conflict nodes may



8 Tom Mens

Fig. 7. Screenshot of the SIRP tool in action. Several defects have been resolved already, as shown
in the resolution history. Resolution rules are proposed for each remaining defect with a certain
popularity (based on whether the rule has already been applied before by the user). Selected rules
can be applied to resolve the selected defect.



Graph-Transformation Based Support for Model Evolution 9

remain in the graph without any model element to which they refer (because the
model element has been removed).

– Expired defects arise if the resolution of a certain design defect also resolves other
design defects as a side-effect. If this is the case, there will be a Conflict node
that points to some model element, even though the defect has already been re-
solved.

To address these two problems, we need to provide so-called cleanup rules, that
remove all Conflict nodes that are no longer necessary. Such cleanup rules can be
generated automatically from the detection and resolution rules.

Exercise Give an example of a concrete situation of a resolution rule that gives rise to
an orphan defect.

Exercise Give an example of a concrete situation of a resolution rule that gives rise to
an expired defect.

Exercise What would a cleanup rule look like? Try to specify it as a graph transformation
rule in AGG.

Exercise Use the SIRP tool to verify whether the detection and resolution rules that you
have specified in previous exercises actually behave as they should.

Exercise Suggest ways in which the SIRP tool could be improved.

5 Graph transformation dependency analysis

There are also other types of problems that may inevitably occur during the detection
and resolution process, due to the inherently incremental and iterative nature of the
conflict resolution process.

Induced defects may appear when the resolution of a certain design defect intro-
duces other design defects as a side effect. An example is given in Figure 8. Suppose that
we have a model that contains a defect of type Abstract Object, i.e., an instance specifi-
cation (an object) that refers to an abstract class (labelled 1 in Figure 8). The resolution
rule AbstractObject-Res1 resolves the defect by setting the attribute isAbstract of
class 1 to false. As a result of this resolution, the design defect called Abstract Oper-
ation suddenly becomes applicable. This is the case if class 1, which now has become
concrete, contains one or more abstract operations.

Conflicting resolutions may appear when there are multiple design defects in a
model, each having their own set of applicable resolution rules. It may be the case that
applying a resolution rule for one design defect, may invalidate another resolution rule
for another design defect. As an example, consider Figure 9. The left pane depicts a situ-
ation where two defects occur, of type Abstract Object and Abstract Operation respec-
tively, but attached to different model elements. The resolution rules AbstractObject-
Res1 and AbstractOperation-Res4 for these defects (shown on the right of Figure 9)
are conflicting, since the first resolution rule sets the attribute isAbstract of class 1
to false, whereas the second resolution rule requires as a precondition that its value
should be true.



10 Tom Mens

Fig. 8. Induced defects: Example of a sequential (causal) dependency of detection rule Abstrac-
tOperation on resolution rule AbstractObject-Res1.

Fig. 9. Conflicting resolutions: Example of a critical pair illustrating a mutual exclusion between
resolution rules AbstractObject-Res1 and AbstractOperation-Res4.



Graph-Transformation Based Support for Model Evolution 11

To identify and analyse the two situations explained above in an automated way, we
need to make use of the mechanism of critical pair analysis of graph transformation
rules [8, 11]. The goal of critical pair analysis is to compute all potential mutual exclu-
sions and sequential dependencies for a given set of transformation rules by pairwise
comparison. Such analysis is directly supported by the AGG engine, so it can readily be
used in our approach.

The problem of induced defects is a typical situation of a sequential dependency: a
detection rule causally depends on a previously applied resolution rule. Figure 10 shows
an example of a dependency graph that has been generated by AGG. Given a selection
of design defects, it shows all induced defects, i.e., all detection rules that sequentially
depend on a resolution rule. This information is quite important in an incremental res-
olution process, as it informs us, for a given resolution rule, which types of defects will
need to be redetected afterwards.

Fig. 10. Dependency graph generated by AGG showing all induced defects, i.e., all defect detec-
tion rules that sequentially depend on a resolution rule.

The problem of conflicting resolutions is a typical situation of a parallel conflict:
two rules that can be applied in parallel cannot be applied one after the other (i.e.,
they are mutually exclusive) because application of the first rule prevents subsequent
application of the second one. Figure 11 shows an example of a conflict graph that
shows all possible conflicting resolutions (for a given selection of design defects).
Except for some layout issues, this graph has been automatically generated by AGG’s
critical pair analysis algorithm. Again, the information reported in the graph is quite
important during an internative resolution process, as it informs the user about which
resolution rules are mutually exclusive and, hence, cannot be applied together.



12 Tom Mens

Fig. 11. Conflict graph generated by AGG showing all conflicting resolutions, i.e., mutual exclu-
sions between resolution rules for distinct design defects. In order not to clutter the figure, mutual
exclusions between different resolution rules of the same defect have been omitted.

Exercise Find other examples of induced defects, and check whether AGG’s critical pair
analysis algorithm (which can be found via AGG’s ”Analyzer” menu) actually detects this
situation as a sequential dependency.

Exercise Find other examples of conflicting situations, and check whether AGG’s critical
pair analysis algorithm actually detects this situation as a parallel conflict.

Exercise Use AGG’s critical pair analysis to compute a graph similar to the one of Fig-
ure 10 for the defect detection and resolution rules that you have specified in previous
exercices. To reduce computing time, do this in two steps. First, disable all detection
rules except for the ones that you would like to analyse, and then compute all sequential
dependencies of these detection rules on all resolution rules. Second, disable all resolu-
tion rules, except for the ones you would like to analyse, and then compute all sequential
dependencies of any detection rule on these resolution rules.

6 Cycle detection and analysis

As illustrated in Figure 12, starting from the dependency graph, we can also compute
possible cycles in the conflict resolution process. This may give important information
to the user (or to an automated tool) to avoid repeatedly applying a certain combination
of resolution rules over and over again. Clearly, such cycles should be avoided, in order
to optimise the resolution process (e.g., by preventing cycles to occur).

As an example of such cycle, consider Figure 12, which represents a carefully se-
lected subset of sequential dependencies that have been computed by AGG.4 In this
figure, we observe the presence of multiple cycles of various lengths, all of them in-
volving the Abstract Operation defect.

Let us start by analysing the cycles of length 4, that correspond to two successive
detection and resolution steps that give rise to a cycle. The cycle corresponding to re-

4 To interpret the dependency graph, the blue lines could be read as “enables” or “triggers”.



Graph-Transformation Based Support for Model Evolution 13

Fig. 12. Some examples of detected cycles in the sequential dependency graph.

gion 1 shows that we can repeatedly apply resolution rules AbstractStateMachine-Res3
and AbstractOperation-Res3 ad infinitum. This is the case because the two resolution
rules are each others inverse. Therefore, after applying one of both rules, the interactive
resolution tool should not propose the other rule because it would undo the effect of the
first one.The cycle corresponding to region 4 is similar to the previous one, except that
it occurs between resolution rules AbstractObject-Res1 and AbstractOperation-Res3.

There is also a cycle of length 6, corresponding to an succession of three detection
and resolution rules. The cycle is described by the boundaries of the region composed
by 1 and 2, and occurs when we apply resolution rules AbstractStateMachine-Res2,
DanglingOperationRef-Res1 and AbstractOperation-Res3 in sequence.

A cycle of length 8 is described by the boundaries of the region composed of 1, 2 and
4, and corresponds to a succession of 4 resolution rules, namely AbstractStateMachine-
Res2, DanglingOperationRef-Res1, AbstractObject-Res1 and AbstractOperation-Res3.

Because the sequential dependency graph can be very large, manual detection of cy-
cles is unfeasible in practice. Therefore, we have used a small yet intuitive user interface
for detecting all possible cycles in a flexible and interactive way, based on the output
generated by AGG’s critical pair analysis algorithm. This program has been developed
by Stéphane Goffinet in the course of a student project.

Exercise Find out whether the detection and resolution rules that you have added give
rise to any cycles, and analyse these cycles.

7 Discussion and Future Research

Currently, our approach has not yet been integrated into a modeling tool. The reason is
that there are many mechanisms for doing this, and we haven’t decided yet on which
alternative is the most appropriate. The most obvious solution would be to directly inte-
grate the proposed process into an existing UML modeling tool. ArgoUML5 seems the

5 http://argouml.tigris.org/



14 Tom Mens

most obvious candidate for doing this because it is open source and already provides
support for design critics. It is not clear, however, how this can be combined easily with
critical pair analysis since this requires an underlying representation based on graph
transformation. Therefore, another more feasible approach could be to develop a mod-
eling tool directly based on graph transformation as an underlying representation. Sev-
eral such tools have already been proposed (e.g. VIATRA, GReAT, Fujaba), but none
of those currently provides support for critical pair analysis. Another alternative could
therefore be to build a modeling environment on top of the AGG engine. To achieve
this, one may rely on the Tiger project, an initiative to generate editors of visual models
using the underlying graph transformation engine [12].

The fact that the resolution of one model defect may introduce other defects is a
clear sign of the fact that defect resolution is a truly iterative and interactive process.
One of the challenges is to find out whether the resolution process will ever terminate.
It is easy to find situations that never terminate (cf. the presence of cycles in the depen-
dency graph). Therefore, the challenge is to find out under which criteria a given set of
resolution rules (for a given set of design defects and a given start graph) will terminate.
Recent work that explores such termination criteria for model transformation based on
the graph transformation formalism has been presented in [13].

Another challenge is to try and come up with an optimal order of resolution rules.
For example, one strategy could be to follow a so-called “opportunistic resolution pro-
cess”, by always following the choice that corresponds to the least cognitive effort (i.e.,
the cognitive distance between the model before and after resolution should be as small
as possible). How to translate this into more formal terms remains an open question. A
second heuristic could be to avoid as much as possible resolution rules that give rise to
induced defects (i.e., resolutions that inadvertently introduce other defects). Yet another
strategy could be to prefer resolution rules that give rise to expired defects (since these
are rules that resolve more than one inconsistency at once).

Another important question pertains to the completeness of results. How can we
ensure that the tool detects all possible defects, that it proposes all possible resolution
rules, and that all conflicting resolutions and sequential dependencies are correctly re-
ported? How can we avoid false positives reported by the tool?

A related question concerns minimality. Is it possible to detect and avoid redundancy
between detection rules and between resolution rules? Is it possible to come up with a
minimal set of resolution rules that still cover all cases for a given set of detection rules?

A limitation of the current approach that we are well aware of, is the fact that not
all kinds of model inconsistencies and resolution rules can be expressed easily as graph
transformation rules. For example, behavioural inconsistencies are also difficult to ex-
press in a graph-based way. Because of this, our tool has been developed in an extensible
way, to make it easier to plug-in alternative mechanisms for detecting defects, such as
those based on the formalism of description logics [14, 15]. Of course, it remains to be
seen how this formalism can be combined with the formalism of graph transformation,
so that we can still benefit from the technique of critical pair analysis.

Exercise If you have experience with a modeling tool or a graph transformation tool, dis-
cuss how the approach presented in this paper may be integrated into (or reimplemented
in) that particular tool.



Graph-Transformation Based Support for Model Evolution 15

Exercise Do you see any other suggestions for improvement or future research? If yes,
discuss them.

8 Related Work

Critiquing systems originate in research on artificial intelligence, and more in particular
knowledge-based systems and expert systems. Rather than giving a detailed account of
such systems, let us take a look at one particular attempt to incorporate these ideas into a
modeling tool, with the explicit aim to critic and improve design models [16, 17]. In this
view, “a design critic is an intelligent user interface mechanism embedded in a design
tool that analyses a design in the context of decision-making and provides feedback to
help the designer improve the design. Support for design critics has been integrated into
the ArgoUML modeling tool. It is an automated and unobtrusive user interface feature
that checks in the background for potential design anomalies. The user can chose to
ignore or correct these anomalies at any time. Most critiquing systems follow the so-
called ADAIR process which is sequentially composed of five phases: Activate, Detect,
Advice, Improve and Record. Without going into details, our approach roughly follows
the same process.

Another approach that is very related to ours is reported in [18]. A rule-based ap-
proach is proposed to detect and resolve inconsistencies in UML models, using the Java
Rule Engine JESS. In contrast to our approach, where the rules are graph-based, the
specification of their rules is logic-based. However, because the architecture of their
tool provides a Rule Engine Abstraction Layer, it should in principle be possible to
replace their rule engine by a graph-based one. Other logic-based approaches to incon-
sistency management and resolution have been proposed in [15, 19].

The main novelty of our approach compared to the previously mentioned ones, is the
use of the mechanism of critical pair analysis to detect mutual inconsistencies between
rules that can be applied in parallel, as well as sequential dependency analysis between
resolution rules.

There have been several attempts to use graph transformation in the context of in-
consistency management. In [20], distributed graph transformation is used to deal with
inconsistencies in requirements engineering. In [21], graph transformations are used to
specify inconsistency detection rules. In [22] repair actions are also specified as graph
transformation rules. Again, the added value of our approach is the ability to analyse
conflicts and dependencies between detection and resolution rules.

The technique of critical pair analysis of graph transformations has also been used
in other, related, domains. [23] used it to detect conflicting functional requirements in
UML models composed of use case diagrams, activity diagrams and collaboration di-
agrams. [3] used it to detect conflicts and dependencies between software refactorings.
[24] used it to improve parsing of visual languages.

An important aspect of research on model quality that is still underrepresented in
literature is empirical research and case studies on the types of defects that commonly
occur in industrial practice and how these can be resolved [5, 25, 26].

Exercise Is there other relevant related work that has not been explained above? If yes,
discuss it.



16 Tom Mens

9 Conclusion

In this article we addressed the problem of model quality improvement. The quality of a
model can be improved in an iterative way by looking for design defects, and by propos-
ing resolution rules to remove these defects. Interactive tool support for this process can
benefit from a formal foundation. This article proposed a tool based on the underlying
formalism of graph transformation. Given a formal specification of the UML model as
a graph (and the metamodel as a type graph), design defects and their resolutions were
specified as graph transformation rules. Furthermore, critical pair analysis was used
to identify and analyse unexpected interactions between resolution rules, new defects
that are introduced after resolving existing defects, and cycles in the resolution process.
Futher work is needed to integrate this tool ino a modeling environment.

Exercise Try to reformulate the conclusion based on what you think is the main contri-
bution and interest of this work.

References

1. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model inconsistencies
using transformation dependency analysis. In Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G., eds.: Proceedings MoDELS/UML 2006. Volume 4199 of Lecture Notes in Computer
Science., Springer-Verlag (2006) 200–0214

2. Mens, T.: On the use of graph transformations for model refactoring. In Ralf Lämmel,
Joao Saraiva, J.V., ed.: Generative and transformational techniques in software engineering.
Volume 4143 of Lecture Notes in Computer Science., Springer (2006) 215–254

3. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph trans-
formation. Software and Systems Modeling (2006) To appear.

4. Object Management Group: Unified Modeling Language 2.0 Superstructure Specification.
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf (2005)

5. Lange, C.F., Chaudron, M.R.: An empirical assessment of completeness in uml designs. In:
Proc. Int’l Conf. Empirical Assessment in Software Engineering. (2004) 111–121

6. Rozenberg, G., ed.: Handbook of graph grammars and computing by graph transformation:
Foundations. Volume 1. World Scientific (1997)

7. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of graph grammars and
computing by graph transformation: Applications, Languages and Tools. Volume 2. World
Scientific (1999)

8. Plump, D.: Hypergraph rewriting: Critical pairs and undecidability of confluence. In: Term
Graph Rewriting. Wiley (1993) 201–214

9. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of
software. In: Proc. AGTIVE 2003. Volume 3062 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 446–453

10. Warny, J.F.: Détection et résolution des incohérences des modèles uml avec un outil de
transformation de graphes. Master’s thesis, Université de Mons-Hainaut, Belgium (2006)

11. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph trans-
formation. In: Proc. Int’l Conf. Graph Transformation. Volume 3256 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 161–177

12. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as eclipse plug-
ins. In: Proc. Int’l Conf. Automated Software Engineering, ACM Press (2005) 134–143



Graph-Transformation Based Support for Model Evolution 17

13. Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termination
criteria for model transformation. In: Proc. Fundamental Aspects of Software Enginering
(FASE). Volume 3442 of Lecture Notes in Computer Science., Springer-Verlag (2005) 49–
63

14. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logics to main-
tain consistency between UML models. In: UML 2003 - The Unified Modeling Language.
Volume 2863 of Lecture Notes in Computer Science., Springer-Verlag (2003) 326–340

15. Van Der Straeten, R.: Inconsistency Management in Model-driven Engineering. An Ap-
proach using Description Logics. PhD thesis, Department of Computer Science, Vrije Uni-
versiteit Brussel, Belgium (2005)

16. Robbins, J.E., Redmiles, D.F.: Software architecture critics in the argo design environment.
Knowledge-Based Systems 11 (1998) 47–60

17. Robbins, J.E.: Design Critiquing Systems. PhD thesis, University of California, Irvine (1999)
Technical Report UCI-98-41.

18. Liu, W., Easterbrook, S., Mylopoulos, J.: Rule-based detection of inconsistency in UML
models. In: Proc. UML 2002 Workshop on Consistency Problems in UML-based Software
Development, Blekinge Insitute of Technology (2002) 106–123

19. Straeten, R.V.D., D’Hondt, M.: Model refactorings through rule-based inconsistency resolu-
tion. In: Proc. Symposium on Applied computing (SAC), ACM Press (2006) 1210–1217

20. Goedicke, M., Meyer, T., , Taentzer, G.: Viewpoint-oriented software development by dis-
tributed graph transformation: Towards a basis for living with inconsistencies. In: Proc.
Requirements Engineering 1999, IEEE Computer Society (1999) 92–99

21. Ehrig, H., Tsioalikis, A.: Consistency analysis of UML class and sequence diagrams using
attributed graph grammars. In: ETAPS 2000 workshop on graph transformation systems.
(2000) 77–86

22. Hausmann, J.H., Heckel, R., Sauer, S.: Extended model relations with graphical consis-
tency conditions. In: Proc. UML 2002 Workshop on Consistency Problems in UML-Based
Software Development. (2002) 61–74

23. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements
in a use case-driven approach. In: Proc. Int’l Conf. Software Engineering, ACM Press (2002)

24. Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual languages based on critical
pair analysis and contextual layered graph transformation. In: Proc. IEEE Symp. Visual
Languages. (2000)

25. Lange, C., Chaudron, M., Muskens, J.: In practice: Uml software architecture and design
description. IEEE Software 23 (2006) 40–46

26. Lange, C.F., Chaudron, M.R.: Effects of defects in uml models – an experimental investiga-
tion. In: Proc. Int’l Conf. Software Engineering (ICSE), ACM Press (2006) 401–410


