
The GROOVE Simulator:

A Tool for State Space Generation

Arend Rensink

University of Twente
P.O.Box 217, 7500 AE Enschede, The Netherlands

rensink@cs.utwente.nl

1 Introduction

The tool described here is the first part of a tool set called GROOVE (GRaph-
based Object-Oriented VErification) for software model checking of object-
oriented systems. The special feature of GROOVE, which sets it apart from
other model checking approaches, is that it is based on graph transformations.
It uses graphs to represent state snapshots; transitions arise from the applica-
tion of graph production rules. This yields so-called Graph Transition Systems
(GTS’s) as computational models.

The simulator does a small part of the job of a model checker: it attempts
to generate the full state space of a given graph grammar. This entails recur-
sively computing and applying all enabled graph production rules at each state.
Each newly generated state is compared to all known states up to isomorphism;
matching states are merged, in the way proposed in [4]. No provisions are cur-
rently made for detecting or modelling infinite state spaces. Alternatively, one
may choose to simulate productions manually.

This paper describes two examples: Sect. 2 shows the behaviour of a circular
buffer and Sect. 3 the concurrent invocation of a list append method. In both
cases the behaviour is defined by a graph grammar, but to provide some intuition,
Fig. 1 approximately describes the behaviour, using Java code. We conclude
in Sect. 4 with a summary of tool design, implementation and planned future
extensions.

2 Circular Buffer Operations

We assume the principles of circular buffers to be known. Their representation
as graphs is relatively straightforward (see also Fig. 1). The buffer has a set of
cells connected by next-edges. One of the cells is designated first and one last.
Insertion will occur at last (provided this cell is empty) and retrieval at first

(provided this is filled). A value contained in a cell is modelled by a val-labelled
edge to an unlabelled node. The cell is empty if and only if there is no outgoing
val-edge. (In the Java code of Fig. 1 this corresponds to a null value of the val

attribute.)

J.L. Pfaltz, M. Nagl, and B. Böhlen (Eds.): AGTIVE 2003, LNCS 3062, pp. 479–485, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



480 Arend Rensink

public class Buffer {

private class Cell {

Cell next; Object val;

}

private Cell first, last;

// Precondition: last.val == null

// Executed atomically

public void put(Object val) {

last.val = val;

last = last.next;

}

// Precondition: first.val != null

// Executed atomically

public Object get() {

Object result = first.val;

first.val = null;

first = first.next;

return result;

}

}

class Node {

private Node next;

private int val;

public void append(int x) {

if (this.val == x) {

// Rule "stop"

return;

} else if (this.next == null) {

// Rule "append"

Node aux = new Node();

aux.val = x;

this.next = aux;

return;

} else {

// Rule "next"

this.next.append(x);

// Rule "return"

return;

}

}

}

Fig. 1. Approximate Java descriptions of the examples

Fig. 2 shows the simulator tool after loading the relevant graph grammar.
The GUI of the simulator has two panels: a directory of the available rules
with their matches in the current graph, and the current graph itself — in this
case the initial graph, modelling a three-cell empty circular buffer. The latter
panel can also display the currently selected rule and the resulting GTS (insofar
generated), instead of the current graph. The example grammar has two rules:
get for the retrieval of an element from the buffer and put for insertion. As usual,
each rule prescribes when it applies to a given graph and what the effect of its
application is. There are four types of nodes and edges:

– Thin black solid nodes and edges, which we call readers : they are required
to be in a graph in order for the rule to apply, and are unaffected by rule
application;

– Thin blue double-bordered nodes and dashed edges, which we call erasers :
they are required in order for the rule to apply, and are deleted by rule
application;

– Fat green solid nodes and edges, which we call creators : they are not required
to be in the graph, and are created by rule application.

– Fat red double-bordered nodes and dashed edges, which we call embargoes :
they are forbidden to occur in a graph in order for the rule to apply.

More precisely, a rule application is based on a matching, which is a mapping of
the readers and erasers of the rule to corresponding elements of the graph that
cannot be extended with any of the embargoes. For instance, as Fig. 2 shows,



The GROOVE Simulator: A Tool for State Space Generation 481

Fig. 2. Rules and initial graph of the circular buffer example

Fig. 3. Application of the put rule to the initial graph

put has a single match in the initial graph whereas get has none. The applica-
tion deletes the elements matching the erasers and adds elements matching the
creators. Fig. 3 shows how one may select and apply a matching in the simulator
(the graph is fat where the matching applies). Besides “walking through” the
rule applications in this fashion, the simulator tool also can (attempt to) recur-
sively compute all possible applications. This gives rise to a GTS, with the set of
all graphs generated by the grammar as states, connected by rule applications.
Although the GTS is generally infinite, there are many cases in which it is not
— in fact, for grammars that model computing systems, an infinite state space
is arguably an error indication. For the circular buffer, the state space is quite
small, consisting a single state for each possible number of filled cells: see Fig. 4.



482 Arend Rensink

Fig. 4. Graph transition system of the circular buffer example

Fig. 5. Rules and initial graph of the concurrent append example

3 Concurrent Appending

The second example is a list append method. In this case we do not assume the
method to be atomic; instead we model it as a recursive invocation. The exam-
ple shows many features typical for the dynamics of object-oriented programs.
Running methods are modelled by nodes, with local variables as outgoing edges,
including a this-labelled edge pointing to the object executing the method.
Each (recursive) method invocation results in a fresh node, with a caller edge
to the invoking method. Upon return, the method node is deleted, while cre-
ating a return edge from its caller to a return value — in this example always
void. It follows that the traditional call stack is replaced by a chain of method
nodes. The top of the stack is identified by a control label or an outgoing return

edge. The particular method in this example only appends a value that is not
already in the list, as suggested by the code in Fig. 1. The corresponding graph
grammar is shown in Fig. 5. The initial graph contains two concurrently enabled
invocations; we expect the simulator to tell us whether these invocations may
interfere. Due to the ensuing race condition, the system has two legal outcomes:
either the value 4 is appended before 5, or vice versa. For instance, Fig. 6 shows



The GROOVE Simulator: A Tool for State Space Generation 483

Fig. 6. Trace of graph transformations for the append function

(part of) the sequence of states in which the “bottom” append proceeds first, so
that 4 “wins” from 5.

The full GTS, comprising 57 states and 92 transitions, is shown in Fig. 7. The
race condition can be readily recognised, as can the fact that the final states are
precisely the two legal ones. We conclude that the append method as modelled
by this graph grammar is non-interfering.

4 Design and Implementation

We finish by discussing a number of issues in the design and implementation of
the GROOVE tool set in general, and the simulator in particular.

Theoretical Background. There is a long history of research in graph trans-
formation; see [5] for an overview. GROOVE follows the algebraic approach; we
hope to reap the benefit of the resulting algebraic properties in future exten-
sions (see below). GROOVE uses non-attributed, edge-labelled graphs without
parallel edges (the node labels shown in the examples above are actually la-
bels of self-edges) and implements the single-pushout approach with negative
application conditions (see [3, 2]); however, the design of the tool is modular
with respect to this choice, and support for the double-pushout approach can be
added with a single additional class.

Design. The tool is designed for extensibility. The internal and visual repre-
sentation of graphs are completely separated, and interfaces are heavily used,
for instance to abstract from graph and morphism implementations. The most
performance-critical parts of the simulator are: finding rule matchings, and
checking graph isomorphism. The first problem is, in general, NP-complete; the
second is in NP (its precise complexity is unknown). Fortunately, the graphs we



484 Arend Rensink

Fig. 7. Graph transition system generated from the append function

are dealing here tend to be “almost deterministic” (we will not make this pre-
cise) so that the complexity is manageable. The GROOVE tool uses strategies
to ensure modularity for the algorithms used.

Implementation. The tool is implemented in Java, and developed under
Eclipse. It currently consists of (approximately) 70 classes in 8 packages, com-
prising 25,000 lines of code. The implementation makes use of several existing
open-source components: jgraph for graph visualisation, xerces and castor for
handling XML, and junit for unit testing. The implementation is a research
prototype; we are yet far from being able to tackle realistic problems. Currently
the largest example we have simulated is approximately 20,000 states; this takes
in the order of half an hour.

Interchange Formats. The modularity of GROOVE also extends to the se-
rialisation and storage of graphs and graph grammars. Currently the tool uses
GXL (see [8]), but in an ad hoc fashion: production rules are first encoded as
graphs by tagging the erasers, creators and embargoes, and then saved individu-



The GROOVE Simulator: A Tool for State Space Generation 485

ally; thus, a grammar is stored as a set of files. In the future we plan to migrate
to GTXL (see [7]) as primary format.

Extensions. The simulator can be improved in many ways. Some extensions
planned for the (near) future are: support for the double-pushout approach and
graph types, partial order reduction using production rule independence; and
especially, shape graph-like abstractions (cf. [6]), for the (approximate) repre-
sentation of infinite state spaces. Furthermore, we plan to extend the GROOVE
tool set beyond the simulator functionality. This includes a front-end to compile
code to graph grammars (a prototype of a Java byte code translator has been
developed) and a back-end to model check the resulting GTS’s. In [1] we have
taken a first step toward developing a logic to reason about the dynamic aspects
of GTS’s. See [4] for a global overview of the programme.

The GROOVE simulator tool and some sample graph grammars (the above
examples among them) can be downloaded from:
http://www.cs.utwente.nl/~groove.

References

[1] Dino Distefano, Arend Rensink, and Joost-Pieter Katoen. Model checking birth
and death. In R.A. Baeza-Yates, U. Montanari, and N. Santoro, editors, Foun-
dations of Information Technology in the Era of Network and Mobile Computing,
pages 435–447. Kluwer, 2002. 485

[2] Annegret Habel, Reiko Heckel, and Gebriele Taentzer. Graph grammars with neg-
ative application conditions. Fundamenta Informaticae, 26(3/4):287–313, 1996.
483

[3] M. Löwe. Algebraic approach to single-pushout graph transformation. TCS,
109(1–2):181–224, 1993. 483

[4] Arend Rensink. Towards model checking graph grammars. In Leuschel, Gruner,
and Lo Presti, editors, Proceedings of the 3rd Workshop on Automated Verifi-
cation of Critical Systems, Technical Report DSSE–TR–2003–2, pages 150–160.
University of Southampton, 2003. 479, 485

[5] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, volume I: Foundations. World Scientific, 1997. 483

[6] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis prob-
lems in languages with destructive updating. ACM ToPLaS, 20(1):1–50, January
1998. 485

[7] Gabriele Taentzer. Towards common exchange formats for graphs and graph
transformation systems. In Ehrig, Ermel, and Padberg, editors, UNIGRA, vol-
ume 44 of ENTCS. Elsevier, 2001. 485

[8] Andreas Winter, Bernt Kullbach, and Volker Riediger. An overview of the GXL
graph exchange language. In Diehl, editor, Software Visualization, volume 2269
of LNCS, pages 324–336. Springer, 2002. 484


	The GROOVE Simulator: A Tool for State Space Generation
	Introduction
	Circular Buffer Operations
	Concurrent Appending
	Design and Implementation
	Theoretical Background
	Design
	Implementation
	Interchange Formats
	Extensions



