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Abstract

We sketch a setup in which transition systems are generated from graph grammars and
subsequently checked for properties expressed in a temporal logic on graphs. We envisage this
as part of an approach where graph grammars are used to express the behavioural semantics of
object-oriented programs, thus enabling automatic verification of those programs.

This paper describes work in progress.

1 Introduction

Our primary interest in this paper is software model checking, in particular of object-oriented
programs. Model checking has been quite successful as a hardware verification technique and its
potential application to software is receiving wide research interest. Indeed, software model checkers
are being developed and applied at several research institutes; we mention Bandera [2] and Java
Pathfinder [11] as two well-known examples of model checkers for Java.

Despite these developments, we claim that there is an aspect of software that does not occur
in this form in hardware, and which is only poorly covered by existing model checking theory:
dynamic (de)allocation, both on the heap (due to object creation and garbage collection) and
on the stack (due to mutual and recursive method calls and returns). Current model checking
approaches are based on propositional logic with a fixed number of propositions; this does not
allow a straightforward representation of systems that may involve variable, possibly unbounded
numbers of objects. Although there exist workarounds for this (as evidenced by the fact that, as
we have already seen, there are working model checkers for Java) we strongly feel that a better
theoretical understanding of the issues involved is needed.

For this purpose, in previous work we have proposed a temporal logic to reason about allo-
cation and deallocation (with Distefano and Katoen, see [4]), interpreted on History-Dependent
Automata (developed by Montanari and Pistore [17]), extended to allow a finite representation of
unboundedly growing states, albeit only in a limited scenario. In this paper we propose to use
graph grammars to generate transition systems consisting of graphs as states and partial graph
morphisms as transitions. We define an extension of the logic studied in [4] that includes regular
navigation expressions over graphs. We give some illustrative properties on a running example to
demonstrate the strengths of our approach.

We are confident that the resulting logic can be model checked on finite graph transition systems,
using an extension of the algorithm defined in [4]. The extension to unbounded states is left for
future work.
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We intend to let theory development and (research scale) tool implementation go hand in hand.
The current status of the implementation is that we have developed a (prototype) simulator for
graph grammars, capable of generating small graph transition systems (of up to 103 states); the
next step is to extend this with a model checking algorithm for the logic presented here. The tool
can be tried out; see [18].

This paper describes work in progress.

Related work. There is an extensive literature on graph grammars and graph transformations,
but only a fragment of that addresses their application for modelling and analysing dynamic be-
haviour. Especially the work of Heckel, Corradini and others [10, 9, 8, 3, 1] is closely related. For
instance, the interpretation of temporal logic over graph grammars is investigated in [10, 6] and
other analysis techniques in [1]. The novelty of the current approach lies in the application of ideas
from history-dependent automata [17] and allocational logic [4].

The application of graph transformations to object-oriented languages (which is not an aspect
covered in this paper but is part of our planned future work) has been studied in, e.g., [20, 21].

2 Graph transition systems

We model system states as graphs of a particular kind. To define them formally, first we need some
auxiliary concepts.

Concepts and notation 1

• We assume a countable universe of nodes, denoted N and ranged over by p, q;

• We assume a countable universe of labels, denoted L and ranged over by a, b.

Our graphs are edge-labelled but not node-labelled, and edges have no identity.1

Definition 2 (graph) A graph is a tuple G = 〈N,E〉 where

• N ⊆ N is a set of nodes;

• E ⊆ N × L×N is a set of edges, such that N ∩ E = ∅.

Concepts and notation 3

• The set of all graphs will be denoted G, ranged over by G, H.

• The node and edge sets of a graph G will often be denoted NG and EG; likewise, for a graph
Gi we use Ni, Ei.

• Given an edge e = (p, a, q) ∈ E, we call p, q and a the source, target and label of e, denoted
src(e), tgt(e) and `(e), respectively.

• Given graph G, E∗ denotes the minimal subset of N ×L∗×N such that (p, ε, q) ∈ E∗ (where
ε denotes the empty sequence) and if (p, w, q) ∈ E∗ and (q, a, r) ∈ E then (q, w a, r) ∈ E∗.
then

• When depicting graphs, for convenience we sometimes represent self-edges by inscribing their
labels in the nodes and omitting the edges. Examples are the empty-labelled self-edges in
Figure 1 below.

1Note that this is analogous to the traditional definition of labelled transition systems; however, we use graphs in
quite a different role, so that in fact this analogy is misleading.
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A transition between two states is modelled by an injective (partial) morphism between the graphs.
(In this we follow the so-called single pushout approach in graph transformations; see below.)

Definition 4 Let G, H be two graphs. A morphism from G to H is a pair of partial functions
f = (fN , fE) with fN :NG ⇀ NH and fE :EG ⇀ EH , such that the following partial confluence
properties hold:

• tgtH ◦ fE ⊆ fN ◦ srcG;

• tgtH ◦ fE ⊆ fN ◦ tgtG;

• `H ◦ fE ⊆ `G.

The morphism is called injective [total] if both fN and fE are injective [total].

We use injective morphisms to model transitions from the morphism’s domain to its codomain.
The intuition is that nodes and edges in the source without an image in the target are deleted by
taking this transition, whereas nodes and edges in the target without an inverse image in the source
are created. This extends the principle of reallocations, as used in History-Dependent Automata
(see Montanari and Pistore [17]), from multisets to graphs.

Concepts and notation 5

• We will write f instead of fN and fE whenever there is no chance of confusion.

• We will write f :G → H to indicate that f is a morphism from G to H. In that case we write
dom(f) = G and cod(f) = H.

• The set of all graph morphisms is denoted M; the subset of injective [total] morphisms is
denoted Mi [Mt].

This sets the stage for the definition of our models of behaviour, which are transition systems over
graphs.

Definition 6 A graph transition system (GTS) is a triple 〈S,→, s0〉 where

• S ⊆ G is a set of states;

• → ⊆Mi is a set of transitions;

• s0 ∈ S is the initial state.

Concepts and notation 7 We sometimes write G −f→ H to indicate that f :G → H is a GTS
transition.

An example graph transition system is depicted in Figure 1. This shows a circular buffer, consisting
of three slots, each of which points to its predecessor through a prev-labelled edge. Two slots are
designated first and last, respectively. Slots can be either free (indicated by a corresponding self-
edge labelled empty — see Notation 3 for a remark concerning the representation of this self-edge)
or occupied (indicated by a val-edge to a node representing the value).

The initial state of Figure 1 is the upper left one. If there are free slots in a state, the one directly
preceding first may be filled with a fresh value (which corresponds to the operation of inserting that
value into the buffer); if there are occupied slots, the one labelled last may be freed by deleting the
value in that slot (which corresponds to retrieving the value from the buffer). The corresponding
morphisms in the transition system are denoted 〈insert〉 and 〈retrieve〉. For the 〈insert〉-morphisms,
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Figure 1: Graph transition system modelling a three-place circular buffer

the node mappings are implied by the position within the graph — i.e., each node in the source
graph is mapped to the node in the same relative position of the target graph. For the 〈retrieve〉-
morphisms, the node mappings are indicated by dotted lines. All edge mappings are left implicit.
Besides identifying elements to be deleted and created, the graph morphisms also serve to reduce
the state space. A straightforward “traditional” encoding of a three-place circular buffer (where
slots are modelled as either full or empty) would give rise to a model with twelve reachable states;
in general, the number of states is quadratic in the length of the buffer. Using graphs, we need
only four states for the three-element buffer; in general the number of states is linear in the buffer
length. This is due to the exploitation of symmetry by the graph morphisms. For instance, 〈insert〉
followed by 〈retrieve〉 leads back to the initial state; however, the concatenation of the corresponding
morphisms is not the identity, but rather an auto-isomorphism; in other words, a symmetry of the
state. This is in fact precisely the same principle as that used in minimisation of history-dependent
automata (see [16]).

Besides exploiting symmetry, the morphisms in our GTSs also keep track of the identity of
entities. For instance, Figure 1 contains all the information necessary to check that entities are
retrieved in the order they are inserted, that no entity is inserted without eventually being retrieved,
and that no entity can be retrieved without having been inserted. All this is established through
the node identities of the value nodes; no actual values need be introduced. We will come back to
this in the presentation of a temporal logic (Section 4).

3 Graph grammars

Those familiar with Petri nets will have noted a connection between graph transition systems and
Petri net state spaces (which are essentially multisets of entities connected by multiset morphisms).
In fact, it is quite possible to give a Petri net model of a buffer that shares many of the characteristics
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Figure 2: Graph production rules for Figure 1

of Figure 1 — but not all; in particular, the ordering of the values, which is maintained by the
prev-links in our model, cannot be modelled in quite the same way in a Petri net.

In fact, GTSs can be generated from graph grammars, which are indeed a generalisation of Petri
nets (see, e.g., [13, 7, 12]). Of the many flavours of graph grammars (see [19] for an authorative
overview), for the purpose of this paper we follow the single-pushout approach introduced by Löwe
[15], mainly because this offers a technically simpler presentation. Since in this paper we use graph
grammars merely as factories for graph transition systems and we do not use any underlying graph
rewriting theory, the basic ideas of this paper are independent of this choice.

Definition 8 (production rule) A graph production rule is a graph whose nodes and edges are
partitioned into (possibly empty) sets Ndel, Nuse and Nnew (resp. Edel, Euse and Enew) such that

• src(e) ∈ Ndel or tgt(e) ∈ Ndel implies e ∈ Edel;

• src(e) ∈ Nnew or tgt(e) ∈ Nnew implies e ∈ Enew.

For those familiar with the single-pushout approach: the above definition is equivalent to usual
presentation, but lends itself better to visualisation. We point out the connection briefly in Sec-
tion A.

The intuition is that a production rule deletes del nodes and edges, uses (i.e., requires the
presence of) use nodes and edges, and creates new nodes and edges. We will represent production
rules graphically by using dashed dark blue lines and italic font for del, continuous thin black lines
and default font for use and fat green lines and bold font for new. For instance, Figure 2 shows the
two production rules that give rise to the graph transformations in Figure 1. An application of a
production rule P to a given graph G involves finding a total and surjective morphism µ:P → Q
such that

• µ(p) = µ(q) implies p = q or p, q /∈ Nnew — i.e., µ is injective on the new nodes);

• NG ∩NQ = µ(Ndel ∪Nuse) and EG ∩ EQ = µ(Edel ∪ Euse) — i.e., the del and use nodes are
projected by µ into G whereas the new nodes are kept disjoint from G.

Given such a µ, P transforms G into a new graph H defined by

NH = (NG \ µ(Ndel)) ∪ µ(Nnew)
EH = ((EG \ µ(Edel)) ∪ µ(Enew)) � NH

(The restriction to NH in the definition of EH comes down to deleting edges whose sources or
targets are not in NH — which may be necessary if µ(p) = µ(src(e)) for some p ∈ Ndel and
e /∈ Edel.) The connection between G and H is fixed by the injective morphism f :G → H defined
by f = (idNG∩NH

, idEG∩EH
).
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For instance, example applications of the rules in Figure 2 can be found in Figure 1. It should
be noted that every µ gives rise to a different transformed graph H. However, variations in µ�Nnew

lead to isomorphic copies of H; therefore, only variations in µ � (Ndel ∪Nuse) need be considered.
For instance, in the case of Figure 1 every rule can be applied at most once in a given state.

Concepts and notation 9 We write G −P,µ,f−−−→ H to denote that the application of P to G under
µ gives rise to the transformation f :G → H.

Definition 10 (graph grammar) A graph grammar is a tuple (G,P) consisting of an initial
graph G and a set of production rules P.

We say that a graph grammar generates a graph transition system if the transitions in the GTS
correspond to all possible rule applications to all reachable states, with the proviso that there may
be only one isomorphic representative for every state. Formally, a GTS T = (S,→, G) is generated
by a graph grammar (G,P) if S is a minimal set of graphs such that

• G ∈ S;

• If H −P,µ,f−−−→ K for some H ∈ S and P ∈ P, then there is a state F ∈ S with an isomorphism
g:K → F such that H −g◦f−−→ F is a transition.

Note that this does not uniquely define the transition system generated by a given grammar;
however, any two transition systems satisfying these criteria are isomorphic, in the following sense.

Proposition 11 If (Si,→, s0i) for i = 1, 2 are transition systems generated by a given graph gram-
mar then there exists a bijection f :S1 → S2 such that (i) f(s01) = s02 and (ii) for all G ∈ S1, there
is a graph isomorphism gG:G → f(G) such that

G −f→ H iff f(G) −gG◦f◦g−1
H−−−−−−→ f(H) .

For this reason we are justified in speaking of the graph transformation system generated by a given
graph grammar. For instance, Figure 1 is the GTS generated by the graph grammar consisting of
the production rules in Figure 2, with as initial graph the top left hand state of Figure 1. Note
that a change to the initial graph results in a different GTS; e.g., starting with the left hand side
in Figure 3, the rules in Figure 2 generate the behaviour of a five-slot circular buffer, whereas for
the right hand side (which is an inconsistent state since one slot is neither full nor marked empty)
the generated GTS shows a deadlock after the sequence 〈retrieve〉 · 〈insert〉.

4 Temporal logic

Having established the models, it is now time to present the logic to express properties to be
verified. Formulas are generated by the following grammar:

π ::= ` | π + π | π.π | π∗ .

ζ ::= x | Z | ζ.π .

ϕ ::= x ∈ ζ | ¬ϕ | ϕ ∨ ϕ | ∃x : ϕ | ∃Z : ϕ | Xϕ | ϕ U ϕ .

This is a second-order linear temporal logic: x is a first-order variable ranging over nodes, whereas
Z is a second-order variable ranging over node sets.
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Figure 3: Alternative start states for the production rules in Figure 2

π stands for (regular) path expressions over edge labels, used for navigating through graphs.

ζ stands for set expressions: x is an empty or singleton set, depending on whether x is currently
defined (see below), Z is a set of nodes, and σ.π is the set of nodes reachable from σ by a
path in π.

ϕ stands for formulae. The most unusual are ∃x : ϕ, which selects an arbitrary node of a graph
satisfying ϕ, and ∃Z : ϕ, which selects an arbitrary set of nodes. The formulae Xϕ and ϕ U ϕ
stand for “next” and “until”, as usual in LTL.

Formulae are interpreted over finite and infinite sequences of graph morphisms, in combination
with a valuation of the first- and second-order variables. The definition requires some auxiliary
notation.

Concepts and notation 12

• Given a GTS 〈S,→, s0〉, we let →ω denote the set of maximal paths through the GTS, defined
as

{f1 f2 · · · | s0 −f1−→ s1 −f2−→ s2 · · ·} ∪ {f1 f2 · · · fn | s0 −f1−→ s1 · · · −fn−→ sn 6−→}

• We let σ range over →ω. |σ| denotes the length of σ (= ∞ if σ is an infinite sequence). For
all 0 < i ≤ |σ|, σi denotes the i’th element of σ (i.e., fi), and, σi the tail of σ starting at the
i’th element (i.e., fi fi+1 · · ·).

• θ stands for a valuation mapping every first-order variable to either an element of N or to ⊥
(representing undefined), and every second-order variable to a subset of N .

• If θ is a valuation as above and f a graph morphism, then f ◦ θ is defined by concatenating
fN (extended strictly to ⊥) with θ.

• If θ is a valuation, then θ[p/x] (with p ∈ N ) denotes a derived valuation that maps x to p and
all other variables to their θ-images; and likewise for θ[P/Z ] (with P ⊆ N ).

In order to define the semantics of the logic, first we have to establish the meaning of path and
set expressions. [[π]] ⊆ L∗ is defined as usual for regular expressions. Set expressions are evaluated
relative to a graph and valuation: if P ⊆ NG then

[[x]]θ,G =
{
∅ if θ(x) = ⊥
{θ(x)} otherwise

[[Z]]θ,G = θ(Z)
[[ζ.π]]θ,G = {q | ∃p ∈ [[ζ]]θ,G : ∃w ∈ [[π]] : (p, w, q) ∈ E∗

G}

Thus, for instance, if θ binds Z to the set of all nodes in one of the graphs in Figure 1, then
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• [[Z.first]] is a singleton set consisting of the node with the first-self-edge;

• [[Z.val]] is the set of all value nodes in the graph;

• [[Z.first.val]] is either empty (if the entire buffer is empty) or a singleton set with the value
referred to by the first buffer element.

Satisfaction of a formula is expressed through a predicate of the form G, σ, θ � ϕ, where G =
dom(σ1). The following set of rules defines the satisfaction relation for formulae. The main point to
notice is the modification of the valuation θ in the rule for Xϕ. Here the effect of the transformation
morphism is brought to bear. For one thing, it is possible that a (first-order) variable becomes
undefined, if the node that it was referring to is deleted by the transformation.

G, σ, θ � x ∈ ζ iff θ(x) ∈ [[ζ]]θ,G (which fails to hold if x /∈ dom(θ))
G, σ, θ � ¬ϕ iff not G, σ, θ � ϕ
G, σ, θ � ϕ1 ∨ ϕ2 iff G, σ, θ � ϕ1 or G, σ, θ � ϕ2

G, σ, θ � ∃x : ϕ iff G, σ, θ[p/x] � ϕ for some p ∈ NG

G, σ, θ � ∃Z : ϕ iff G, σ, θ[P/Z ] � ϕ for some P ⊆ NG

G, σ, θ � Xϕ iff cod(σ1), σ2, σ1 ◦ θ ` ϕ
G, σ, θ � ϕ1 U ϕ2 iff ∃i ≥ 0 : G, σ, θ � Xiϕ2 and ∀0 ≤ j < i : G, σ, θ � Xjϕ1

For instance, in this logic we can express the following properties:

• x and y refer to the same node:
x ∈ y

• x has an outgoing a-edge:
∃y : y ∈ x.a

• The node that x refers to will be deleted in the next state:

X(x /∈ x)

• Every node reachable through a val-edge will eventually be deleted:

∀x : (∃y : x ∈ y.val) ⇒ (true U (x /∈ x)))

• Eventually a fresh val-reachable node will be created:

∀Z : true U (∃x : x /∈ Z ∧ (∃y : x ∈ y.val))

In order to evaluate formulae over GTSs, we need to define what the valid runs are. Although in
the future we will probably need a Büchi-like acceptance condition, for the purpose of this paper
it suffices to allow all maximal runs (finite or infinite) of the GTS. Thus, we define the validity of
a formula on a GTS as follows:

〈S,→, s0〉 � ϕ iff ∀σ ∈ →ω,∀θ : s0, σ, θ � σ

Our main theorem is the following:

Theorem 13 Given a finite GTS T and a formula ϕ, the property T � ϕ is decidable.

It should be noted that this actually has the status of a hypothesis that we strongly believe to be
true; the proof has not been done. However, the same proof technique that we used in [4] (based on
Pnueli and Lichtenstein [14]) is applicable here, and there does not seem to be a reason to believe
that the proof does not carry through.
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A Production rules in the Single Pushout approach

Definition 8 deviates from the usual presentation in, e.g., [15, 5], in which a production rule con-
sists of two graphs (L,R) connected by an injective morphism ϕ. In fact the two definitions are
equivalent:

• The graph L in the traditional presentation is the union of del- and use-nodes and edges;

• The graph R in the traditional presentation is the union of use- and new-nodes and edges;

• The morphism ϕ in the traditional presentation corresponds to the identity over the use-nodes
and edges.

Vice versa, for every production rule (L,R, ϕ) in the traditional presentation there exists an equiv-
alent rule P = (N,E) according to Definition 8, which can be obtained by taking the disjoint union
of L and R while identifying nodes and edges connected through ϕ.2 Then Ndel consists of the
nodes of L that are not in the domain of ϕ and Nnew of the nodes of R that are not in the codomain
of ϕ; and similar for Edel and Enew.

2More precisely, it is the pushout of ϕ: G → R and idG: G → L, where G = (dom(ϕN ), dom(ϕE)) and idG =
(idNG , idEG).
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