
Model Checking Dynamic States in GROOVE

Harmen Kastenberg� and Arend Rensink

Department of Computer Science, University of Twente,
P.O. Box 217, AE 7500, Enschede, The Netherlands

{h.kastenberg, rensink}@cs.utwente.nl

Abstract. Much research has been done in the field of model-checking
complex systems (either hardware or software). Approaches that use ex-
plicit state modelling mostly use bit vectors to represent the states of
such systems. Unfortunately, that kind of representation does not extend
smoothly to systems in which the states contain values from a domain
other than primitive types, such as reference values commonly used in
object-oriented systems.

In this paper we report preliminary results on applying CTL model
checking on state spaces generated using graph transformations. The
states of such state spaces have an internal graph structure which makes
it possible to represent complex system states without the need to know
the exact structure beforehand as when using bit vectors.

1 Introduction

Verifying complex systems is a big field of research. For hardware systems, model
checking techniques have proven to be quite successful. Lately, researchers are
trying to also apply model-checking techniques for the verification of software
systems.

In the Groove-project we focus on the use of model checking techniques for
verifying object-oriented systems, where the states of the system are modelled as
graphs, instead of bit vectors as in most explicit state representing approaches.
We think this approach creates new opportunities to specify and verify systems
in which the states mainly depend on a set of reference values instead of values
of primitive types (with a finite domain) only. Due to frequent (de)allocation
of reference values, the states of such systems are highly dynamic, due to their
variable size. Graphs provide a natural way of representing the states of such
systems and specifying interesting properties.

The state spaces on which we perform the model checking process are gener-
ated from so-called graph production systems using the GROOVE Simulator [9].
This results in a so-called graph transition system. These are then translated to
ordinary Kripke structures after which we are able apply standard CTL model
checking.

� The author is employed in the GROOVE project funded by the Dutch NWO (project
number 612.000.314).

A. Valmari (Ed.): SPIN 2006, LNCS 3925, pp. 299–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

300 H. Kastenberg and A. Rensink

2 State Space Generation

In our approach we model systems by representing their states as graphs and
their behaviour as graph transformations [13]. In this work, a graph G consists
of a finite set N of nodes and a finite set E ⊆ N × L × N of edges (where L is
a global set of labels). We use G to denote the set of all graphs, ranged over by
G, H . Fig. 2.1 shows an example graph representing a specific state of a circular
buffer containing three cells.1

Fig. 2.1. A circular buffer having 2 filled cells out of 3

The state space representing the entire behaviour of the system can be gen-
erated from a graph production system (GPS), which consists of a graph I rep-
resenting the initial state of the system and a set of graph transformation rules
R. A graph transformation rule specifies how the system evolves when going
from one state to another. A graph transformation rule p ∈ R is identified by
its name (Np ∈ N , where N is a global set of rule names) and consists of a
left-hand-side graph (Lp), a right-hand side graph (Rp), and a set of so-called
negative application conditions (NAC p, which are supergraphs of Lp) [4]. The
application of a graph transformation rule p transforms a graph G, the source
graph, into a graph H , the target graph, by looking for an occurrence of Lp in G
(specified by a graph matching m that cannot be extended to an occurrence of
any graph in NAC p) and then replacing that occurrence with Rp, resulting in H .
Such a rule application is denoted as G −p,m−−→ H . A precise technical specification
of the graph transformation process can be found in [13, 4].

Fig. 2.2 shows three screen-shots from our tool (see below) displaying three
graph transformation rules: put for inserting a newly created object into the
buffer, get for getting an object out of the buffer (and deleting it), and extend
for enlarging the capacity of the buffer with one. Note that these transformation
rules specify the behaviour of a circular buffer. This means that performing a
put and get operation subsequently, moves both the first and the last pointer one
cell further. Performing an equal number of puts and gets (without extending
the buffer) results in isomorphic states (which are identified within the tool).

The different shapes (and colours) of the nodes and edges refer to the different
roles of the elements within the rule. The thin solid elements (black in a coloured

1 In order to improve the readability of the graphs, we show the labels of self-edges as
labels of the corresponding nodes.

Model Checking Dynamic States in GROOVE 301

(a) put rule. (b) get rule. (c) extend rule.

Fig. 2.2. Graph transformation rules specifying the behaviour of the circular buffer

print-out) are part of both L and R. They need to be present in the source graph
in order for the rule to apply and will be preserved during transformation. The
thin dashed elements (blue) are also part of L but not of R, and will be removed.
The solid fat gray elements (green) are part of R but not of L and will be created.
The dashed fat gray elements (red) represent the NACs, whose presence in the
source graph prevent the rule from being applied.

Each GPS P = 〈R, I〉 specifies a (possibly infinite) state space which can be
generated by repeatedly applying the graph transformation rules on the states,
starting from the initial state I. This results in a graph transition system (GTS):

Definition 1 (graph transition system). The graph transition system T =
〈S, →, I〉 generated by P = 〈R, I〉 consists of a set S of states, which are actually
graphs (S ⊆ G); a transition relation → ⊆ S × R × [G → G] × S, such that
〈G, p, m, H〉 ∈ → iff there is a rule application G −p,m−−→ H ′ with H ′ isomorphic
to H; and an initial state I ∈ S.

The graph transformation process is implemented in the Groove Simulator [9].
This tool is implemented in Java, and currently consists of 18 packages comprising
approximately 400 classes, and 75,000 lines of code. The tool can handle arbitrary

Fig. 2.3. State space of a circular buffer with capacity extending to 5

302 H. Kastenberg and A. Rensink

GPSs, but can obviously only generate a finite part of the corresponding graph
transition system. Someperformance figureswere reported in [11]; as an indication,
in its current form the tool can handle up to 200,000 states for average graph size
of 50 nodes. Two intrinsically complex parts of the state space generation are:
finding occurrences of left hand sides, and determining isomorphism of states.

Fig. 2.3 shows a finite part of the graph transition system for the transfor-
mation rules from Fig. 2.2 and the initial graph of Fig. 2.1, where the states are
limited to those where the number of buffer cells is 5. The resulting state space
consists of 126 states and 282 transitions.

3 CTL Model Checking

In the approach reported here, we have chosen to express properties in the
temporal logic CTL [3]. The main reason for choosing CTL and not, for example,
LTL, is the simplicity of the former, both in terms of complexity (the model
checking problem for CTL is well known to be linear in both the size of the state
space and the size of the formula) and in terms of the actual algorithm.

In order to perform model checking on the graph transition systems generated
in the previous section we need to translate them to Kripke structures, which
are defined over a finite set AP of atomic propositions.

Definition 2 (Kripke structure). A Kripke structure K = 〈S, →, I, L〉 con-
sists of a set S of states, a total transition relation → ⊆ S × S, a set I ⊆ S of
initial states, and a labelling function L : S → 2AP , which maps each state to
the subset of atomic propositions holding in that state.

When translating a GTS T to a Kripke structure KT , two issues need to be
taken care of: (1) →T must be made total (if this is not yet the case) and (2)
the labelling function LK must be defined. As atomic propositions we use the
rule names, N . Thus, a GTS T gives rise to a Kripke structure KT such that:

SK = ST

IK = {SI}
→K = {〈G, H〉 | ∃p, m : G −p,m−−→T H} ∪ {〈G, G〉 | �p, m, H : G −p,m−−→T H}

LK(G) = {Np | ∃m, H : G −p,m−−→T H}, for all G ∈ SK

From the construction process described above it becomes clear that the labelling
function of the resulting Kripke structure, in graph transformation terms, actu-
ally maps each state on the set of names of the graph transformation rules that
were applicable in that state. This means that for each transformation rule p,
Lp and NAC p constitute a property of graphs that can be used as an atomic
proposition named Np

2. In the special case where Lp and Rp are identical, the
rule actually specifies a state property instead of a graph transformation, since
such rules have no structural effect on any state.
2 In [10] we show that properties specified this way may correspond precisely to a

certain fragment of First-Order logic.

Model Checking Dynamic States in GROOVE 303

Two example properties to check for on the circular buffer example are:
AG(¬gap) (1)

AG(EF(empty)) (2)

Property 1 is a safety property specifying that the buffer may not contain a gap,
which is an empty cell following a non-empty cell that is not the last cell of the
buffer. Fig. 3.1 (a) specifies the gap-proposition in the form of a rule (with identi-
cal left and right hand side). Property 2 is a liveness property specifying that the
state representing the empty buffer must reachable infinitely often. The buffer
is empty when the first cell does not contain a value, as shown in Fig. 3.1 (b).

(a) gap. (b) empty.

Fig. 3.1. Graph structures as properties

It turns out that the system of Fig. 2.3 actually does not satisfy Property 1.
This is because we have not specified the extend-rule correctly: it puts no con-
straints on the places where the buffer may be extended, and hence may well
introduce a gap. After fixing this, the system indeed satisfies both properties.

Results. In order to compare our tool with existing ones, we also implemented
our running example as a (more or less) equivalent SPIN-program [7]. A naive
translation results in a SPIN-program using a bit-array (with the maximum
allowed capacity as its length) storing 1’s (representing full cells) and 0’s (rep-
resenting empty cells). A more sophisticated SPIN-program can use the built-in
channels to store the buffer values. Note that this no longer is a real circular
buffer. In both cases we implement the possible operations as being atomic. In
the naive implementation, the first and last pointer travel along the array result-
ing in many more states. In the sophisticated implementation there is no need
for a first and last pointer.

Statistics about the state spaces generated by the three programs are given
in Table 3.2. In this table we list for each implementation the number states, the
state space generation time (GT) and the memory needed to store the states.
From this table we can conclude that GROOVE cannot compete with SPIN re-
garding time-performance. The main reason for this is because checking for iso-
morphic graphs and constructing the graph matchings is very expensive; indeed,
for the buffer of 200 cells, over 90% of the time is spent in isomorphism checking.
However, isomorphism does result in automatic symmetry reduction, as can be
seen be comparing the numbers of states in the GROOVE and naive SPIN im-
plementations. Concerning memory usage for state storage, both tools perform

304 H. Kastenberg and A. Rensink

Table 3.2. Performance statistics

GROOVE SPIN naive SPIN smart
Max cap. States GT Memory States GT Memory States GT Memory

(s) (MB) (s) (MB) (s) (MB)
25 345 1.5 < 1 5,845 < 1 0.2 345 < 1 < 1
50 1,320 6.9 < 10 44,195 < 1 3.1 1,320 < 1 < 1
100 5,145 60.6 < 20 343,395 < 1 42.6 5,145 < 1 0.6
200 20,295 636.5 < 20 2.7+e6 20 606.3 20,295 < 1 4.5

comparable. From the object-oriented point of view, the example showed that
GROOVE provides a natural way of dealing with reference-pointers, whereas
the encoding in SPIN resorts to built-in static data types.

As mentioned before, we have implemented the standard CTL algorithm
(with backwards state traversal). Currently, the verification process is performed
sequentially after the state space generation. By combining both phases, so called
on-the-fly model checking, we could also run the algorithm on graph production
systems that yield potentially infinite state spaces, and get a result if it can be
computed on a finitely representable fragment of the graph transition system.

4 Conclusion

We have shown how to apply CTL model checking on state spaces generated from
graph production systems. The innovation in this approach lies not in the model
checking itself but in the use of graphs for explicit dynamic state representation,
which, as we have argued before, gives rise to an alternative to bit vectors that
is potentially more flexible. We have shown some statistics on how our tool
performs when compared to SPIN. The choice of CTL is not important in this
respect.

Within the area of software model checking, a large number of other software
verification tools have been developed, e.g. Java PathFinder [5], BLAST [6],
SLAM [1], and MAGIC [2]. The last three focus on the verification of C programs
instead of OO-systems like our tool and Java PathFinder. Representing states as
graphs, instead of using arrays and lists, as is done in Java PathFinder, provides
a more natural way of dealing with reference values, and symmetry reduction
boils down to checking for isomorphic graphs. While Java PathFinder uses the
byte code of a program, we represent the source code as graphs, taking the
abstract syntax of the language as a starting point [8].

In the future we plan to do more experiments using the technique described
in this paper. Next to that, there is a lot of further work to be done on improving
the state space generation part. For one thing, currently no advantage is taken
whatsoever of the potential for partial order reduction. In the running example
of this paper, partial order reduction would already pay off, because the put-
and get-rules are actually provably confluent. Alternatively, in [12] we describe
an abstraction technique for graph transformation that results in smaller (in fact,
finite) state spaces, at the price of false negatives in the model checking phase.

Model Checking Dynamic States in GROOVE 305

Acknowledgements

We would like to thank the anonymous referees for their detailed comments and
constructive suggestions.

References

1. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software
via static analysis. In 29th Annual ACM SIGPLAN - SIGACT Symposium on
Principles of Programming Languages (POPL), pages 1–3. ACM Press, 2002.

2. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE Trans. Softw. Eng., 30(6):388–402, 2004.

3. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proceedings of the IBM Workshop on
Logics of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–
71. Springer, 1982.

4. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundamenta Informaticae, 26(3-4):287–313, 1996.

5. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4), 2000.

6. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification
with BLAST. In T. Ball and S. K. Rajamani, editors, SPIN Workshop on Model
Checking Software, volume 2648 of Lecture Notes in Computer Science, pages 235–
239. Springer, 2003.

7. G. J. Holzmann. The Spin Model Checker - Primer and Reference Manual.
Addison-Wesley, 2003.

8. H. Kastenberg, A. Kleppe, and A. Rensink. Engineering object-oriented se-
mantics using graph transformations. Technical report, Department of Com-
puter Science, University of Twente, 2005. Pre-final version available at
http://www.cs.utwente.nl/˜rensink/papers/taal-draft.pdf.

9. A. Rensink. The GROOVE Simulator: A tool for state space generation. In J. L.
Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations
with Industrial Relevance (AGTIVE), volume 3062 of Lecture Notes in Computer
Science, pages 479–485. Springer, 2004.

10. A. Rensink. Representing first-order logic using graphs. In H. Ehrig, G. En-
gels, F. Parisi-Presicce, and G. Rozenberg, editors, International Conference on
Graph Transformations (ICGT), volume 3256 of Lecture Notes in Computer Sci-
ence, pages 319–335. Springer, 2004.

11. A. Rensink. Time and space issues in the generation of graph transition systems.
In International Workshop on Graph-Based Tools (GraBaTs), volume 127 of Elec-
tronic Notes in Theoretical Computer Science, pages 127–139, 2005.

12. A. Rensink and D. Distefano. Abstract graph transformation. In International
Workshop on Software Verification and Validation (SVV), Electronic Notes in
Theoretical Computer Science, 2005. To appear. Technical report version: CTIT
TR–CTIT–05–04, University of Twente.

13. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1: Foundations. World Scientific, 1997.

	Introduction
	State Space Generation
	CTL Model Checking
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

