Graph Transformation in a Nutshell SegraVis School, Leicester, 8-11/09/2006

Reiko Heckel, Univ. of Leicester

University of
Leicester Rules of the PacMan Game:
Graph-Based Presentation, PacMan

pm:PacMan
_marbles: m+1

marbles=m

collect

Graph Transformation in a
Nutshell

Reiko Heckel
University of Leicester, UK

SegraVis Advanced School on Visual Modelling Techniques
Leicester 8-11 September 2006

Rules of the PacMan Game:

Why it is fun:
Graph-Based Presentation, Ghost

Programming By Example
StageCast (www.stagecast.com): a visual programming p
environment for kids (from 8 years on), based on .
= behavioral rules associated to graphical objects
= visual pattern matching

= simple control structures (priorities, sequence, choice, ...)
= external keyboard control moveGhost
= intuitive rule-based behavior modelling T
Next: abstract from concrete visual presentation
States of the PacMan Game:
Graph-Based Presentation Outline
% Graph Transformation
instance graph + why it is fun
(represents 2 « how it works
e o * Applications and Theory

gm i
£ marbles:int type grapi

(specifies legal

*
instance graphs
> state space)

Graph Transformation in a Nutshell
Reiko Heckel, Univ. of Leicester

A Basic Formalism: Typed Graphs

Directed graphs
=« multiple parallel edges
= undirected edges as pairs
of directed ones
Graph homomorphism as
mappings preserving
source and target

Typed graphs given by ! %
« fixed type graph 76 ¢ [Ghost | Field Je——ackan

1
1

X marbles:int |}

= instance graphs G |
1

typed over 7G by 76

homomorphism e . L

SegraVis School, Leicester, 8-11/09/2006

Transformation Step

:
mbepejl , R
f2:Field f1:Field
Lo Lo

‘—-i mi:Marble || G H

oreten] >

pm:PacMan
marbles=4

f1:Field

1. selectrule p:L 2 R; occurrence g, : L 2 G
2. remove from G the occurrence of L\ R
3. add to result a copy of R\ L

Rules

p: L 2 Rwith L n R well-defined, in different
presentations
= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L €« K 2> R

movePM:

% conservative solution: application is forbidden
= invertible transformations, no side-effects

% radical solution: delete dangling edges
= more complex behavior, requires explicit control

Rules

p: L 2 Rwith L n R well-defined, in different
presentations
= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L € K > R
= with £, Rintegrated [UML, Fujaba]:
L u R and marking
+ L -R as {destroyed}
+ R-L as {new}

movePM.

Semantic Questions: Conflicts
[][2a] > [ara]

% conservative solution: application is forbidden
= invertible transformations, no side-effects

% radical solution: give priority to deletion
= more complex behavior, requires explicit control

Graph Transformation in a Nutshell

SegraVis School, Leicester, 8-11/09/2006
Reiko Heckel, Univ. of Leicester

Motivation: Software Development as

Advanced Features Integration of Views
Dealing with unknown context o 5
= set-nodes (multi-objects): match all nodes with the required capture
connections l l
i User View B

= explicit (negative) context conditions

(turns f1 into a trap by reversing all outgoing edges to Field

transform

vertices, but only if there is no Ghost) Make sure there is |
an implementation
satisfying all
Control Structures requirements !

S 1. Aspects of requirements models
. p”c?ntalfr?med transformation 2. Conflicts between functional requirements
= progr: T rmatl 3. Theory and tool support

Aspects of Requirements Models
A bit of History ...

Model A Model B
Chomsky Term Petri 1. Static domain model: Agree on vocabulary first !
Grammars Rewriting Nets - class and object diagrams
l 1 1 2. Business process model: Which actions are performed
in which order ?
Graph Transformation and Graph Grammars > gisaegﬁgrs‘%,dg?gnptlon in natural language, activity or sequence
Diagram Models of Behaviour
Languages Computation Modelling and

Visual Programming

Structure: Class and Object Diagrams

Outl ine :Customer :Bill
. _cash =50
v Graph Transformation v gorran,;ﬁ!é aeg%ﬁeagﬁte’“atﬁﬂ
v'why it is fun

instance level :Cart
v how it works

L v i i :Cash B
» Applications and Theory feosrta:/?g\fvhﬁ\dt égf:t?(l)?}ues
= Modelling and Analysis of Functional Requirements
= Model Transformation and Semantics J'y”’”g
| customer [T il li Shop |
cash total > 0.1 |1 1
0..1 0.. >
o1 0TS |n..1

1
Cart Item I Rack CashBox
% 0.1} |

Graph Transformation in a Nutshell
Reiko Heckel, Univ. of Leicester

SegraVis School, Leicester, 8-11/09/2006

Behaviour: Use Case Description by Conflicts Between Functional

Structured Text

Shop
,

/ L—

v based on vocabulary Cust%ner)/ ,@m C%k

of integrated domain ¥
model z <<refine>> \

% take shopping cart " v ——

p » create empty bill for
» selec!: items from rack e
» take items out of cart ® take items out of
% pay required amount customer’s cart
% collect items % add them to the bill

% collect payment
X no way to % pack and give items to
e customer
tell if views are

consistent

Requirements

¥
Customer
customer ™
updates
Soum
cash “: 1000

= 1000

ET
[osh=s] [wo=m0]

pay bi"/t:/erk updates close bill
amount

x

Clerk

................. both delete
owns /ink

.
[cash =50 | _tota\ =10

Value = 10

*, [[:Cash Box
§ amoun!
= 1010

Aspects of Requirements Models

Model A Model B

v* Static domain model: Agree on vocabulary first !
- class and object diagrams

¥ Business process model: Which actions are performed
in which order ?

- use case description in natural language, activity or sequence
diagrams, etc.

3. Functional model: What happens if an action is
performed ?
- pre-/post conditions as logic constraints

- transformation rules on object diagrams
(Fusion, Catalysis, Fujaba, formally: graph transformations)

Theory: Independence, Causality and
Conflicts in Graph Transformation

» Alternative ster are parallel
independent if they do not
disable each other.

Otherwise they are /n confiict.

= Consecutive steps are
sequentially inadependent if
they may be swapped without
affecting the result.

Otherwise they are causally
dependent.

Idea: Find potential conflicts and
causal dependencies between
rules by critical pair analysis

G
P / Vz
H, H,
pz\ /71
X

Characterization [EPS73]:
Two (alternative or
consecutive) steps are
independent iff all
commonly accessed items
are in read-access only.

Function: Transformation Rules on
Object Diagrams

confilicting
actions

Tool Support: Critical Pair Analysis with AGG

lsixi

ing araphs of rules: payBll and setleBil- rished

Graph Transformation in a Nutshell SegraVis School, Leicester, 8-11/09/2006
Reiko Heckel, Univ. of Leicester

Usage Scenario Model-driven Development
1. 2.
—> UML —> Analysis »* Focus and primary artifacts » A math. foundation is
Modeller «——> | CASE Tool | «—— Tool :I 3. are models instead of needed for studying
5. 4. programs = Expressiveness and
1. input model to CASE tool complexity
2. import model by analysis tool x Core activities include = Execution and optimisation
3. analyze model for conflicts = maintaining consistency . Well—deﬁnedness
4. back annotate models with conflicts = evolution = Semantic correctness
5. interprete and improve models = translation of transformations
¢ o P Sho = execution
Dorg;g\ igzsg}nf ;1/}7/015%77 ® of models * Graph transformations can
not be in conflict” / <<disablesSy be one such foundation
Modeller: “inconsistency sell tems =S - * These are examples of
between views” Customer Clerk model transformations
Outline Qutline
v Graph Transformation * Model transformation paitivig
v why it is fun = denotational semantics
v how it works « analysis > synthesis refactoring
% Applications and Theory = operational semantics Abstract ;
3 Syntax
. Modelling and Analysis of Functional Requirements = refactoring
X . d jonal
= Model Transformation and Semantics) Semantics.
Domain
Abstract
1 H H Syntax
Visual Modeling Techniques Context-Free Graph Grammar j
Petri nets , \?/ Concrete Syntax of Well-Formed Activity Diagrams T
’ = _ Start Graph: | Act
! ‘ Productions in EBNF-like notation:
Function Block .
onTuR Diagrams Structured Analysis)
in in in .
W in
! Act
- At | w=
Class Diagrams (UML) T
os_Tme ot out
out

Graph Transformation in a Nutshell
Reiko Heckel, Univ. of Leicester

SegraVis School, Leicester, 8-11/09/2006

Analysis

available] ¥

b4
0 + 3 1
1
v
P~ 4
[product not) [product available] 2

@ client

6 5
calculate prize

1
send receipt

L

Is this Good Enough?

v Visual

= abstract syntax or
concrete syntax

x Expressive ?
= context-free graph
languages only

Abstract
Syntax

denotational
semantics

Semantic
Domain

Pair Grammar

Source: well-structured
activity diagrams

templates % Traceable ?
v Bi-directional = through naming
= swap source and target conventions
grammars x Efficient ?
v" Declarative = NP complete parsing
problem
X
=> Triple Graph Grammars
Outline
»* Model transformation operational

» denotational semantics

= operational semantics
= refactoring

refactoring

Abstract
Syntax

) denotational

semantics

Semantic
Domain

receive order -
check availability
if [product available]
then calculate prize
-> send receipt

send receipt

= 6
calculate prize
1

Target: CSP Proc(A)
. in in _
T [c] [not c] in
!
out
out out out
o ProcA1)> if [c] then Proc(A1) .
Proc(A) = Proc(A2) else Proc(A2) do something
Synthesis
L4
Proc(A0) 0 + 3 1
Proc(A1) = Proc(A2) T
Proc(A.?)mé @ !
Proc (A4) >
if [product available] 3 i
then Proc(A5) [product not [product available] 2
else Proc(A8) available] =

—

else notify client

Example:

Executable Business Process

» refactoring of business
processes, replacing
centralised by distributed
execution

* How to demonstrate
preservation of behaviour?
1. specify operational
semantics of processes
2. define transformations
3. show that transformations
preserve semantics

Warehouse Office

Graph Transformation in a Nutshell SegraVis School, Leicester, 8-11/09/2006

Reiko Heckel, Univ. of Leicester

i Rules:
Operational Semantics: Idea Invoke another Service

tar [artner

current

C) op(..) C) o1:0rch 02:0rch

m K partner

C o)) C o))
id=new() _'|‘O 02:0rch

% diagram syntax plus runtime state
% GT rules to model state transitions

op=i.op
Rules:
Operational Semantics: Formally Answer the Invocation
tar Ssrc
GTS = (TG, P) with start graph G, Lo [eReply | e e
defines transition system current
01:Orch mfmm 02:0rch r e
LTS(GTS, Ga) = (5; L, 9) | e:Edge |—'| r:Reply |‘—| e:Edgel
current
taking
= as states S all graphs reachable from G,
= observations on rules as labels
= transformations as transitions

Type Graph: response RUleS:

Metamodel Msg Receive the Response
op: S tring request
id: String i:Invoke src

with runtime state somT Teo —
current Orch request partner
from to

— partner | 01:Orch |~—| ml:Msg H 02:Orch |

response,
0 i

d:
corresponds

-i :Invoke
lresp(i.id, m2.id) current partner

0l:Orch

Graph Transformation in a Nutshell SegraVis School, Leicester, 8-11/09/2006

Reiko Heckel, Univ. of Leicester

Refactoring Executable Business

Simulation Processes
Orch 1 Orch 2 Orchl Orch 2
01:0rch | I i:Invoke I P I 02:0rchl delegate 0

Src

n

Edge Orch2.0p

request to <<reply>>
fo op

from

from ml:Ms m2:Ms
op=i.op op=r.op

response % replace local control flow by message passing

Observations: req(i.id, m1.id); reply(r.id, m1.id, m2.id); resp(i.id, m2.id)

Outline Preservation of Semantics
* Model transformation operational Show for each refactoring P = P’ that
+ denotational semantics n P S|mulate_s P,_ |.e., ’
~ operational semantics refactoring - P?_obs Q implies P’ >, Q
= refactoring Abstract D = Q s_lmulates Q
Syntax and vice versa.
) denotational
semantics
Approach: p—> Q
= mixed (local) confluence |
Pomain = critical pair analysis l l
obs
PI _)Ql
Example:
Executable Business Process Theory: Sources of Inspirations
% refactoring of business Chomsky Term Petri
processes, replacing Warehouse Office Grammars Rewriting Nets
centralised by distributed
execrutilon Y AR 1 1 1

Receive
order

Graph Transformation and Graph Grammars

® How to demonstrate

preservation of behaviour?
v specify operational [l l l
semantics of processes Shipment Undo
2. define transformations order = Formal language = Well-definedness = Concurrency theory
3. show that transformations theory of graphs; = Termination = Causality and conflict
= Confluence = Processes, unfoldings

preserve semantics | f
= Diagram compiler = Semantics of = Event-structures

generators process calculi

