
Tom Mens
Institut d’Informatique

Université de Mons-Hainaut
Belgium

Graph-Transformation-Based
Support for Model Evolution

SegraVis Advanced School on
Visual Modeling Techniques



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 2

Challenge:
Model-driven evolution

Observation
Model-driven software engineering approaches 

do not adequately address software evolution 
problems
Need better support (tools, formalisms) for



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 3

Goal of this talk

Show how graph transformation theory can 
help to

gain better understanding of ...
improve tool support for ...

... the following activities:
inconsistency management
model refactoring



Model Inconsistency Management
through Graph Transformation

An Experiment



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 5

Model inconsistency 
management

Goal
Specify model inconsistencies and their resolution 

strategies as graph transformation rules
Use this formalisation to support the inconsistency 

management process
Automate the detection of inconsistencies
Interactively support the resolution of inconsistencies

Analyse transformation dependencies to optimise this 
process

Detect sequential dependencies between resolution rules
Detect parallel conflicts between resolution rules that cannot be 
applied together
Remove redundancy between resolution rules
Provide “optimal” resolution strategies



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 6

Model inconsistency 
management
Iterative inconsistency resolution process



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 7

Example of inconsistency 
resolution

Illustration of the ripple effect
Let’s start with a simple motivating example of 

an inconsistent model

C:Class
«concrete»

op:Operation
«abstract» refers to

o:Object

concrete syntax abstract syntax

instance ofC obj« instance of »

myStateMachine
op Transition

« behaviour » Statemachine

contains

dangling operation
reference

behaviour



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 8

Example of inconsistency 
resolution

Illustration of the ripple effect
Resolution leads to a new inconsistency

C:Class
«concrete»

op:Operation
«abstract» refers to

o:Object

concrete syntax abstract syntax

instance ofC obj« instance of »

Transition

« behaviour » Statemachine

contains

abstract
operation

behaviour

op

contains

myStateMachine
op



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 9

Example of inconsistency 
resolution

Illustration of the ripple effect
Resolution leads to 2 new inconsistencies

C:Class
«abstract»

op:Operation
«abstract» refers to

o:Object

concrete syntax abstract syntax

instance ofC obj« instance of »

Transition

« behaviour » Statemachine

contains

abstract
statemachine

behaviour

op

contains

abstract object

myStateMachine
op



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 10

Example of inconsistency 
resolution

Illustration of the ripple effect
Resolution removes 1 inconsistency

c:Class
«abstract»

op:Operation
«abstract» refers to

o:Object

concrete syntax abstract syntax

C obj« instance of »

Transition

« behaviour » Statemachine

contains

abstract
statemachine

behaviour

op

contains

D:Class
«concrete»

gen instance of

myStateMachine
op



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 11

Example of inconsistency 
resolution

Illustration of the ripple effect
Resolution finally removes last remaining 

inconsistency

c:Class
«abstract»

op:Operation
«abstract» refers to

o:Object

concrete syntax abstract syntax

C obj« instance of »

Transition

« behaviour » Statemachine

contains

behaviour

op

contains

D:Class
«concrete»

gen instance of

myStateMachine
op



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 12

Tool support

SIRP tool
“Simple Iterative 

Resolution Process”
An interactive tool 

for selecting and 
resolving model 
inconsistencies



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 13

Tool support

SIRP tool in action
Before detecting any inconsistency



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 14

Tool support

SIRP tool in action
After detecting all inconsistencies



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 15

Tool support

SIRP tool in action
After resolving “duplicate class name”

Two occurrences of same inconsistency removed
Class renamed from “A” to “C”



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 16

Tool support

SIRP tool in action
After resolving “classless instance”

One occurrence of “classless instance” removed
One occurrence of “instanceless class” removed



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 17

Tool support

SIRP tool in action
After resolving “abstract object” (first try)

One occurrence of “abstract object” removed
One occurrence of “abstract operation” added !



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 18

Tool support

SIRP tool in action
After resolving “abstract object” (second try)

One occurrence of “abstract object” removed
One occurrence of “nameless instance” removed
One occurrence of “instanceless class” added



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 19

Tool support

SIRP tool in action
After disabling the “instanceless class” rule

Two occurrences of “instanceless class” ignored



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 20

Tool support

SIRP tool in action
After resolving “abstract operation”

One occurrence of “abstract operation” removed



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 21

Tool support

SIRP tool in action
After resolving “undefined parameter type”

One occurrence of “undefined parameter type”
removed



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 22

Tool support

SIRP tool in action
After resolving “nameless instance”

One occurrence of “nameless instance” removed
No more remaining inconsistencies !



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 23

Tool support

This tool relies on the underlying 
mechanism of graph transformation

for detecting inconsistencies
for proposing resolution rules
for analysing which of the proposed resolution 

rules is most appropriate

But how does this all work?



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 24

Tool support

The tool has been implemented on top of the AGG 
engine (version 1.4)

AGG is a general-purpose graph transformation tool

We used AGG in the following way
specify the UML metamodel as a type graph
specify the models as graphs
detect and resolve model inconsistencies by means of 
graph transformation rules
analyse mutual exclusion relationships and sequential 
dependencies between inconsistency resolutions by 
means of critical pair analysis



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 25

Step 1: Specify the 
metamodel
AGG type graph



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 26

statemachine diagram

Gear

AutomaticGear

selectNeutral
selectFirst
selectSecond

selectDrive()
reach2ndSpeed()
reach3rdSpeed()
dropBelow2ndSpeed()
dropBelow3rdSpeed()

boolean driveSelected

int noOfGears = 3

behaviour

Specify the UML model

Example of an inconsistent
UML model

Dangling Operation Reference
“selectReverse” is used in the
statemachine but is not defined
in class AutomaticGear or any
of its ancestors



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 27

Represent the UML model 
as a graph

Automatic generation of the corresponding graph 
representation for the UML state machine

This graph conforms to the type graph specified before



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 28

Step 2: Classify model 
inconsistencies

Dangling Type 
Reference

An operation has one or more parameters whose types are not 
specified

Classless Instance A model contains an instance specification that is not linked to a 
class

Abstract Object A model contains an instance specification that is an instance of an 
abstract class that does not have any concrete subclasses.

Abstract Operation An abstract operation is defined in a concrete class.

Abstract State 
Machine

A state machine expresses the behaviour of an abstract class that 
does not have any concrete subclasses. 

Cyclic Composition A class contains at least one instance of its subclasses through a 
composition relationship that may lead to an infinite containment of 
instances of the affected classes.

Dangling Operation 
Reference

A state machine contains a transition that refers to an operation that 
does not belong to any class (or that belongs to a different class 
than the one whose behaviour is expressed by the state machine).

Transition Without 
Operation

A transition does not have a referred operation attached to it.



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 29

Dangling operation reference
Using graph representation

Example of a model 
inconsistency

Class
name=“AutomaticGear”
isAbstract=false

Operation
name=“selectDrive”

StateMachine
behaviour

Region Transition

State

contains

Operation
name=“selectReverse”

State

contains

referredOperation

source

target

Conflict
description=“dangling operation reference”

contains

name=“Neutral”

name=“Reverse”
name=“selectNeutral”

Operation

Class
name=“Gear”
isAbstract=false

containsgen



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 30

Step 3: Specify model 
inconsistencies 

Using graph transformation
Example: Dangling operation reference

left-hand side
(LHS)

right-hand side
(RHS)

negative application
condition (NAC)



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 31

Step 4: Identify 
inconsistency resolutions

Dangling 
Operation Ref.

Res1 Add the operation to the class (or one of its ancestor classes) 
whose behaviour is described by the state machine.

Res2

Res3 Remove the reference from the transition to the operation.
Res3

Res1

Res2

Res3

Res1

Res2

Res3

Let the transition refer to an existing operation belonging to the 
class (or one of its ancestors) whose behaviour is described by 
the state machine.

Remove the transition.
Classless 
Instance

Remove the instance specification.

Link the instance specification to an existing class.
Link the instance specification to a new class.

Abstract Object Change the abstract class into a concrete one.
Add a concrete descendant of the abstract class, and redirect 
the outgoing instance-of relation of the instance specification to 
this concrete descendant.
Remove the instance specification.



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 32

Step 5: Specify 
inconsistency resolutions

Using graph transformation
Example: Dangling Operation Reference



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 33

Step 6: Detect mutually 
conflicting resolution rules

Some resolution rules cannot be jointly applied 
(parallel conflict!)

Conflict graph can be generated by means of critical pair 
analysis



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 34

Informal definition (parallel conflict)
T1 and T2 form a critical pair if

they can both be applied to the same initial graph G
applying T1 prohibits application of T2

G H1 X
T1 T2

Step 6: Detect mutually 
conflicting resolution rules

G H2

T2



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 35

Step 6: Detect mutually 
conflicting resolution rules
Example of a critical pair detecting a 

parallel conflict between resolution rules
the resolution rules are not jointly applicable



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 36

Step 7: Detect / analyse
sequential dependencies

Some resolution rules may give rise to 
opportunities for applying other resolution rules

Graph of sequential dependencies generated by AGG



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 37

Informal definition (sequential dependency)
T2 sequentially depends on T1 if

T1 can be applied to G but T2 cannot
applying T1 triggers application of T2

G H1 X
T1 T2

Step 7: Detect / analyse
sequential dependencies

G H2

T2



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 38

Step 7: Detect / analyse
sequential dependencies
Example of a sequential dependency

representing an induced inconsistency
resolution rule gives rise to a new inconsistency



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 39

Step 7: Detect / analyse
sequential dependencies

Some resolution rules 
may give rise to new 
model inconsistencies

Can be detected by 
analysing the dependency 
graph



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 40

Step 7: Detect / analyse
sequential dependencies

We can use the dependency graph to detect 
potential cycles in the resolution process

Cycles should be avoided, since this implies that 
the resolution process may continue forever…



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 41

Step 8: Tool
support revisited

open graph and apply all 
detection rules

list all found inconsistencies 
(Conflict nodes in the graph)

list all resolution rules for 
selected inconsistency

apply selected resolution
rule to the graph

display resolution
history



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 42

Step 8: Tool
support revisited

Detection or 
resolution rules may 
be disabled by the 
user



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 43

Step 8: Tool support 
revisited

A resolution rule may be parametrised
e.g. DanglingTypeRef-Res3(n,a)

User needs to provide necessary input values



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 44

Step 8: Tool support 
revisited

A rule may have several possible matches

Class

Instance
Specification

instance of

classless instance

name = “A”
Class

name = “B”
Class

name = “C”



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 45

Step 8: Tool support 
revisited

Future work
Direct integration of interactive support in a UML 

modeling environment
Direct generation of type graph from the UML 

metamodel
Direct generation of inconsistency detection 

rules from given metamodel
User-friendly specification of resolution rules 

using some UML representation (Fujaba-like?)
Support for more complex (composite) 

resolution rules



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 46

Discussion topics

Optimality
Expressiveness
Completeness
Compositionality
Termination



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 47

Discussion topics

Optimality
Find an “optimal way” to resolve model 

inconsistencies
How can we define “optimality”?
Use heuristics and resolution strategies, locally 

as well as globally
Avoid resolution rules that introduce too many new 
inconsistencies
Prefer resolution rules that add new model elements 
over rules that remove model elements
Take into account, and “learn”, resolution rules 
preferred by the user
other strategies?



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 48

Discussion topics

Expressiveness
Can all model inconsistencies be expressed?

Which types of model inconsistency can be 
expressed?
Graphs are well-suited for detecting structural 
problems
Behavioural problems are more difficult to express
Possible solution: use other formalisms (e.g. based on 
description logics) to detect behavioural problems

– Integrate both formalisms in a common tool for model 
inconsistency management

Can all resolution rules be expressed?



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 49

Discussion topics

Completeness
Are all possible model inconsistencies 

expressed?
Can they be generated automatically?

Are all possible ways to resolve a particular 
inconsistency covered by the resolution rules?

Can they be generated automatically?



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 50

Discussion topics

Compositionality
How to define resolution strategies as a 

composition of primitive resolution rules?
Using sequencing, branching, looping constructs

How does this affect the conflict and 
dependency analysis? 



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 51

Discussion topics

Termination
Given a set of resolution rules, can we prove 

that it will resolve all detected inconsistencies 
and terminate in a finite amount of time?

Rely on termination results of graph transformation



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 52

Conclusion

Graph transformation seems to be a viable option 
to support certain activities in model-driven 
software engineering

But it is no “silver bullet”

Alternative mechanisms
and formalisms are
also needed



© Tom Mens, Invited Lecture, SegraVis Summer School, September 2006 53

Conclusion

There is still a long way to go ...There is still a long way to go ...

Questions ?


	Graph-Transformation-Based�Support for Model Evolution
	Challenge:�Model-driven evolution
	Goal of this talk
	Model Inconsistency Management�through Graph Transformation
	Model inconsistency management
	Model inconsistency management
	Example of inconsistency resolution
	Example of inconsistency resolution
	Example of inconsistency resolution
	Example of inconsistency resolution
	Example of inconsistency resolution
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Tool support
	Step 1: Specify the metamodel
	Specify the UML model
	Represent the UML model as a graph
	Step 2: Classify model inconsistencies
	Example of a model inconsistency
	Step 3: Specify model inconsistencies 
	Step 4: Identify inconsistency resolutions
	Step 5: Specify inconsistency resolutions
	Step 6: Detect mutually conflicting resolution rules
	Step 6: Detect mutually conflicting resolution rules
	Step 6: Detect mutually conflicting resolution rules
	Step 7: Detect / analyse sequential dependencies
	Step 7: Detect / analyse sequential dependencies
	Step 7: Detect / analyse sequential dependencies
	Step 7: Detect / analyse sequential dependencies
	Step 7: Detect / analyse sequential dependencies
	Step 8: Tool�support revisited
	Step 8: Tool�support revisited
	Step 8: Tool support revisited
	Step 8: Tool support revisited
	Step 8: Tool support revisited
	Discussion topics
	Discussion topics
	Discussion topics
	Discussion topics
	Discussion topics
	Discussion topics
	Conclusion
	Conclusion

