
Synchronised Hyperedge Replacement as a Model for
Service Oriented Computing?

Gian Luigi Ferrari1, Dan Hirsch2, Ivan Lanese3, Ugo Montanari1, and Emilio Tuosto4

1Computer Science Department, University of Pisa, Italy; {giangi,ugo}@di.unipi.it
2Computer Science Department, University of Pisa, Italy and Department of Computing,

Imperial College, London, UK; dhirsch@doc.ic.ac.uk
3Computer Science Department, University of Bologna, Italy; lanese@cs.unibo.it
4Computer Science Department, University of Leicester, UK; et52@mcs.le.ac.uk

Abstract This tutorial paper describes a framework for modelling several as-
pects of distributed computing based on Synchronised Hyperedge Replacement
(SHR), a graph rewriting formalism. Components are represented as edges and
they rewrite themselves by synchronising with neighbour components the pro-
ductions that specify their behaviour. The SHR framework has been equipped
with many formal devices for representing complex synchronisation mechanisms
which can tackle mobility, heterogeneous synchronisations and non-functional
aspects, key factors of Service Oriented Computing (SOC). We revise the SHR
family as a suitable model for contributing to the formalisation of SOC systems.

1 Introduction

Modern distributed inter-networking systems are very complex and constituted by a
varied flora of architectures and communicating infrastructures. Such systems are het-
erogeneous, geographically distributed and highly dynamic since the communication
topology can vary and the components can, at any moment, connect to or detach from
the system. Recently, Service Oriented Computing (SOC) has emerged as a suitable
paradigm for specifying such global systems and applications. Engineering issues are
tackled by exploiting the concept of services, which are the building blocks of systems.
Services are autonomous, platform-independent, mobile/stationary computational enti-
ties. In the deployment phase, services can be independently described, published and
categorised. At runtime they are searched/discovered and dynamically assembled for
building wide area distributed systems.

All this requires, on the one hand, the development of foundational theories to cope
with the requirements imposed by the global computing context, and, on the other hand,
the application of these theories for their integration in a pragmatic software engineer-
ing approach. At the architectural level, the fundamental features to take into account
for the description of components and their interactions include: dynamic (possibly self
organising) reconfiguration, mobility, coordination, complex synchronisation mecha-
nisms, and awareness of Quality of Service (QoS).

? Partially supported by the Project EC FET – Global Computing 2, IST-2005-16004 SENSORIA.

2 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

Process calculi are among the most successful models for concurrency and, in the
last years, CSP [19], CCS [26] and π-calculus [27] gained paramount relevance and
helped to understand many of the phenomena arising in distributed computing. Many
of the recent proposals like Ambient [2], Klaim [8], Join [12] and D-π [30] (to cite a
few) have been deeply inspired by the work on CSP, CCS and π-calculus. Also, dis-
tributed systems can be naturally modelled by means of graph-based techniques [32].
Among those, we choose Synchronised Hyperedge Replacement (SHR) where systems
are modelled as hypergraphs, that is graphs where each (hyper)edge can be connected
to any number of nodes (instead of just two). Edges represent components connected
via shared nodes (representing communication ports).

Originally, SHR aimed at modelling distributed systems and software architectures,
however, it turns out to be expressive enough to model many process calculi. In fact, it
can naturally encode π-calculus [14], Ambient and Klaim [33] or Fusion [23]. In our
opinion, SHR conjugates the ability of expressing various forms of synchronisation and
communication features (typical of process calculi) with a suggestive visual represen-
tation of systems’ topology (typical of graph models). In SHR, constraint satisfaction
is exploited to guide rewriting by synchronising context-free productions that specify
the behaviour of single edges. Productions define how an edge can be rewritten into a
generic graph and the conditions that this rewriting imposes on adjacent nodes. Global
transitions are obtained by parallel application of productions with “compatible” condi-
tions. What “compatible” exactly means depends on the chosen synchronisation model.
The Hoare model (so called since it extends CSP synchronisation [19]), for instance,
requires that all edges connected to the same node execute the same action on it. In-
stead, the Milner model (extending the model of CCS [26]) requires exactly two edges
to interact by performing complementary actions while the other edges must stay idle
on that node. SHR, and in particular its variant SHR-HS [25] (outlined in § 7), allows
also different synchronisation policies to live together in a single framework.

Aims and structure of the paper A number of published results (see the brief bibli-
ographic note at the end of this section) is here collected with the main goal to give
a systematic presentation of the SHR approach. A relevant effort has indeed been put
on giving a uniform and incremental presentation. Also, we tried to help intuition by
showing how the various synchronisation mechanisms actually extend the basic model
discussed in § 3. It might be useful to have the many versions of SHR harmonised
within a common formal context and we hope to have been able to clearly introduce the
SHR family by rephrasing it in simpler, yet rigorous, definitions.

Preliminary definitions and notations for graphs are reported in § 2. We introduce
basic Milner SHR (bMSHR for short) in § 3, where the mathematical basis of SHR
are discussed in the simpler framework based on Milner synchronisation without con-
sidering name mobility and name fusion. These aspects are added in § 4, giving rise
to MSHR. This extension allows to substantially increase the expressivity of the ap-
proach for modelling both architectural and programming aspects of mobile and re-
configurable distributed applications. In § 5 we define Synchronisation Algebras with
Mobility (SAMs for short), an abstract formalisation of the concept of synchronisation
model, extending Winskel’s synchronisation algebras (SAs) [35] to cope with mobility
and handling of local resources. SAMs are exploited in § 6, where we present paramet-

SHR as a Model for SOC 3

ric SHR [24,22] which permits to abstract from the synchronisation model by choosing
each time the most adequate SAM (whose primitives correspond to the ones used in the
modelled system). Parametric SHR smoothly adapts SHR to various interaction mech-
anisms; for instance, it can uniformly represent MSHR and SHR with Hoare synchro-
nisation. A first SAM-based SHR is SHR for heterogeneous systems (SHR-HS) [25,21]
in § 7 where different SAMs can be associated to different nodes. SHR-HS has been
devised to model systems where heterogeneity concerns both applications and their
underlying middlewares so that different synchronisation policies can be used and dy-
namically changed (and, hence, negotiated) within systems. This feature is fundamental
to model coordination at the application level, where interaction patterns are dynami-
cally determined. Another SAM-based SHR proposal is SHReQ [17] (§ 8), an SHR
framework for handling abstract high-level QoS requirements expressed as constraint-
semirings (c-semirings) [1], algebraic structures suitable for multi-criteria QoS [6]. We
exploit the algebraic features of c-semirings by embedding them in the SHR synchroni-
sation mechanism: interactions among components are ruled by synchronising them on
actions that are c-semiring values, expressing QoS constraints imposed by all compo-
nents participating to the synchronisation. Finally, in § 9 we outline our plans for future
investigations.

Brief SHR bibliography Various facets of SHR have been studied w.r.t. issues related
to distributed systems. SHR has been introduced in [3] with the name of “Grammars
for Distributed Systems”. Here Hoare synchronisation was used, and the emphasis was
on analysing the history of the computation, explicitly represented as part of the graph.
Infinite computations and concurrency issues have been considered in [9] while [4] ex-
tends SHR by allowing to merge and split nodes. In [31] there is a presentation of SHR
inside the Tile Model [13], and an approach to find the allowed transitions using con-
straint solving techniques is also proposed. A main extension is given in [15], where
node mobility is added. This is obtained by allowing actions to carry tuples of nodes.
When actions synchronise the carried tuples of nodes are merged. This allows to create
new connections at runtime. In literature, inference rules (in the SOS style [29]) based
on a notation for representing graphs as syntactic judgements are defined for different
mobile synchronisation mechanisms, presenting SHR as a general model for mobile
process calculi. However, SHR extends process algebras to allow synchronisations of
any number of partners and on any number of channels at the same time. In [15] only
newly created nodes can be communicated and merged. In [20] a mapping into the Tile
Model [13] is used to prove that an ad hoc bisimilarity is a congruence. Another impor-
tant step is made in [16], where also old nodes can be communicated, but they can be
merged only with new nodes. This kind of SHR, with Milner synchronisation, is shown
to be strictly related [16] to π-calculus [27]. A later improvement is presented in [10],
where fusions of arbitrary nodes are allowed. These are exploited [10,23] to give se-
mantics to the Ambient Calculus [2] and to the Fusion Calculus [28]. Finally, in [24,22]
the SHR synchronisation mechanism is generalised allowing a complete parametrisa-
tion of SHR w.r.t. the synchronisation and mobility policies. Many applications of SHR
can be found in literature, in particular in the field of process calculi [33], of software
architectures [14,15,5] and QoS [17].

4 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

2 Hypergraphs

In this section we introduce a presentation of (hyper)graphs as (syntactic) judgments,
which is convenient to write the rules for describing SHR behaviour. We first introduce
some mathematical notations.
Notation. Given a set V , we let V ∗ be the set of tuples on V . We denote a tuple as
v = 〈v1, . . . ,vn〉, the empty tuple as 〈〉, the i-th element of v as v[i], and write |v| for the
length of v.

Given a function f , dom(f) is its domain, and function f�S is the restriction of f to
S, namely f�S (x) = f (x) if x ∈ S, f�S (x) is undefined otherwise. We denote with f ◦g
the composition of f and g, namely (f ◦g)(x) = f (g(x)).

For a syntactic structure s with names and binders, fn(s) is the set of its free names.
A graph is composed by a set of nodes and a set of (hyper)edges which connect

nodes. Set N is a countable infinite set of node names while set L is the set of edge
labels. A label L ∈ L is assigned a rank, i.e., a natural number (denoted as rank(L)). An
edge labelled by L connects rank(L) nodes and a node connected to an edge is said to
be an attachment node of that edge.

A syntactic judgment specifies a graph along with its interface, i.e., its free nodes.

Definition 2.1 (Graphs as judgements). A judgment has form Γ ` G where:

1. Γ ⊆ N is a finite set of names (the free nodes of the graph);
2. G is a graph term generated by the grammar

G ::= L(x) | G|G | νy G | nil

where x is a tuple of names, L ∈ L , rank(L) = |x| and y is a name.

In νy G, restriction operator ν binds y in G, fn(G) is defined accordingly as usual and
we demand that fn(G) ⊆ Γ.

Graph nil is the empty graph, | is the parallel composition operator of graphs (merging
nodes with the same name) and νy is the restriction operator of nodes; free/bound nodes
correspond to free/bound names. Edges are terms of the form L(x1, . . . ,xn), where the
xi are arbitrary names and rank(L) = n. Condition fn(G) ⊆ Γ accounts for having free
isolated nodes in G (e.g., {x} ` nil is graph with only the isolated node x).

We assume that restriction has lower priority than parallel composition. For con-
ciseness, curly brackets are dropped from interfaces Γ in judgements and Γ1,Γ2 denotes
Γ1 ∪Γ2, provided that Γ1 ∩Γ2 = /0 (e.g., Γ,x = Γ∪{x}, if x /∈ Γ).

Example 2.2. Consider the judgment

u ` νz1, . . . ,zn Bn(u,z1, . . . ,zn)|S1(z1)| . . . |Sn(zn)

which describes a system where many servers Si are connected to the network via a
manager Bn and can be graphically represented as:

◦z1 ...
S1oo

•
u

Bnoo ◦
...

zi
Si

oo

...

◦zn Sn
oo

...

SHR as a Model for SOC 5

Edges are drawn as rectangles and nodes are bullets (empty for bound nodes and solid
for free nodes). A connection between a node and an edge is represented by a line,
called tentacle; an arrowed tentacle indicates the first attachment node of the edge. The
other nodes are determined by numbering tentacles clockwise (e.g., for Bn, u is the first
attachment node, z1 is the second and so on).

Definition 2.3 (Structural congruence on graph judgements). Graph terms are con-
sidered up to axioms (AG1÷7) below:

(AG1) (G1|G2)|G3 ≡ G1|(G2|G3) (AG2) G1|G2 ≡ G2|G1 (AG3) G|nil ≡ G

(AG4) νx νy G ≡ νy νx G (AG5) νx G ≡ G if x /∈ fn(G)

(AG6) νx G ≡ νy G{y/x}, if y /∈ fn(G) (AG7) νx G1|G2 ≡ G1|νx G2, if x /∈ fn(G1)

For judgments, we define Γ1 ` G1 ≡ Γ2 ` G2 iff Γ1 = Γ2 and G1 ≡ G2.

Axioms (AG1), (AG2) and (AG3) define respectively the associativity, commutativity
and identity over nil for operator |. Axioms (AG4) and (AG5) state that nodes can be
restricted only once and in any order. Axiom (AG6) defines α-conversion of a graph w.r.t
its bound names. Axiom (AG7) defines the interaction between restriction and parallel
composition (note that function fn is well-defined on equivalence classes). We consider
judgements for graphs up to structural congruence which amounts to consider graphs
up to graph isomorphisms that preserve free nodes, labels of edges, and tentacles [14].

3 Basic Milner SHR

The simplest version of SHR is basic Milner SHR (bMSHR), where “basic” refers to
the absence of mobility and “Milner” is reminiscent of the CCS synchronisation. Later,
bMSHR will be extended with mobility and more complex synchronisation policies.

Milner synchronisation models two-parties synchronisation and requires that ac-
tions are partitioned into normal actions a and co-actions a (where a = a). Furthermore,
there are two special actions: an action ε standing for “not taking part to the synchro-
nisation” and an action τ representing a complete binary synchronisation. Thus, Milner
synchronisation on a node x requires two complementary actions to interact, while other
connected edges must stay idle on x (i.e., they all exhibit action ε on x). The final result
of the synchronisation is τ.
Notation. A renaming is a function σ : N →N , xσ is the application of σ to x∈ dom(σ)
and yields σ(x). If σ ◦σ = σ, the renaming is said idempotent and is injective when σ
is injective. Renaming {x/y} is such that {x/y}(y) = x and {x/y}(z) = z for all z 6= y in
the domain of {x/y}.

We use {(x,y) | x ∈ dom(f) ∧ y = f (x)} as a set-theoretic representation of a
function f .

We can now define transitions, and then we show some inference rules to derive
them from productions.

Definition 3.1 (SHR transitions). A relation Γ ` G
Λ
−→ Γ ` G′ is an SHR transition if

Γ ` G and Γ ` G′ are judgments for graphs, and Λ : Γ → Act is a total function, where
Act is a set of actions.

6 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

Intuitively transition Γ ` G
Λ
−→ Γ ` G′ specifies that graph Γ ` G is rewritten into Γ ` G′

and, while doing this, the action Λ(x) is performed on each node x in the interface Γ.
Notice that the starting and the final graph share the same interface.

Productions are special transitions specifying the behaviour of a single edge.

Definition 3.2 (Productions). A production is an SHR transition of the form:

x1, . . . ,xn ` L(x1, . . . ,xn)
Λ
−→ x1, . . . ,xn ` G (1)

where rank(L) = n and x1, . . . ,xn are all distinct. Production (1) is idle iff Λ(xi) = ε for
each i and G is L(x1, . . . ,xn).

A transition is obtained by composing productions in a set P that contains any idle
production and is closed under all injective renamings (that is, the application of an
injective renaming to a productions in P yields productions in P).

Composition is performed by merging nodes and thus connecting the edges. Syn-
chronisation conditions as specified in productions must be satisfied.

Definition 3.3 (Inference rules for bMSHR). The admissible behaviours of bMSHR
are defined by the following inference rules.

(par-b)
Γ ` G1

Λ
−→ Γ ` G2 Γ′ ` G′

1
Λ′

−→ Γ′ ` G′
2 Γ∩Γ′ = /0

Γ,Γ′ ` G1|G′
1

Λ∪Λ′

−−−→ Γ,Γ′ ` G2|G′
2

(merge-b)
Γ ` G1

Λ
−→ Γ ` G2

Γσ ` G1σ Λ′

−→ Γσ ` G2σ
where σ : Γ → Γ is an idempotent renaming and:

1. for all x,y ∈ Γ such that x 6= y, if xσ = yσ, Λ(x) 6= ε and Λ(y) 6= ε then
(∀z ∈ Γ\{x,y}.zσ = xσ ⇒ Λ(z) = ε) ∧ Λ(x) = a ∧ Λ(y) = a ∧ a 6= τ

2. Λ′(z) =







τ if xσ = yσ = z ∧ x 6= y ∧ Λ(x) 6= ε ∧ Λ(y) 6= ε
Λ(x) if xσ = z ∧ Λ(x) 6= ε
ε otherwise

(res-b)
Γ,x ` G1

Λ
−→ Γ,x ` G2 Λ(x) = ε∨Λ(x) = τ

Γ ` νx G1
Λ�Γ−−→ Γ ` νx G2

(new-b)
Γ ` G1

Λ
−→ Γ ` G2 x /∈ Γ

Γ,x ` G1
Λ∪{(x,ε)}
−−−−−→ Γ,x ` G2

Rule (par-b) deals with the composition of transitions which have disjoint sets of nodes
and rule (merge-b) allows to merge nodes. Condition 1 requires that at most two non ε
actions are performed on nodes to be merged. If they are exactly two then they have to
be complementary, and the resulting action is τ (condition 2). Since σ is required to be
idempotent, it yields an equivalence relation on Γ and a choice of a standard represen-
tative. In fact, x,y ∈ Γ are equivalent under σ iff xσ = yσ; the representative element

SHR as a Model for SOC 7

of the equivalence class of x is xσ. Rule (res-b) binds node x. This is allowed only if
either τ or ε actions are performed on x, forcing either a complete synchronisation (τ)
or no synchronisation (ε). Rule (new-b) allows to add to the source graph an isolated
free node where an action ε is performed.

Example 3.4. Consider an instance of the system in Example 2.2 where edge B2(u,z1,z2)
takes requests on node u and broadcasts them to S1(z1) and S2(z2) by synchronising on
nodes z1 and z2, respectively. The productions for B2 and Si (i ∈ {1,2}) are:

u,z′1,z
′
2 ` B2(u,z′1,z

′
2)

(u,req),(z′1,req),(z′2,req)
−−−−−−−−−−−−−→ u,z′1,z

′
2 ` B2(u,z′1,z

′
2) (2)

zi ` Si(zi)
(zi,req)
−−−−→ zi ` S′i(zi) (3)

The inference rules for bMSHR can be used to derive transition

u,z1,z2 ` B2(u,z1,z2)|S1(z1)|S2(z2)
(u,req)
−−−−→ u ` νz1,z2 B2(u,z1,z2)|S′1(z1)|S′2(z2)

a proof of which can be as follows. First, rule (par-b) is applied to productions (2)
and (3) for S1 and then applied again the production (3) for S2. This yields a transition
whose target graph is u,z′1,z

′
2,z1,z2 ` B2(u,z′1,z

′
2)|S1(z1)|S2(z2). Then, synchronisation

is obtained by applying rule (merge-b) with substitution {z1/z′1,z2/z′2} so that, on node
z1 (resp. z2), complementary actions req by B2 and req by S1 (resp. S2) are performed,
producing a τ. Finally, z1 and z2 can be restricted using rule (res-b).

4 Milner SHR

This extension introduces a main feature of SHR, namely mobility. In the SHR frame-
work mobility is intended as node mobility: nodes can be created and communicated
together with actions, and when two actions interact corresponding nodes are merged.
This allows to change the graph topology by creating new links during the computation.

We extend the definition of SHR transitions (Definition 3.1), adding the mobility
part according to the approach of [10], which allows to send and merge both already
existent and newly created nodes. We first formalise our alphabet of actions.

Definition 4.1 (Action signature). An action signature is a triple (Act,ar,ε) where Act
is the set of actions, ε ∈ Act, and ar : Act → N is the arity function satisfying ar(ε) = 0.

The action signature (ActMil,ar,ε) for Milner synchronisation has further structure.
In fact, ActMil = A∪A ∪{τ,ε} where A is the set of (input) actions and A = {a | a∈A}
is the set of co-actions, τ is a special action with ar(τ) = 0. Finally, for each a ∈ A we
have the constraint that ar(a) = ar(a).

Mobility is modelled by letting function Λ in transitions to carry tuples of nodes.
Hereafter, Λ : Γ → (Act ×N ∗) is a total function assigning, to each node x ∈ Γ, an
action a ∈ Act and a tuple y of node references sent to x such that ar(a) = |y|. We let
actΛ(x) = a and nΛ(x) = y when Λ(x) = (a,y). Finally, the set of communicated (resp.
fresh) names of Λ is n(Λ) = {z | ∃x.z ∈ nΛ(x)} (resp. ΓΛ = n(Λ)\Γ).

8 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

Definition 4.2 (SHR transitions with mobility). Given an action signature (Act,ar,ε)
as described above, a SHR transition with mobility is a relation of the form:

Γ ` G
Λ,π
−−→ Φ ` G′

where π : Γ → Γ is an idempotent renaming accounting for node merging such that
∀x ∈ n(Λ). xπ = x. Finally, Φ = Γπ∪ΓΛ.

As for σ in Definition 3.3, idempotency of π introduces equivalence classes on nodes
and maps every node into a standard representative. By condition ∀x ∈ n(Λ). xπ = x,
only references to representatives can be sent while Φ = Γπ∪ΓΛ states that free nodes
are never erased (⊇) and new nodes are bound unless communicated (⊆).

Note that Φ is fully determined by Λ and π (since Γ = dom(Λ)) and that, unlike in
bMSHR, it might be Φ 6= Γ.

The definition of productions is extended as follows.

Definition 4.3 (Productions). A production is now an SHR transition of the form:

x1, . . . ,xn ` L(x1, . . . ,xn)
Λ,π
−−→ Φ ` G (4)

where rank(L) = n and x1, . . . ,xn are all distinct. Production (4) is idle if Λ(xi) = (ε,〈〉)
for each i, π = id and Φ ` G = x1, . . . ,xn ` L(x1, . . . ,xn).

As before, sets of productions include all the idle productions and are closed under
injective renamings.

MSHR semantics (and the successive extensions) exploits a most general unifier
(mgu) accounting for name fusions. The result of the application of the mgu is the
fusion of nodes (new and old ones) changing the topology of graph (i.e. mobility).

The rules for MSHR presented below extend the ones for bMSHR with the machin-
ery to deal with mobility.

Definition 4.4 (Inference rules for MSHR). The admissible behaviours of MSHR are
defined by the following inference rules.

(par-M)
Γ ` G1

Λ,π
−−→ Φ ` G2 Γ′ ` G′

1
Λ′,π′
−−−→ Φ′ ` G′

2 (Γ∪Φ)∩ (Γ′∪Φ′) = /0

Γ,Γ′ ` G1|G′
1

Λ∪Λ′,π∪π′
−−−−−−→ Φ,Φ′ ` G2|G′

2

(merge-M)
Γ ` G1

Λ,π
−−→ Φ ` G2

Γσ ` G1σ Λ′,π′
−−−→ Φ′ ` νU G2σρ

where σ : Γ → Γ is an idempotent renaming and:

1. for all x,y ∈ Γ such that x 6= y, if xσ = yσ ∧ Λ(x) 6= ε ∧ Λ(y) 6= ε then
(∀z ∈ Γ\{x,y}.zσ = xσ ⇒ Λ(z) = ε) ∧ Λ(x) = a ∧ Λ(y) = a ∧ a 6= τ

2. S1 = {nΛ(x) = nΛ(y) | xσ = yσ}
3. S2 = {x = y | xπ = yπ})
4. ρ = mgu((S1∪S2)σ) and ρ maps names to representatives in Γσ whenever possible

SHR as a Model for SOC 9

5. Λ′(z) =







(τ,〈〉) if xσ = yσ = z ∧ x 6= y ∧ actΛ(x) 6= ε ∧ actΛ(y) 6= ε
(Λ(x))σρ if xσ = z ∧ actΛ(x) 6= ε
(ε,〈〉) otherwise

6. π′ = ρ�Γσ
7. U = (Φσρ)\Φ′

(res-M)
Γ,x ` G1

Λ,π
−−→ Φ ` G2

Γ ` νx G1
Λ�Γ,π�Γ−−−−→ Φ′ ` νZ G2

where:

6. (∃y ∈ Γ.xπ = yπ) ⇒ xπ 6= x
7. actΛ(x) = ε∨ actΛ(x) = τ
8. Z = {x} if x /∈ n(Λ�Γ),Z = /0 otherwise

(new-M)
Γ ` G1

Λ,π
−−→ Φ ` G2 x /∈ Γ∪Φ

Γ,x ` G1
Λ∪{(x,ε,〈〉)},π
−−−−−−−−→ Φ,x ` G2

Rules (par-M) and (new-M) are essentially as before. In rule (merge-M) now mobil-
ity must be handled. In particular, when actions and co-actions synchronise, parameters
in corresponding positions are merged. This set of merges is computed in S1 (condi-
tion 2), while S2 (condition 3) describes old merges traced by π. Condition 4 combines
the two sets of equations, updates them with σ and then chooses a representative for
each equivalence class using a mgu. Among the possible equivalent mgus we choose
one of those where nodes in Γσ are chosen as representatives (if they are in the equiv-
alence class). This is necessary to avoid unexpected renamings of nodes because of
fusions with new nodes which may then disappear. Note that (condition 5) Λ is up-
dated with the merges specified by ρ and that (condition 6) π′ is ρ restricted to the
nodes of the graph which is the source of the transition. We may have to reintroduce re-
strictions (condition 7) if some nodes were extruded by the synchronised actions, since
they will no more appear in the label. In rule (res-M) the bound node x must not be a
representative if it belongs to a non trivial equivalence class.

Example 4.5. Consider the system in Example 3.4 with two servers S1 and S2, but
where a client C must be first authenticated by an authority A. The graph represent-
ing the system is as follows:

◦z1 S1oo

C // •
x

Aoo ◦
u

B2oo

◦z2 S2oo

We can model the fact that C is allowed to access the services by letting it move from
node x to node u, namely by extruding the private node u to C. The productions for C

10 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

and A are as follows:

x `C(x)
(x,auth,〈y〉)
−−−−−−→ x,y `C′(y) x,u ` A(x,u)

(x,auth,〈u〉)
−−−−−−→ x,u ` A(x,u)

where, in the first production the client becomes attached to the received node y after
the transition. In fact, when synchronisation is performed, new node y and node u are
merged, with u as representative. Note that the restriction on u is reintroduced. Starting
from x ` νu C(x) | A(x,u) we will obtain x ` νu C′(u) | A(x,u).

5 Synchronisation Algebras with Mobility

Synchronisation Algebras with Mobility (SAMs) allow us to parameterise SHR w.r.t.
synchronisation models, e.g., MSHR will come out as just a particular instance of the
general framework. SAMs extend synchronisation algebras (SAs), introduced in the
framework of calculi for interaction such as CCS in [35]. Specifically, SAMs allow us
to deal with mobility and to handle local resources (i.e., restriction), as they are used in
SHR and more generally in mobile calculi. In general, SAMs must be able to express
the synchronisation among any number of actions, each carrying its tuple of parameters.
Actions from a multiset {|a1, . . . ,an|} can interact, and either they express compatible
constraints, thus the system can perform a transition where these actions are executed
on the same node, or they express incompatible constraints. For instance, in Milner
synchronisation, a synchronisation among a, a and ε is allowed, while one involving a
and b is not. With respect to [35], SAMs require to manage nodes carried by the actions.

A main ingredient in the formalisation of SAMs is the action synchronisation, which
specifies an allowed pattern of interaction between two components. Before giving the
definition, some notations are required.
Notation. The disjoint union of sets A and B is denoted as A]B and inj1 : A → A]B
(resp. inj2 : B → A]B) is the left (resp. right) inclusion. When no confusion arises,
inji(x) is written as x. Given inji(x) ∈ A]B, comp(inji(x)) is element inj3−i(x) in B]A.

The set {1, . . . ,n} is denoted by n (where 0
def
= /0) and idn is the identity function on

it. Finally, given two functions f : A → C and g : B → D, [f ,g] : A]B → C]D is the
pairing of f and g, namely, [f ,g] applies f to elements in A and g to those in B.

Definition 5.1 (Action synchronisation). Given an action signature A = (Act,ar,ε),
an action synchronisation on A is a triple (a,b,(c,Mob,

.
=)) where a,b,c ∈ Act, Mob :

ar(c) → ar(a)] ar(b) and
.
= is an equivalence relation on ar(a)] ar(b).

An action synchronisation (a,b,(c,Mob,
.
=)) relates two synchronising actions a and

b to a triple (c,Mob,
.
=), representing the results of the synchronisation of a and b.

Action c is the out-coming action, Mob is a communication function that tells how the
parameters of c are taken from those of a and b and

.
= is an equivalence relation on

the parameters of a and b which generalises set S1 in rule (merge-M) of Definition 4.4.
Since actual parameters are not known at SAM-definition time, Mob and

.
= are defined

according to the positions of the parameters in the tuples: for instance Mob(1) = inj2(3)
means that the first parameter of c comes from the third parameter of the second action.

SHR as a Model for SOC 11

In order to finitely specify interactions among an unbound number of components, a
compositional approach is needed. The intuition is that action synchronisation specifies
how two components interact. The result of a synchronisation of many actions must be
independent of the order of composition, hence composition of action synchronisations
must be associative and commutative. The formalisation of this requirement is rather
technical, thus we refer the interested reader to [22].

Action synchronisation relations impose conditions on action synchronisations.

Definition 5.2 (Action synchronisation relation). An action synchronisation relation
on an action signature A = (Act,ar,ε) is a set ActSyn of action synchronisations s.t.:

1. (a,b,(c,Mob,
.
=)) ∈ ActSyn ⇒ (c = ε ⇔ a = b = ε);

2. composition of action synchronisations is associative and commutative.

Condition 1 states that action ε can arise only as combination of actions ε. Note
that condition 2 must be enforced not only as far as actions are concerned, but also
for the part related to communication (Mob) and fusions (

.
=). It amounts to say that

when all the actions in a tuple are composed, the result is independent on the order of
composition. This can be formalised as a condition on the used SAM.

Having multiple action synchronisations for the same pair of interacting actions
allows nondeterminism. In particular, the result of the synchronisation is nondetermin-
istically chosen among the allowed alternatives.

As last step toward SAMs, we introduce a commonly used communication function
and a related equivalence relation. The two definitions jointly define message passing,
in the sense that they merge parameters in the same position and they make the result
available as parameter of the composed action.

Definition 5.3 (Communication function for message passing). The communication
function for message passing MPi, j with i, j ∈ N is the function from max(i, j) to (any
superset of) i] j such that MPi, j(m) = inj1(m) if m ≤ i, MPi, j(m) = inj2(m) otherwise.

Definition 5.4 (Equivalence relation for message passing). The equivalence relation
for message passing EQi with i ∈ N is the equivalence relation on any superset S of i] i
given by idS ∪{(inj1(m), inj2(m)) | m ≤ i}.

Example 5.5. A synchronisation between two actions a and b of arity 2 and 4, giving
an action c of arity 3, with Mob = MP2,3 and

.
= = EQ2 can be depicted as

=.

=.

a b c

Mob

Mob

Mob

12 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

The first two parameters of c are obtained by merging the ones from a and b, while the
third one is taken from b. The fourth parameter of b is simply discarded.

Definition 5.6 (SAM). A quintuple (I,A, Init,Fin,ActSyn) is a Synchronisation Alge-
bra with Mobility over the action signature A where I is an identifier, Init,Fin ⊆ Act
are the initial actions and final actions respectively and ActSyn is an action synchroni-
sation relation on A. We require that ε ∈ Init and

1. ∀i∈ Init,a∈Act \{ε}.(i,a,(c,Mob,
.
=))∈ActSyn =⇒ c = a ∧ Mob = MPar(i),ar(a) ∧.

= ⊆ EQar(a);
2. ∀a ∈ Act.∃i ∈ Init.(i,a,(a,MPar(i),ar(a),

.
=)) ∈ ActSyn with

.
= ⊆ EQar(a).

Identifier I is used to distinguish SAMs with the same structure but that can be com-
posed in different ways (this will be used in SHR-HS, see § 7). Set Init contains ε and
some trivial actions that can be executed by nodes themselves, and they are a techni-
cal trick to deal with isolated nodes. Condition 1 specifies that the synchronisation of
an initial action i with any action a 6= ε, if allowed, preserves a and its parameters.
Condition 2 requires that each action a has an action i to synchronise with.

Finally, the set Fin of final actions contains the actions that are considered complete,
and which thus do not require any further interaction in order to be meaningful. From a
technical point of view, these are the actions allowed on bound channels, and they allow
to deal with local resources.

Remark 5.7. From now on, to simplify the presentation, we will not write explicitly
the action synchronisations obtained by commutativity; furthermore, given a SAM A =
(I,A, Init,Fin,ActSyn), (a,b,(c,Mob,

.
=)) ∈ A denotes (a,b,(c,Mob,

.
=)) ∈ ActSyn.

We present some examples of SAMs over a parametric set inp of input actions.

Definition 5.8 (Milner SAM). For SAM Milnerinp, Init = {ε}, Fin = {τ,ε} where

– Act = {τ,ε}∪
S

a∈inp{a,a} with ar(a) = ar(a) for each a ∈ inp, ar(τ) = 0;
– (λ,ε,(λ,MPar(λ),0,EQ0)) ∈ ActSyn for each λ ∈ Act,

(a,a,(τ,MP0,0,EQar(a))) ∈ ActSyn for each a ∈ inp.

The first action synchronisation specifies that an action synchronising with ε is just
propagated, together with its parameters. The second action synchronisation formalises
the reaction of an action and the corresponding co-action. As expected, corresponding
parameters are merged by EQar(a).

Definition 5.9 (Hoare SAM). SAM Hoareinp is given by:

– Act = Init = Fin = {ε}∪ inp;
– (λ,λ,(λ,MPar(λ),ar(λ),EQar(λ))) ∈ ActSyn for each λ ∈ Act.

The only (schema of) action synchronisation in Hoare SAM models the agreement
among the participants on the action to perform. During synchronisation corresponding
parameters are merged and the results are propagated.

SHR as a Model for SOC 13

Definition 5.10 (Broadcast SAM). For SAM Bdcinp, Init = {ε} ∪ inp, Fin = {ε} ∪
S

a∈inp{a} and

– Act = {ε}∪
S

a∈inp{a,a} with ar(a) = ar(a) for each a ∈ inp;
– (a,a,(a,MPar(a),ar(a),EQar(a))) ∈ ActSyn for each a ∈ inp,

(a,a,(a,MPar(a),ar(a),EQar(a))) ∈ ActSyn for each a ∈ inp∪{ε}.

The main difference w.r.t. Milner SAM is that here an output can synchronise with more
than one input, thus when synchronisation is performed the result is the output itself,
which can thus interact with further inputs. Notice also that two inputs can interact (this
is required to ensure associativity), thus when an output is finally met, its parameters
are merged with the ones of all the inputs. If no output is met then the resulting action
is an input, which is not allowed on a bound channel. Also, broadcast SAM forces all
the connected edges to interact with an output, in fact they cannot perform an action
ε. Thus this SAM models secure broadcast, where a check is made to ensure that the
broadcasted message is received by all the listeners. Multicast SAM Mulinp can be easily
obtained from Bdcinp by adding (λ,ε,(λ,MPar(λ),0,EQ0)) to ActSyn, for each λ ∈ Act.

6 Parametric SHR

We outline parametric SHR, an SHR framework where the synchronisation policy can
be freely chosen. The main ingredients of this model are a SAM, which specifies the
synchronisation model used, and a set of inference rules, parametric on the above SAM,
used to derive transitions from productions. Clearly, productions for parametric SHR
must use actions in the set of actions ActA of the SAM A used as parameter.

For space constraints we show just the rule (merge-p), and we outline the main dif-
ferences between the other rules and the corresponding ones for Milner synchronisation.
For a full formal account of the topic see [24,22].

Definition 6.1 (Merge rule for parametric SHR). Let σ = {x/y},

(merge-p)
Γ,x,y ` G1

Λ,π
−−→ Φ ` G2

Γ,x ` G1σ Λ′,π′
−−−→ Φ′ ` νU G2σρ

1. Λ(x) = (a1,v1),Λ(y) = (a2,v2)

2. (a1,a2,(c,Mob,
.
=)) ∈ ActSyn

3. S1 = {vi1 [j1] = vi2 [j2] | inji1(j1)
.
= inji2(j2)}

4. S2 = {t = u | tπ = uπ}
5. ρ = mgu((S1∪S2)σ) and ρ maps names to representatives in Γ,x whenever possible
6. w[i] = (v j[k])σρ if Mob(i) = inj j(k)

7. Λ′(z) =

{

(c,w) if z = x
(actΛ(z),(nΛ(z))σρ) for each z ∈ Γ

8. π′ = ρ�Γ,x

9. U = Φσρ\Φ′

14 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

The main difference between the parametric inference rules and the ones in Defini-
tion 4.4 is that the parametric ones can be instantiated to model systems using a chosen
synchronisation model.

To make the presentation clearer, rule (merge-p) uses a renaming σ = {x/y} instead
of a generic idempotent renaming. Synchronisation between two actions a1 and a2 is
allowed iff there is an action synchronisation in ActSyn with a1 and a2 as first and
second field respectively (condition 2). Also, the component Mob is used to compute
the parameters of the resulting action (condition 6), while

.
= is used to compute the first

set of equalities (condition 3) which contributes to ρ.
In the rule for restriction, the action performed on the bound node must belong

to Fin, while only actions in Init (with a tuple of fresh names as parameters) can be
performed on a new node.

Parametric SHR fully recovers Milner SHR, in fact it is enough to instantiate it
using the Milner SAM, see [24,22] for a formal statement. Naturally, parametric SHR
can do more, as shown by the following example.

Example 6.2. We can exploit parametric SHR to improve the modelling of the system
in Example 4.5. In fact, if we consider parametric SHR instantiated with Milner SAM,
the example can be fully recovered. The synchronisation is obtained using rule (merge-
p), which produces the same effect as the one in Example 4.5. Moreover, if we consider
the SAM for broadcast synchronisation (Definition 5.10) instead of Milner, then the
edge B2, which is part of the infrastructure for communication, can be deleted. The
graph for the new system with broadcast is:

S1

uuC // •
x

Aoo ◦
u

S2

ii

In fact, broadcast synchronisation obtains the desired effect, by allowing an action
req to interact with two actions req. The result of the broadcast synchronisation gives
req that is in set Fin, thus u can be restricted.

7 SHR for heterogeneous systems

An heterogeneous system is a system where different subsystems exploit different syn-
chronisation protocols. A further generalisation of SHR is SHR for heterogeneous sys-
tems (SHR-HS) [25,22] where heterogeneity is introduced by labelling nodes with
SAMs that specify the synchronisation policy used on them. Hence, SHR-HS focuses
on the management of the primitives available on nodes. Depending on circumstances,
different strategies have to be followed. Specifically, at the network level the labelling
is quite static, since it depends on hardware features, while at the application level it
can change dynamically as a result of negotiations among different components. In
fact, services that differ (e.g., w.r.t. their QoS aspects) can be conveniently described by
different SAMs.

SHR as a Model for SOC 15

In SHR-HS this is modelled by allowing SAMs labelling a node to dynamically
change as a result of a synchronisation among different parties. Technically, this corre-
sponds to update the labelling when nodes are merged or created. Therefore, a set A lg of
SAMs is assumed together with an operator � of SAM composition. Also, 〈A lg,�,Aε〉
is assumed to be a commutative monoid. Associativity and commutativity are needed
so that the result of the composition of SAMs does not depend on the order of com-
position. The requirement of having a neutral element is not restrictive since one can
always add an unused element and set it as neutral element of the composition. A neu-
tral element is useful when one wants to ensure that the label of a node x is preserved
when x is merged with another node, e.g., with a parameter of an initial action. The
main definitions of SHR are extended to deal with nodes labelled by SAMs, introduced
by turning Γ into a function from nodes to SAMs.

Definition 7.1 (Labelled graphs). A labelled graph is a judgement Γ ` G where Γ is a
finite function from N to A lg; G is like before, but now restricted nodes are labelled,
e.g., νy : A.G where y ∈ N and A ∈ A lg.

Extending previous notation, x1 : A1, . . . ,xn : An denotes a function mapping xi ∈ N to
Ai ∈ A lg, for i ∈ {1, . . . ,n}. Structural congruence and isomorphisms of graphs are as
in Definition 2.3 but, now, they must preserve SAMs labelling nodes.

Transitions Γ ` G
Λ,π
−−→ Γ ` G′ are extended accordingly with the additional require-

ment that actΛ(x) ∈ Γ(x). Moreover, productions Γ ` L(x)
Λ,π
−−→ Φ ` G impose some re-

quirements on how the labels in the target graph are chosen. Any SAM can be used to la-
bel nodes not in dom(Γ), i.e., generated in the production, while for a node x ∈ dom(Γ),
Φ(xπ) is Γ(x1)� . . .�Γ(xn) where x1, . . . ,xn are all the nodes that π maps to xπ.

In the inference rules, a production can be applied to an edge only if it specifies
correct labels for the attached nodes. To specify SAMs applicable in different circum-
stances, suitable meta-notations can be used. Moreover, since now contexts are func-
tions, both their domains (i.e., the sets of nodes) and their labelling SAMs must be kept
into account. As an example, we give the merge rule (the others can straightforwardly
be adapted from rules in Definition 4.4 and can be found in [25,22]).

Definition 7.2 (Merge rule for SHR-HS). Let σ = {x/y},

(merge-HS)
Γ,x : A,y : A ` G1

Λ,π
−−→ Φ ` G2

Γ,x : A ` G1σ Λ′,π′
−−−→ Φ′ ` νU G2σρ

1. Λ(x) = (a1,v1),Λ(y) = (a2,v2)
2. (a1,a2,(c,Mob,

.
=)) ∈ A

3. S1 = {vi1 [j1] = vi2 [j2] | inji1(j1)
.
= inji2(j2)}

4. S2 = {t = u | tπ = uπ}
5. ρ = mgu((S1 ∪S2)σ) and ρ maps names to representatives in dom(Γ)∪{x} when-

ever possible
6. w[i] = (v j[k])σρ if Mob(i) = inj j(k)

7. Λ′(z) =

{

(c,w) if z = x
(actΛ(z),(nΛ(z))σρ) for each z ∈ Γ

16 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

8. π′ = ρ�dom(Γ)∪{x}
9. dom(U) = dom(Φ)σρ\dom(Φ′)

10. the label of each node x ∈ dom(U)∪ dom(Φ′) is computed as follows: x is the
representative according to σρ of an equivalence class {x1, . . . ,xn} of nodes which
have in Φ labels A1, . . . ,An. Then the label of x is A1 � . . .�An

Nodes x and y can be merged only if they have the same label A, and the interaction is
performed according to one of the action synchronisations in its action synchronisation
relation. The node resulting from the merge of x and y is also labelled with A. Nodes not
involved in the merging preserve their label while the others get their labels as resulting
from the application of �.

Example 7.3. The system of Example 6.2 can be now more accurately modelled by si-
multaneously using a SAM for Milner synchronisation on actions for authorisation, and
one for broadcast of requests. Thus on each node only the desired actions are available.
This avoids undesired executions caused by malicious clients. Available synchronisa-
tions are exploited by the authority to ensure that clients can issue only authorised
requests. Also, actions can specify the synchronisation policy (e.g, Milner or broadcast
synchronisation) so that clients dynamically choose what protocol to use.

At a first sight, it might be argued that parametric SHR can model heterogeneous
systems. However, parametric SHR does not fit with heterogeneous systems because it
makes each synchronisation policy available on each node, which is not what heteroge-
neous systems (as we consider them here) require. On the other hand, parametric SHR
is a special case of SHR-HS where a unique SAM is used (as shown in [22]).

8 SHReQ: Coordinating Application Level QoS

Awareness of Quality of Service (QoS) is an emergent exigency in SOC which is no
longer considered only as a low-level aspect of systems. The ability of formally spec-
ifying and programming QoS requirements may represent a significant added-value of
the SOC paradigm. Moreover, QoS information can drive the design and development
of programming interfaces and languages for QoS-aware middlewares as well as to
drive the search-bind cycle of SOC.

In SHReQ, a calculus based on SHR, abstract high-level QoS requirements are ex-
pressed as constraint-semiring [1] and embedded in the rewriting mechanism which is
parameterised with respect to a given c-semiring. Basically, values of c-semirings are
synchronisation actions so that synchronising corresponds to the product operation of c-
semirings that can be regarded as the simultaneous satisfaction of the QoS requirements
of the participants to the synchronisation.

Definition 8.1 (C-semiring). An algebraic structure 〈S,+, ·,0,1〉 is a constraint semir-
ing if S is a set with 0,1 ∈ S, and + and · are binary operations on S such that:

– + is commutative, associative, idempotent, 0 is its unit element and 1 is its absorb-
ing element (i.e., a+1 = 1, for any a ∈ S);

– · is commutative, associative, distributes over +, 1 is its unit element, and 0 is its
absorbing element (i.e., a ·0 = 0, for any a ∈ S).

SHR as a Model for SOC 17

The additive operation (+) of a c-semiring induces a partial order on S defined as
a ≤S b ⇐⇒ ∃c : a+c = b. The minimum is thus 0 and the maximum is 1. C-semirings
have two distinguished features that result very useful for modelling abstract QoS.
First, the cartesian product of c-semirings is still a c-semiring, hence we can uniformly
deal with many different quantities simultaneously. Second, partial order ≤S provides
a mechanism of choice. These features make c-semirings suitable for reasoning about
multi-criteria QoS issues [6,7]. The fact that c-semiring structure is preserved by carte-
sian product is here exploited to compose synchronisation policies.

Example 8.2. The following examples introduce some c-semirings together with their
intended application to model QoS attributes. A more complete list can be found in [1].

– The boolean c-semiring 〈{true, f alse},∨,∧, f alse, true〉 can be used to model net-
work and service availability.

– The optimisation c-semiring 〈Real,min,+,+∞,0〉 applies to a wide range of cases,
like prices or propagation delay.

– The max/min c-semiring 〈Real,max,min,0,+∞〉 can be used to formalise band-
width, while the corresponding c-semiring over the naturals 〈N,max,min,0,+∞〉
can be applied for resource availability.

– Performance can be represented by the probabilistic c-semiring 〈[0,1],max, ·,0,1〉.
– Security degrees are modelled via the c-semiring 〈[0,1, . . . ,n],max,min,0,n〉, where

n is the maximal security level (unknown) and 0 is the minimal one (public).

Hereafter, given a c-semiring 〈S,+, ·,0,1〉, arS : S →N is an arity function assigning
arities to values in S. Graphs in SHReQ are called weighted graphs because values is
S are used as weights and record quantitative information on the computation of the
system.

Syntactically, SHReQ graphs are as those in SHR-HS where SAMs are replaced
by c-semiring values. We write x1 : s1, . . . ,xn : sn ` G for the weighted graph whose
weighting function maps xi to si, for i ∈ {1, . . . ,n}.

SHReQ rewriting mechanism relies on c-semirings where additional structure is
defined. More precisely, we assume sets Sync, Fin and NoSync such that

– Sync ⊆ Fin ⊆ S, 1 ∈ Sync and arS(s) = 0 if s ∈ Sync;
– NoSync ⊆ S\Fin, 0 ∈ NoSync and ∀s ∈ S.∀t ∈ NoSync.s · t ∈ NoSync.

The intuition follows the SAM approach (Definition 5.6) and it is that Fin contains those
values of S representing events of complete synchronisations. Among the actions in Fin
we can select a subset of “pure” synchronisation actions, namely complete synchroni-
sations that do not expose nodes. Set NoSync, on the contrary, contains the values that
represent “impossible” synchronisations.

SHReQ productions follow the lines of Definition 4.3 and 4.4, but have a slightly
different interpretation. For simplicity, we avoid the π component in SHReQ transitions
and require that free nodes cannot be merged. Technically, this is obtained by consid-
ering undefined the most general unifier operation when it yields the fusion of two free
nodes. In [18] the general unification is defined for SHReQ.

18 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

Definition 8.3 (SHReQ productions). Let S be a c-semiring 〈S,+, ·,0,1〉. A SHReQ
production is a production

Γ ` L(x1, . . . ,xn)
Λ
−→ Φ ` G (5)

built on top of the action signature (S,arS,1) where Γ maps nodes in {x1, . . . ,xn} to S.

Production (5) states that, in order to replace L with G in a graph H, applicability con-
ditions expressed by the function Γ on the attachment nodes of L must be satisfied in
H and, henceforth, L “contributes” to the rewriting by offering Λ in the synchronisa-
tion with adjacent edges. Function Γ expresses the minimal QoS requirements on the
environment in order to apply the production, i.e., given x ∈ dom(Γ), the weight w on
the node corresponding to x must satisfy Γ(x) ≤ w. As before, function Φ is fully deter-
mined by Γ and Λ, where the weight of new nodes is set to 1 (i.e., Φ(y) = 1 if y ∈ ΓΛ),
while for old nodes it traces the result of the synchronisation performed on them.

In production (5), c-semiring values play different roles in Γ and Λ: in Γ, they are
interpreted as the minimal requirements to be fulfilled by the environment; in Λ they
are the “contribution” that L yields to the synchronisation with the surrounding edges.

For space limitations, we only give the inference rule (merge-s) for merging nodes,
the other rules being a simple rephrasing of those seen in previous sections. Rule
(merge-s) is an adaptation of (merge-p) in Definition 6.1:

(merge-s)
Γ,x : r,y : s ` G1

Λ∪{(x,s1,v1),(y,s2,v2)}
−−−−−−−−−−−−−→ Φ ` G2

Γ,x : r + s ` G1σ Λ′

−→ Φ′ ` νU G2σρ

with σ = {x/y} and Λ′, Φ′, ρ and U computed as in Definition 6.1, where action syn-
chronisation on x is given by the c-semiring multiplication and its result is saved as the
new weight of the synchronising node (i.e., x : s1 · s2) both for free nodes and for nodes
in U . In order to ensure applicability of productions also when there are more resources
available than required, the following rule is introduced.

(order-s)
Γ,x : r ` G1

Λ
−→ Φ ` G2 r ≤ t

Γ,x : t ` G1
Λ
−→ Φ ` G2

The other rules are similar to the ones in Definition 4.4.

Example 8.4. Let us consider Example 6.2. We can model the authority choosing the
server that offers the cheapest service. To this aim, we use the cartesian product of two
c-semirings. The first c-semiring is: 〈R+,max,min,0,∞〉, for the price of the service.
The second c-semiring is used for synchronisation. In this way, we are able to define a
general synchronisation policy as a unique c-semiring combining a classical synchroni-
sation algebra with QoS requirements. The second c-semiring corresponds to multicast
synchronisation. Assume W = {req,auth, req,auth,1W ,0W ,⊥}. Set W can be equipped
with a c-semiring structure 〈W,+, ·,0W ,1W 〉, where:

req · req = req, auth · auth = auth, req · req = req, auth · auth = auth,

a,b ∈W \{0W ,1W}∧a 6= b∧b 6= a =⇒ a ·b =⊥

plus rules obtained by commutativity and the ones for 0W and 1W .

SHR as a Model for SOC 19

The operation + is obtained by extending the c-semiring axioms for the additive oper-
ation with a+a = a and a,b 6∈ {0W ,1W}∧a 6= b =⇒ a+b =⊥, for all a,b ∈W .

Below we show a graphical representation of a two steps derivation. Instead of
reporting productions for each rewriting step, tentacles are decorated with actions. For
the sake of clarity, in each step we only write actions and weights of the relevant nodes.

C

��

C

(∞,auth)〈y〉
��

C

��
•x •x • y •x

A

OO

(∞,req)

=⇒ A

(∞,auth)〈y〉

OO

(∞,req)〈y〉

=⇒ A

OO

◦ u ◦ u:(p1,req) ◦ u

S1

(p1,req)

::

S2

(p2,req)

dd

S′1

(p1,req)〈y〉

::

S′2

dd

S”1

OO

S2

dd

The first step selects the server with the lowest price where pi is the price for Si (in this
step no names are communicated). This is obtained as the result of the synchronisation
in u, i.e., ((req · req) · req, min(∞, p1, p2)). Assuming p1 less than p2 the new weight
of u is (req, p1). The second step shows the client connecting to the cheapest server
S1 (informed by A) by connecting to a new node y. After the first synchronisation, the
cheapest server is identified by the authority using the new weight on node u. This
guides the behaviour of S1 and of the authority to produce the new connection to the
client. In particular, the applicability condition of server rule requires its price to be less
than or equal to the price on the node, and this can be satisfied only by the cheapest one
(we suppose for simplicity that server costs are unique).

9 Concluding remarks

In this tutorial paper we introduced SHR as a basic metalanguage with strong theoretical
foundations for describing distributed systems within the SOC paradigm. We have ad-
dressed the key issues of the SHR model describing features like mobility, heterogeneity
and Quality of Service. A great deal of future work remains. At the experimental level,
more experience in specifying and designing service oriented applications is needed.
The problem of supporting the development of highly decentralised applications (from
requirement and design to implementation and maintenance) is at the edge of research in
software engineering. Indeed, software engineering technologies must support the shift
from the client-server interaction model to other models which better accommodate the
constraints posed by the SOC paradigm. We argue that the SHR model fosters a declar-
ative approach by identifying the interaction borders of services where satisfaction of
certain properties (e.g. Quality of Service) has a strong impact on the behaviours. Some
preliminary results on the exploitation of the SHR model in specifying and designing
internetworking systems can be found in [11]. In this perspective the development of

20 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

tool support for the SHR framework would be of great value. In the short term, we plan
to experiment our framework to model workflow among services (e.g. by extending the
Petri Nets translation developed in [34]).

At the foundational level, future work will be focused on the definition of abstract
semantics for the SHR model. A basic question is ”what is the appropriate notion of
semantic equivalence for SHR?”. Bisimulation-based equivalences have been proved
to be a powerful basis for semantic equivalence of process calculi. Bisimulation se-
mantics has the main advantage of capturing the idea of interaction within arbitrary
contexts thus providing the semantic machinery for compositional reasoning. Hence, a
main problem is understanding whether bisimilarity is a congruence w.r.t. the operators
of system composition or not, i.e. whether the compositions of bisimilar systems are
bisimilar or not. If they are, then the observational properties of a complex system can
be derived by composing the results obtained on their components. The development of
a compositional bisimulation semantics for SHR is not straightforward, since it requires
to define a suitable algebra of graphs and exploit bialgebraic techniques in a non trivial
way. Some preliminary results can be found in [22]. A further line of future research
concerns the development of a ”true concurrent” semantics for SHR where the notions
of causality and independence are explicitly represented. The ability of reasoning on the
causality flow could be particularly useful to manage the complexity of service oriented
applications. For instance the analysis of service workflows can benefit from knowledge
about causality: it suffices to focus on the causal dependencies among service invoca-
tions to understand the properties of the business interactions. We plan to extend the
techniques introduced in [9] to equip SHR with a truly concurrent semantics.

Acknowledgements The authors thank the anonymous reviewers for their valu-
able comments and suggestions.

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-
mization. Journal of the ACM, 44(2):201–236, 1997.

2. L. Cardelli and A. D. Gordon. Mobile ambients. In Proc. of FoSSaCS’98, volume 1378 of
LNCS, pages 140–155. Springer, 1998.

3. I. Castellani and U. Montanari. Graph grammars for distributed systems. In Graph-
Grammars and Their Application to Computer Science, volume 153 of LNCS, pages 20–38.
Springer, 1983.

4. A. Corradini, P. Degano, and U. Montanari. Specifying highly concurrent data structure
manipulation. In Proc. of Computing 85. Elsevier Science, 1985.

5. A. Corradini and D. Hirsch. An operational semantics of CommUnity based on graph trans-
formation systems. In Proc. of GT-VMT 2004, volume 109 of Elect. Notes in Th. Comput.
Sci., pages 111–124. Elsevier Science, 2004.

6. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Formal Basis for
Reasoning on Programmable QoS. In International Symposium on Verification – Theory and
Practice, volume 2772 of LNCS, pages 436–479. Springer, 2003.

7. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A process calculus for
qos-aware applications. In Proc. of Coordination’05, volume 3454 of LNCS, pages 33–48.
Springer, 2003.

SHR as a Model for SOC 21

8. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents interaction
and mobility. IEEE Trans. Software Eng., 24(5):315–330, 1998.

9. P. Degano and U. Montanari. A model for distributed systems based on graph rewriting.
Journal of the ACM, 34(2):411–449, 1987.

10. G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via graph synchro-
nization with mobility. In ICTCS’01, volume 2202 of LNCS, pages 1–16. Springer, 2001.

11. G. Ferrari, U. Montanari, and E. Tuosto. Graph-based models of internetworking systems.
In Formal Methods at the Crossroads: From Panacea to Foundational Support, volume 2757
of LNCS, pages 242–266. Springer, 2003.

12. C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In Proc. of POPL
’96, pages 372–385, 1996.

13. F. Gadducci and U. Montanari. The tile model. In Proof, Language and Interaction: Essays
in Honour of Robin Milner. MIT Press, 2000.

14. D. Hirsch. Graph Transformation Models for Software Architecture Styles. PhD thesis,
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, U.B.A., 2003.

15. D. Hirsch, P. Inverardi, and U. Montanari. Reconfiguration of software architecture styles
with name mobility. In Proc. of Coordination ’00, volume 1906 of LNCS, 2000.

16. D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name mobility. In
Proc. of CONCUR’01, volume 2154 of LNCS. Springer, 2001.

17. D. Hirsch and E. Tuosto. SHReQ: A framework for coordinating application level QoS. In
Proc. of SEFM’05, pages 425–434. IEEE Computer Society Press, 2005.

18. D. Hirsch and E. Tuosto. Coordinating Application Level QoS with SHReQ. Journal of
Software and Systems Modelling, 2006. Submitted.

19. C. A. R. Hoare. A model for communicating sequential processes. In On the Construction
of Programs. Cambridge University Press, 1980.

20. B. König and U. Montanari. Observational equivalence for synchronized graph rewriting. In
Proc. of TACS’01, volume 2215 of LNCS, pages 145–164. Springer, 2001.

21. I. Lanese. Exploiting user-definable synchronizations in graph transformation. In Proc. of
GT-VMT’06, Elect. Notes in Th. Comput. Sci. ES, 2006. To appear.

22. I. Lanese. Synchronization Strategies for Global Computing Models. PhD thesis, Computer
Science Department, University of Pisa, Pisa, Italy, 2006. Forthcoming.

23. I. Lanese and U. Montanari. A graphical fusion calculus. In Proceedings of the Workshop
of the COMETA Project on Computational Metamodels, volume 104 of Elect. Notes in Th.
Comput. Sci., pages 199–215. Elsevier Science, 2004.

24. I. Lanese and U. Montanari. Synchronization algebras with mobility for graph transforma-
tions. In Proc. of FGUC’04 – Foundations of Global Ubiquitous Computing, volume 138 of
Elect. Notes in Th. Comput. Sci., pages 43–60. Elsevier Science, 2004.

25. I. Lanese and E. Tuosto. Synchronized hyperedge replacement for heterogeneous systems.
In Proc. of Coordination’05, volume 3454 of LNCS, pages 220–235. Springer, 2005.

26. R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1982.
27. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II. Inform. and

Comput., 100(1):1–40,41–77, 1992.
28. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile pro-

cesses. In Proc. of LICS’98, pages 176–185. IEEE Computer Society Press, 1998.
29. G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,

60-61:17–139, 2004.
30. J. Riely and M. Hennessy. Distributed processes and location failures. TCS, 266(1–2):693–

735, 2001.
31. F. Rossi and U. Montanari. Graph rewriting, constraint solving and tiles for coordinating

distributed systems. Applied Categorical Structures, 7(4):333–370, 1999.

22 G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto

32. G. Rozenberg, editor. Handbook of graph grammars and computing by graph transforma-
tions, vol. 1: Foundations. World Scientific, 1997.

33. E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD thesis, Com-
puter Science Department, University of Pisa, Italy, 2003.

34. W. M. P. van der Aalst and K. B. Lassen. Translating workflow nets to BPEL4WS. Technical
Report WP 145, Eindhoven University of Technology, 2005.

35. G. Winskel. Synchronization trees. TCS, 34:33–82, 1984.

