
An Information Flow Monitor for a Core of DOM
Introducing references and live primitives

Ana Almeida Matos1,2, José Fragoso Santos3, and Tamara Rezk3

1 SQIG–Instituto de Telecomunicações, Lisbon, Portugal
2 Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

3 Inria, Sophia Antipolis, France

Abstract. We propose and prove sound a novel, purely dynamic, flow-
sensitive monitor for securing information flow in an imperative language
extended with DOM-like tree operations, that we call Core DOM. In Core
DOM, as in the DOM API, tree nodes are treated as first-class values.
We take advantage of this feature in order to implement an information
flow control mechanism that is finer-grained than previous approaches
in the literature. Furthermore, we extend Core DOM with additional
constructs to model the behavior of live collections in the DOM Core
Level 1 API. We show that this kind of construct effectively augments the
observational power of an attacker and we modify the proposed monitor
so as to tackle newly introduced forms of information leaks.

1 Introduction

Interaction between client-side JavaScript programs and the HTML document is
done via the DOM API [11]. In contrast to the ECMA Standard [1] that specifies
in full detail the internals of objects created during the execution, the DOM API
only specifies the behavior that DOM interfaces are supposed to exhibit when
a program interacts with them. Hence, browser vendors are free to implement
the DOM API as they see fit. In fact, in all major browsers, the DOM is not
managed by the JavaScript engine but by a separate engine whose role is to do
so. Therefore, the design of an information flow monitor for client-side JavaScript
Web applications must take into account the DOM API.

Russo et al. [13] first studied the problem of information flow control in
dynamic tree structures, for a model where programs are assumed to operate on
a single current working node. However, in real client-side JavaScript, tree nodes
are first-class values, which means that a program can store in memory several
references to different nodes in the DOM forest at the same time. We present
a flow-sensitive monitor for tracking information flow in a DOM-like language,
that we call Core DOM. In Core DOM, tree nodes are treated as first-class values
and thus they support all operations available to other types of values, such as
assignment to variables. Interestingly, this language design feature enables us
to implement a more fine-grained information flow control mechanism, since it
becomes possible to distinguish the security level of the node itself from both
the security level of the value that is stored in the node and from the level of its

position in the DOM forest. We prove that the proposed monitor is sound with
respect to a standard definition of noninterference.

Live collections are a special kind of data structure featured in the DOM API
that automatically reflects the changes that occur in the document. There are
several types of live collections. For instance, the method getElementsByTagName
returns a live collection containing the DOM nodes that match a given tag. In
the following example, after retrieving the initial collection of DIV nodes, the
program iterates over the current size of this collection, while introducing a new
DIV node at each step:
divs = document.getElementsByTagName("DIV"); i = 0;
while(i <= divs.length){

document.appendChild(document.createElement("DIV")); i++; }

Every time a new DIV node is inserted in the document (no matter where in its
structure), it is also inserted in the live collection bound to divs. Due to the live
update of the loop condition, if the initial document contains at least one DIV

node, the program does not terminate.
Live collections can be exploited to encode new types of information leaks.

Therefore, we extend Core DOM with two additional constructs that model the
behavior of getElementsByTagName in the DOM API. We demonstrate that these
constructs effectively augment the observational power of an attacker and we
show how to modify the proposed monitor so as to tackle this issue.

In the remainder of the paper, we start by formally introducing the target
language Core DOM (Section 2). We then present a mechanism that controls
information flows by means of a flow-sensitive monitor (Section 3). The scenario
is then extended with live collections, for which we propose a modified mecha-
nism (Section 4). Finally, we discuss related work and conclude. Due to space
restrictions, proofs are presented in the article’s full version [2].

2 Core DOM

We now present Core DOM – a simple imperative language extended with prim-
itives for operating on tree structures. Its syntax is given by the following:

e ::= v literal value | v runtime value
| x identifier | if(e0){e1} else {e2} conditional
| while(e0){e1} loop | whilee0(e1){e2} internal loop
| e0; e1 sequence | move↑(e) move upward
| move↓(e, e) move downward | remove(e, e) remove node
| insert(e, e, e) insert node | newσ0,σ1,σ2(e) new node
| value(e) node value | store(e, e) store value
| len(e) node length | end(e) end

Every tree node has a type, called its tag (for instance, DIV) and can store a
single value taken from a set Prim containing integers, strings, booleans, and a
special value null. All the nodes in memory form a forest, meaning that every
node has a possibly empty list of children and at most a single parent. We define
the index of a node as the position it occupies in the list of children of its parent.

Identifier
〈µ, f, x〉 var(x)→ 〈µ, f, µ(x)〉

Assignment
〈µ, f, x = v〉 assign(x)→ 〈µ [x 7→ v] , f, v〉

Sequence
〈µ, f, v; e0〉

•→ 〈µ, f, e0〉

End
〈µ, f, end(v)〉 �→ 〈µ, f, v〉

Value
〈µ, f, v〉 pval→ 〈µ, f, v〉

Loop
〈µ, f,while(e0){e1}〉

◦→ 〈µ, f,whilee0(e0){e1}〉

Loop - True
v 6∈ VF e′ = end(e1;while(e0){e1})

〈µ, f,whilee0(v){e1}〉
branch→ 〈µ, f, e′〉

Loop - False
v 6∈ VF e′ = end(v)

〈µ, f,whilee0(v){e1}〉
branch→ 〈µ, f, e′〉

Conditional
v 6∈ VF ⇒ i = 0 v ∈ VF ⇒ i = 1

〈µ, f, if(v){e0} else {e1}〉
branch→ 〈µ, f, end(ei)〉

Context Composition
〈µ, f, e〉 α→ 〈µ′, f ′, e′〉

〈µ, f, E[e]〉 α→ 〈µ′, f ′, E[e′]〉

Fig. 1. Core DOM Semantics - Imperative Fragment

New nodes are created using the primitive new, which expects as input the
tag of the node to be created and is annotated with three security levels that
are explained later. When given a node as input, the primitive move↑ evaluates
to its parent in the DOM forest. Complementarily, the primitive move↓ expects
as input a node n and an integer i and evaluates to the ith child of n. The
primitive insert is used for inserting an orphan node (that is, a node with no
parent) in the list of children of another node, whereas the primitive remove
is used for removing a node from the list of children of its parent. Concretely,
insert expects as input two nodes n0 and n1 and an integer i and inserts n1 in
the ith position of the list of children of n0 right-shifting by one all the children
of n0 whose indexes are greater than or equal to i. The primitive remove expects
as input a node n and an integer i and removes the ith child of n from its list
of children left-shifting the right siblings of the removed node by one position.
When given as input a node, the keyword len evaluates to its number of children.
The keyword value expects as input a node and evaluates to the value that it
stores, whereas the keyword store expects as input a node n and a value v and
stores v in n. Finally, the syntax of Core DOM includes two special primitives:
(1) end [12,14] (not available for the programmer) that is used by the semantics
to signal the end of a structure block and (2) an internal while primitive used by
the semantics for bookkeeping the guard of the loop currently executing.

We model a DOM forest f : Ref → N as a partial mapping from a set
of references to the set of DOM nodes. A DOM node is a tuple of the form:
〈m, v, r, ω〉, where: (1) m is the node’s tag, (2) v the runtime value that it stores,
(3) r the reference pointing to its parent, and (4) ω its list of children. For
simplicity, given a DOM node n, we denote by n.tag, n.value, n.parent, and
n.children its tag, value, parent, and list of children, respectively. The semantics
of Core DOM makes use of a semantic function RAncestor that, given a forest f ,
outputs a binary relation in Ref ×Ref such that 〈r0, r1〉∈RAncestor(f) iff the
node pointed to by r0 is an ancestor of that pointed to by r1. The set VF contains
the runtime values that cause the guard of a conditional or loop to fail.

Figures 1 and 2 present the small-step semantics of Core DOM. Configura-
tions have the form: 〈µ, f, e〉, where µ is a mapping from variables to values, f

Move Upward
f(r).parent = r′

〈µ, f,move↑(r)〉
↑(r)→ 〈µ, f, r′〉

Move Downward
f(r).children(i) = r′

〈µ, f,move↓(r, i)〉
↓(r′)→ 〈µ, f, r′〉

New
r = fresh(f, σ0)

f ′ = f [r 7→ 〈m,null, null, ε〉]

〈µ, f, newσ0,σ1,σ2(m)〉 new(r,σ0,σ1,σ2)→ 〈µ, f ′, r〉

Remove
f(r) = 〈m, v, r̂, ω〉 f(ω(i)) = 〈m′, v′, r, ω′〉

r′ = ω(i) f ′ = f

[
r 7→ 〈m, v, r̂, ShiftL(ω, i)〉,
r′ 7→ 〈m′, v′, null, ω′〉

]
〈µ, f, remove(r, i)〉 −(r,r′)→ 〈µ, f ′, r′〉

Insert
〈r′, r〉 6∈ RAncestor(f) f(r) = 〈m, v, r̂, ω〉 f(r′) = 〈m′, v′, null, ω′〉

f ′ = f
[
r 7→ 〈m, v, r̂, ShiftR(ω, i, r′)〉, r′ 7→ 〈m′, v′, r, ω′〉

]
〈µ, f, insert(r, r′, i)〉 +(r,r′,ω(i))→ 〈µ, f ′, r′〉

Length
i = |f(r).children|

〈µ, f, len(r)〉 len(r)→ 〈µ, f, i〉

Value
f(r).value = v

〈µ, f, value(r)〉 val(r)→ 〈µ, f, v〉

Store
f(r) = 〈m, v, r̂, ω〉

f ′ = f
[
r 7→ 〈m, v′, r̂, ω〉

]
〈µ, f, store(r, v′)〉 store(r)→ 〈µ, f ′, v′〉

Fig. 2. Core DOM Semantics - Primitives for Tree Operations

a DOM forest, and e the expression to evaluate. References can be viewed as
pointers to nodes, in the sense that the creation of a node yields a new reference
that points to it. As in [6], the semantics makes use of a parametric allocator,
fresh, that given a DOM forest f and a security level σ, generates a new ref-
erence r, such that r 6∈ dom(f). The semantic transitions are annotated with
internal events [12] to be used by the monitored semantics.

The evaluation order is specified by writing expressions using evaluation con-
texts. We write E[e] to denote the expression obtained by replacing the occur-
rence of [] in the context E with e. The syntax of evaluation contexts is given by:

E ::= [] | x = E | if(E){e} else {e} | whilee(E){e} | E; e | end(E) | len(E) | value(E)
| move↑(E) | move↓(E, e) | move↓(v,E) | remove(E, v) | remove(v,E) | insert(v,E, e)
| insert(E, e, e) | insert(v, v, E) | newσ0,σ1,σ2(E) | store(E, e) | store(v,E)

Given a list ω, an integer i, and an arbitrary element a, we denote by: (1) ω(i) the
ith element of ω if it is defined and null otherwise, (2) |ω| the number of elements
of ω, (3) ε the empty list, (4) ShiftL(ω, i) the list obtained by removing from ω
its ith element (provided that it is defined), (5) ShiftR(ω, a, i) the list obtained
by inserting a in the ith position of ω (provided that i is smaller than or equal to
the number of elements of ω), (6) ω :: a the list obtained by appending a to ω,
and (7) ω0 ⊕ ω1 the concatenation of ω0 and ω1. We use the notation f [a 7→ b]
for the function that coincides with f everywhere except in a that it maps to b.

3 Dynamic IFC in Core DOM

Before proceeding to describe the monitor for securing information flow in Core
DOM, we discuss the main challenges imposed by the particular features of this

API and how we propose to tackle them. As usual, the specification of security
policies relies on a lattice L of security levels and a labeling that maps resources
to security levels. In examples and informal explanations, we use L = {H,L}
with L v H, meaning that resources labeled L (low, visible) are less confidential
than those labeled H (high, invisible). Hence, H-labeled resources can depend
on L-labeled resources, but not the contrary, as that would entail a security leak.

3.1 Challenges for IFC in Core DOM

The range of tree operations offered by Core DOM allows information to be
stored and inspected from arbitrary nodes in several ways: (1) A node can be
created and its existence tested; (2) A value can be stored and read from a node;
(3) A child node can be inserted at/removed from a certain position, and both the
number of children and their positions can be retrieved. (The position of a node
can be understood as the pair consisting of its parent in the DOM forest and its
index.) These operations can be used to encode security leaks via the different
information components that are associated with every node. We now examine
these leaks and introduce the formal techniques we use for tackling them. In the
examples, we assume three initial nodes, div0, div1 and div2, created as follows:

div0 = new("DIV"); div1 = new("DIV"); div2 = new("DIV") (1)

Differentiating information components. Each node in a DOM forest can
be seen to carry four main information components: its existence, its value, its
position and its number of children. To some degree, these components can be
manipulated separately, and there is value in treating them separately by the
security analysis. For instance, in the following program, the final position of
div2 carries high information (because it is inserted in a high context), despite
the fact that it contains the low level value l0:

store(div2, l0); if(h){insert(div0, div2, 0)} else {insert(div1, div2, 0)} (2)

After the execution of this program, the position of div2 should not be revealed
to a low observer. Its value, however, can be made public. Hence, while the eval-
uation of move↑(div2) should yield a high value, the evaluation of the expression
value(div2) in the final memory can yield a low value. Similarly, there is no reason
why the position of a node that stores a secret value should not be public.

By treating tree nodes as first-class values, we can naturally differentiate the
security levels that are associated to each of the node’s information components.
We propose to associate every tree node with four security levels. The value level
of a node is the level of the value that it stores. The position level of a node is
the level of its position in the DOM forest. Hence, the position level of a node
constitutes an upper bound on the levels of the contexts in which its position
in the DOM forest can change (such as by its insertion/removal). The structure
security level [10] of a node is associated to the node’s number of children. It
serves as an upper bound on the levels of the contexts in which the number of
children of a node can be changed (such as by insertion/removal of nodes in/from
its list of children). Finally, the node level is the level associated to information
about the existence of the node itself. It is used as an upper bound on the levels

of the contexts in which the node can be created or a lower bound on its own
value and structure level, and on its children’s position levels.
New forms of security leaks. When inserting/removing a node in/from the
list of children of a given node, the indexes of its right siblings change, thereby
entailing a new kind of implicit flow. Consider the following example:

insert(div0, div1, 0); if(h){insert(div0, div2, 0)} else {null}; l0 = move↓(div0, 0) (3)

The program above prepends div1 to the list of children of div0 (which is orig-
inally empty). Then, depending on the value of h, the program prepends div2
to the list of children of div0. Hence, depending on the value of h, the program
assigns either div1 or div2 to the low variable l0. We refer to these forms of
security leaks as order leaks, as they leverage information about the order of the
nodes in the list of children. Order leaks can also be obtained by removing a
child node when a second sibling node of higher index exists. Program 3 shows
that, when changing the position of a node in the DOM forest, the positions of
its right siblings also change. Therefore, the monitor enforces the position levels
of the right siblings of a given node to be equal to or higher than its own position
level. Furthermore, when moving from one node to another information about
the position of the child node is leaked. For instance, for Program 3 to be legal,
the position levels of div1 and div2 must be H. Therefore, the value associated
with the evaluation of the instruction move↓(div0, 0) is H.

The fact that a program can inspect the number of children of a given node
can be exploited to encode implicit information flows. If we add the low assign-
ment l1 = len(div0) to the end of Program 3, the value of l1 will be set to 2 or
1 depending on the value of the high variable h. The structure security level is
meant to control this kind of leaks. If a node has low structure security level, one
cannot insert/remove nodes in/from its list of children in high contexts. There-
fore, the level associated with looking-up the number of children of a given node
corresponds to its structure security level. For instance, for Program 3 to be
legal, the structure security level of div0 must be H. Hence, the level associated
with the evaluation of len(div0) is H independently of the original value of h.
Flow-sensitive versus flow-insensitive IF monitoring. The no-sensitive-
upgrade discipline [3] has been widely used in the design of purely dynamic mon-
itors. This discipline establishes that visible resources cannot be upgraded in
invisible contexts, since such upgrades cause the visible domain of a program
to change depending on secret values. Hence, flow-sensitive monitors that im-
plement the no-sensitive-upgrade discipline abort executions that encode illegal
implicit flows. Since both the structure security level and the position level of
a node are used to control the implicit flows that can be encoded by insert-
ing/removing nodes in/from the DOM forest, these levels cannot be upgraded.
This point is illustrated in the following table, which represents four monitored
executions of a program (represented on the left) in two distinct memories, by
showing how the variable labeling Γ and the node labeling Σ evolve during each
execution. The initial memories are such that div0 and div1 each bind an or-
phan node with low structure security level, and are pointed to by r0 and r1,
respectively, but differ in the value of high variable h.

While the monitor following the naive approach raises the structure security
level of div0 to H (allowing the execution to go through), the monitor following
the no-sensitive-upgrade discipline blocks the execution when the program tries
to add div1 to the list of children of div0 in a high context. The case regarding
the position level can be seen by replacing the test of the second if instruction
with move↑(div1) == div0, assuming that the original position level of div1 is
low. In contrast to the position level and to the structure security level, the value
level of a node can be upgraded, as the value stored in a node is set explicitly.
However, such upgrades cannot be caused by implicit information flows.

Both Approaches Naive Approach No-Sensitive-Upgrade
Initial High Memory: h = false h = true h = true

l = true Γ (l) := L Γ (l) := L Γ (l) := L
if(h) branch not taken branch taken branch taken
insert(div0, div1, 0) — Σ(r0).struct := H stuck

if(len(div0) == 0) branch taken branch not taken —
l = false Γ (l) := L — —
Final Low Memory: l = false l = true —

3.2 The Attacker Model
We assume a generic lattice L of security levels, and use t, u, ⊥, and > for
the greatest lower bound, the least upper bound, the bottom level, and the top
level, respectively. We consider two types of labelings: variable labelings and
node labelings. While a variable labeling Γ : Var → L maps each variable to a
single security level, a node labeling Σ : Ref → L4 associates each reference
with a tuple of four security levels. Hence, given a reference r and a labeling
Σ, Σ(r) = 〈σn, σv, σe, σs〉, where: (1) σn is the node level, (2) σv is the value
level, (3) σe is the the position level, and (4) σs is the structure security level.
For clarity, given a node n pointed to by a reference r and a labeling Σ, we
denote by Σ(r).node, Σ(r).value, Σ(r).pos, and Σ(r).struct its node level, value
level, position level, and structure security level, respectively. For simplicity, we
impose four restrictions on the levels assigned to a given node. First, one cannot
store a visible value in an invisible node. Second, an invisible node cannot have
a visible position. Third, an invisible node cannot have a visible number of
children. Fourth, an invisible node cannot have a visible node in its list of children
(in practice, this means that we cannot insert a visible node in an invisible
node). Formally, for every reference r ∈ dom(Σ), it holds that: Σ(r).node v
Σ(r).valueuΣ(r).posuΣ(r).struct. Additionally, for every two references r and
r′ in a forest f such that: r, r′ ∈ dom(Σ) and f(r).children(i) = r′ for some
integer i, it holds that Σ(r).node v Σ(r′).node.

In order to formally characterize the observational power of an attacker, we
take the standard approach of defining a notion of low-projection of a mem-
ory/forest at a given level σ, which corresponds to the part of the memory/-
forest that an attacker at level σ can observe. The low-projection of a mem-
ory µ with respect to a variable labeling Γ at level σ is simply given by:
µ �Γ,σ= {(x, µ(x), Γ (x)) | x ∈ dom(Γ) ∧ Γ (x) v σ}. Accordingly, two mem-
ories µ0 and µ1, respectively labeled by Γ0 and Γ1 are said to be low-equal at

Identifier
σ = level(o) t Γ (x)

〈Γ,Σ, o, ζ〉 var(x)→ 〈Γ,Σ, o, ζ :: σ〉

Assignment
level(o) v Γ (x) σ′ = level(o) t σ

〈Γ,Σ, o, ζ :: σ〉 assign(x)→ 〈Γ
[
x 7→ σ′

]
, Σ, o, ζ :: σ′〉

Literal Value
〈Γ,Σ, o, ζ〉 pval→ 〈Γ,Σ, o, ζ :: level(o)〉

Branch
〈Γ,Σ, o, ζ :: σ〉 branch→ 〈Γ,Σ, o :: σ, ζ〉

End
〈Γ,Σ, o :: σ, ζ〉 �→ 〈Γ,Σ, o, ζ〉

Discharge
〈Γ,Σ, o, ζ :: σ〉 •→ 〈Γ,Σ, o, ζ〉

Empty
〈Γ,Σ, o, ζ〉 ◦→ 〈Γ,Σ, o, ζ〉

Fig. 3. Core DOM Monitor - Imperative Fragment

security level σ, written µ0, Γ0 ∼σ µ1, Γ1, if they coincide in their respective low-
projections, µ0 �Γ0,σ= µ1 �Γ1,σ. Definition 1 extends the notion of low-projection
to forests. Informally, an attacker at level σ can see: (1) the references whose
corresponding nodes are associated with levels v σ as well as their tags, (2)
the values stored in visible nodes whose value level is v σ, (3) the positions of
visible nodes (with visible parents) whose levels are v σ, and (4) the number of
children of visible nodes whose structure security level is v σ.

Definition 1 (Low-Projection and Low-Equality). The low-projection of
a forest f w.r.t. a security level σ and a labeling Σ is given by:

f �Σ,σ= {(r, f(r).tag, Σ(r).node, Σ(r).pos, Σ(r).struct) | Σ(r).node v σ}
∪ {(r, f(r).value, Σ(r).value) | Σ(r).value v σ}
∪ {(r, i, r′) | f(r).children(i) = r′ ∧ Σ(r′).pos v σ}
∪ {(r, null) | f(r).parent = null ∧ Σ(r).pos v σ}
∪ {(r, |f(r).children|) | Σ(r).struct v σ}

Two forests f0 and f1, respectively labeled by Σ0 and Σ1 are said to be low-equal
at security level σ, written f0, Σ0 ∼σ f1, Σ1, if f0 �Σ0,σ= f1 �Σ1,σ.

In the following figures, a) and b) represent the final forests obtained from
the execution of Program 3 in two distinct memories that initially map the high
variable h to 1 and to 0, respectively. Forest c) represents their (coinciding)
low-projection. Nodes are labeled with their node level and structure security
level, while edges are labeled with the child’s position level. The position levels
of div1 and div2 as well as the structure security level of div0 are assumed to be
originally high. All other levels are assumed to be originally low.

a) b) c)

H H

divL,H0

divL,L2 divL,L1

H

divL,H0 divL,L2

divL,L1

divL,L1divL,H0 divL,L2

3.3 Enforcement

We define a monitored semantics in the style of Russo et al. [12, 14]. A config-
uration of the monitored semantics is obtained by pairing up a configuration

of the unmonitored semantics with a configuration of the security monitor. At
each computation step, the security monitor uses the internal event generated
by the unmonitored semantics to determine its corresponding transition. Hence,
the transitions of the monitored semantics are defined as follows:

〈µ, f, e〉 α→ 〈µ′, f ′, e′〉 〈Γ,Σ, o, ζ〉 α→ 〈Γ ′, Σ′, o′, ζ ′〉
〈〈µ, f, e〉, 〈Γ,Σ, o, ζ〉〉 → 〈〈µ′, f ′, e′〉, 〈Γ ′, Σ′, o′, ζ ′〉〉

The arrow → denotes the transition relation (whilst →∗ its reflexive-transitive
closure), and the configurations of the security monitor have the form 〈Γ,Σ, o, ζ〉,
where: (1) Γ is the variable labeling, (2) Σ is the node labeling, (3) o is the control
context, that is, a list containing the levels of the expressions on which the
program branched in order to reach the expression that is currently executing,
and (4) ζ is the expression context, that is, a list consisting of the levels of the
expressions of the current evaluation context that were already computed. The
control context and the expression context lists are used as stacks. Concretely,
each time the evaluation enters the body of an if or a while expression, the level
of the expression that was tested is appended to the control context. Conversely,
when the control flow leaves the body of an if or a while expression, the monitor
removes the last element of the control context. Similarly, after the evaluation of
an expression that is nested inside another expression, its level is appended to the
expression context and, whenever an expression is no longer nested inside another
expression, its level is removed from the expression context. The transitions of the
monitor are presented in Figures 3 and 4. We are only concerned with monitored
executions beginning with 〈Γ0, Σ0, ε, ε〉, where Γ0 and Σ0 are the original variable
and node labelings. Furthermore, letting µ0 and f0 be the initial memory and
the initial forest, we require that: dom(µ0) = dom(Γ0) and dom(f0) = dom(Σ0).
Given a list ω, we use the level(ω) as an abbreviation for t{ω(i) | 0 ≤ i < |ω|}.

Let us briefly explain the rules of the proposed information flow monitor.
Rules [Move Upward] and [Move Downward] update the expression context ζ
with the levels of the current expression’s subexpression(s) (that are retrieved
from ζ), of the program counter, and of the departing/arriving node’s position.
Observe that the levels of the nodes that the traversed edge connects are ignored,
as they are assumed to be lower than or equal to the child’s position level.
Analogously, rule [Length] updates the expression context ζ with the levels
of the current expression’s subexpression, of the program counter, and of the
structure security level of the node whose number of children is being inspected.
Rules [Remove] and [Insert] prevent the removal/insertion of a node with a
visible position in an invisible context. Furthermore, they prevent the semantics
from inserting/removing a node in/from a node with a visible number of children
in an invisible context. Since changing the position of a node causes the position
of its right siblings to change, Rule [Insert] ensures that the position levels of the
children of every DOM node are always in increasing order. Finally, rules [Store]
and [Assignment] update the security level of the corresponding value, provided
that it does not constitute a sensitive-upgrade. Hence, updates of visible values
in invisible contexts cause the execution to abort.

Move Upward
σ′ = level(o) tΣ(r).pos t σ

〈Γ,Σ, o, ζ :: σ〉 ↑(r)→ 〈Γ,Σ, o, ζ :: σ′〉

Move Downward
σ′ = level(o) tΣ(r).pos t σ0 t σ1

〈Γ,Σ, o, ζ :: σ0 :: σ1〉
↓(r)→ 〈Γ,Σ, o, ζ :: σ′〉

Length
σ′ = σ t level(o) tΣ(r).struct

〈Γ,Σ, o, ζ :: σ〉 len(r)→ 〈Γ,Σ, o, ζ :: σ′〉

Remove
level(o) t σ0 t σ1 v Σ(r).struct uΣ(r′).pos

〈Γ,Σ, o, ζ :: σ0 :: σ1〉
−(r,r′)→ 〈Γ,Σ, o, ζ :: Σ(r′).pos〉

Insert
r′′ = null ∨Σ(r′).pos v Σ(r′′).pos

level(o) t σ0 t σ1 t σ2 v Σ(r).struct uΣ(r′).pos

〈Γ,Σ, o, ζ :: σ0 :: σ1 :: σ2〉
+(r,r′,r′′)→ 〈Γ,Σ, o, ζ :: Σ(r′).pos〉

Value
σ′ = σ tΣ(r).value

〈Γ,Σ, o, ζ :: σ〉 val(r)→ 〈Γ,Σ, o, ζ :: σ′〉

Store
σ = level(o) t σ0 t σ1 tΣ(r).node

level(o) t σ0 v Σ(r).value
Σ′ = Σ [r 7→ 〈Σ(r).node, σ,Σ(r).pos, Σ(r).struct〉]

〈Γ,Σ, o, ζ :: σ0 :: σ1〉
store(r)→ 〈Γ,Σ′, o, ζ :: σ1〉

New
level(o) t σ v σ0 v σ1 u σ2

Σ′ = Σ [r 7→ 〈σ0, σ0, σ1, σ2〉]

〈Γ,Σ, o, ζ :: σ〉 new(r,σ0,σ1,σ2)→ 〈Γ,Σ′, o, ζ :: σ0〉

Fig. 4. Core DOM Monitor - Primitives for Tree Operations

Informally, a monitor is said to be noninterferent (NI) if, whenever the moni-
tored execution of a program on two low-equal memories/forests terminates suc-
cessfully, it also produces two low-equal memories/forests. Hence, an attacker
cannot use the monitored execution of a program as a means to disclose in-
formation about the confidential contents of a memory. Theorem 1 states that
the monitored successfully-terminating execution of a program on two low-equal
memories/forests always yields two low-equal memories/forests.

Theorem 1 (Noninterference). For any expression e, memories µ0 and µ1,
forests f0 and f1, variable labelings Γ0 and Γ1, node labelings Σ0 and Σ1, and
security level σ such that µ0, Γ0 ∼σ µ1, Γ1 and f0, Σ0 ∼σ f1, Σ1, and also:

– 〈〈µ0, f0, e〉, 〈Γ0, Σ0, ε, ε〉〉 →∗ 〈〈µ′0, f ′0, v0〉, 〈Γ ′0, Σ′0, ε, ε :: σ0〉〉
– 〈〈µ1, f1, e〉, 〈Γ1, Σ1, ε, ε〉〉 →∗ 〈〈µ′1, f ′1, v1〉, 〈Γ ′1, Σ′1, ε, ε :: σ1〉〉

It holds that: µ′0, Γ ′0 ∼σ µ′1, Γ
′
1 and f ′0, Σ

′
0 ∼σ f ′1, Σ

′
1. Furthermore, if either

σ0 v σ or σ1 v σ, then: σ0 t σ1 v σ and v0 = v1.

4 Extension to Live Primitives

The DOM API includes several methods that return live collections. For in-
stance, the method getElementsByTagName returns a live collection containing all
the nodes in the document tree whose tag matches the string given as input.
The distinctive feature of live collections is that they automatically reflect mod-
ifications to the document. Hence, every time a node matching the query that
generated a given live collection is inserted/removed in/from the document, it is
also automatically inserted/removed in/from the corresponding live collection.
Therefore, a live collection is in fact a dynamic query to the document.

Live Move
f ` r m ω ω(i) = r′

〈µ, f,move (r,m, i)〉
 (f,r′)→ 〈µ, f, r′〉

Live Length
f ` r m ω

〈µ, f, len (r,m)〉
len (f,r,m)
→ 〈µ, f, |w|〉

Fig. 5. Extension of the Semantics to Live Primitives

4.1 Formal Syntax and Semantics

The nodes of a live collection are always arranged in document order. The docu-
ment order is an ordering ≤ on the nodes of the DOM forest such that for every
two nodes n0 and n1 in the same DOM tree, n0 ≤ n1 if and only if n0 is found
before n1 in a depth-first left-to-right search starting from the root of the tree. In
order to model the live collections returned by the method getElementsByTagName,
we extend Core DOM with two additional constructs:

e ::= ... | move (e, e, e) | len (e, e)

The live move primitive receives as input a node n, a tag name m, and an integer
i and evaluates to the ith node with tag m in the tree rooted at n when traversed
in document order. The live length primitive receives as input a node n and a
tag name m and evaluates to the number of nodes with tag m in the tree rooted
at n. The example given in Section 1 can be rewritten in Core DOM as:

i = 0; while(i < len (doc, “DIV ”)){insert(doc, new(“DIV ”), len(doc)); i = i+ 1} (4)

where doc is assumed to be a special identifier bound to the root of the document.
The syntax of the evaluation contexts is extended to take into account the new
syntactic constructs:

E ::= ... | move (E, e, e) | move (v,E, e) | move (v, v, E) | len (E, e) | len (v,E)

The extension of the semantics to live primitives is presented in Figure 5.
The semantics makes use of a search predicate of the form f ` r m ω (given
in appendix), that formalizes the search for the nodes matching a given tag in
a tree. Intuitively, given a forest f , a reference to a node r, a tag name m, and
a list of DOM references ω, f ` r m ω holds iff ω is the list of all the nodes
with tag m found when traversing the tree of f rooted at r in document order.

4.2 Information Leaks due to Live Primitives

The live constructs introduced in this section can be exploited to encode new
types of information leaks.
Leaks via len . Consider the program below, which is to be executed in a
forest that originally contains five orphan DIV nodes respectively bound to the
variables: div0, div1, div2, div3, and div4.

insert(div0, div1, 0); insert(div0, div2, 1); insert(div0, div3, 2);
if(h){insert(div1, div4, 0)} else {null}; l = len (div0)

(5)

Depending on the value of h, l may be set either to 4 or 5. In order to tackle
this type of leak, we require the programmer to pre-establish for each possible
tag name m an upper bound on the position levels of the nodes with that tag
name, that we denote by σm and call global position level. For instance, σDIV

corresponds to the pre-established upper bound on the position levels of DIV

nodes. In order to allow the execution of len to go through, the monitor checks
whether the position levels of all nodes in the forest are lower than or equal to
the global position level, in which case the level associated with the expression
is the global position level. Therefore, for Program 5 to be legal σDIV must be
set to H. Accordingly, the expression len (div0) yields a value of level H.
Leaks via move . As the primitive move traverses the tree in document order,
it can be used to encode a new type of order leak. Let us modify Program 5 by re-
placing the last instruction with l = move (div0, “DIV ”, 3). Then, depending on
the value of the high variable h, l is assigned to div3 or div2. A NI monitor must
detect this information flow and raise the level of the originally low variable l to
H. In particular, for this program to be legal (according to the current enforce-
ment mechanism), the position level of div4 as well as the structure security level
of div1 must be high. All other levels can be set to L. In the following figures, a)
and b) represent the final forests obtained from the execution of this program in
two distinct memories that initially map the h to 0 and to 1, respectively. Forest
c) represents their (coinciding) low-projection. Observe that in spite of being
evaluated in two low-equal memories and only manipulating visible values, the
evaluation of move (div0, “DIV ”, 3) yields two different values.

a) b) c)

L
L

L

divL,H0

divL,L1

divL,L2

divL,L3

divL,L4

H

L
L

L

divL,H0

divL,L1

divL,L2

divL,L3

divL,L4

L
L

L

divL,H0

divL,L1

divL,L2

divL,L3

divL,L4

The key insight for securing the new information flows introduced by the
move primitive is that this primitive allows an attacker to operate on the nodes
with the same tag in the same tree as if they were siblings. Hence, it is necessary
to adjust the notion of a node’s position in order to take into account this new
way of traversing the DOM forest. Let the live index of a node be its position
in the list of nodes obtained by searching its corresponding tree for the nodes
with its tag in document order. The position of a node is now understood as the
triple consisting of its parent, its index, and its live index. Hence, changing the
position of a node in a tree causes the positions of the nodes with the same tag in
the same tree with higher live indexes to change. In order to deal with this kind
of flow, the proposed enforcement mechanism guarantees that the execution of
a live move only goes through if, for every tag name m and node n, the position
levels of the nodes with tag m in the tree rooted at n monotonically increase in
document order. For instance, in the figure above, the final forest b) obtained
when h = 1 does not comply with this requirement because the position level of
div4 is not lower than or equal to the position level of div2, while the live index
of div4 is lower than the live index of div2.

4.3 Revised Attacker Model and Enforcement Mechanism

At the formal level, the introduction of the new live primitives poses two separate
problems. First, the low-equality definition must be restated so as to correctly
capture the observational power of an attacker disposing of these new primitives.
Second, the monitor must be extended in such a way that it remains noninter-
ferent. We modify the definition of low-projection so that an attacker at level σ
can additionally see: (1) the live indexes of the nodes whose position levels are
v σ and (2) the number of descendants of visible nodes with a given tag m such
that σm v σ. Formally:

f �Σ,σ = f �Σ,σ ∪ {(r,m, i, r′) | f ` r m ω ∧ ω(i) = r′ ∧ Σ(r′).pos v σ}
∪ {(r,m, n) | f ` r m ω ∧ |ω| = n ∧ σm tΣ(r).node v σ}

As expected, two labeled forests are low-equal at a given level σ, written f0, Σ0 ∼ σ
f1, Σ1, if they coincide in their respective low-projections.

We do not modify the previous monitor so that the new low-equality is pre-
served by monitored executions. Instead, we establish a predicate – WL(f,Σ) –
for labeled forests, such that any two labeled forests verifying this predicate and
related by the first low-equality are also related by the new low-equality. This is
formally stated as follows:
Theorem 2 (Low-Equality Strengthening). Given two forests f0 and f1
respectively labeled by Σ0 and Σ1 and a security level σ such that WL(f0, Σ0)
and WL(f1, Σ1) and f0, Σ0 ∼σ f1, Σ1, it holds that: f0, Σ0 ∼ σ f1, Σ1.
Informally,WL(f,Σ) holds if and only if: (1) the position levels of all the nodes in
f are lower than or equal to the respective global position levels, (2) the position
levels of the nodes with the same tag monotonically increase in document order,
and (3) the position level of every node is higher than or equal to the position
levels of all its descendants (meaning that if the position of a node is secret,
the positions of all its descendants are also secret). The predicate WL(f,Σ) is
defined with the help of a predicate WLf,Σ `r φ φ′ , defined below, that
holds if the tree rooted at r is well-labeled. The function φ maps each tag name
to the position level of the last node with that tag name preceding the node
pointed to by r in f in document order. The function φ′ maps each tag name to
the position level of the last node with that tag name in the tree rooted at r (if
no such node exists, φ′ coincides with φ). Formally, the predicate WL(f,Σ)
holds if and only if for all orphan nodes pointed to by a reference r there are
two functions φ and φ′ such that WLf,Σ `r φ φ′ .

Orphan Node
f(r).tag = m

|f(r).children| = 0
φ (m) v Σ(r).pos v σm
φ′ = φ [m 7→ Σ(r).pos]

WLf,Σ `r φ φ′

Non-Orphan Node
f(r).tag = m φ (m) v Σ(r).pos v σm

|f(r).children| = n > 0 φ0
 = φ [m 7→ Σ(r).pos]

∀0≤i<n Σ(r).pos v Σ(f(r).children(i)).pos

∀0≤i<n WLf,Σ `f(r).children(i) φi φi+1

WLf,Σ `r φ φn

Finally, the extension of the security monitor to the new live primitives is
given in Figure 6. The evaluation of these primitives only goes through if the
corresponding forest is well-labeled.

Live Move
σ′ = σ0 t σ1 t σ2 tΣ(r).pos WL(f,Σ)

〈Γ,Σ, o, ζ :: σ0 :: σ1 :: σ2〉
 (f,r)→ 〈Γ,Σ, o, ζ :: σ′〉

Live Length
σ′ = σ0 t σ1 t σm tΣ(r).node WL(f,Σ)

〈Γ,Σ, o, ζ :: σ0 :: σ1〉
len (f,r,m)
→ 〈Γ,Σ, o, ζ :: σ′〉

Fig. 6. Extension of the Monitor to Live Primitives

5 Related Work and Conclusions

The increasing popularity of scripting languages has motivated further research
on runtime mechanisms for securing information flow, such as monitors. In con-
trast to purely dynamic monitors [3–5] that do not rely on any kind of static
analysis, hybrid monitors [8, 15, 16] use static analysis to reason about the im-
plicit flows that arise due to untaken execution paths. Given the dynamic nature
of tree operations, designing such a static analysis for Core DOM is far from triv-
ial. Hence, we have chosen to present a purely dynamic monitor and we leave
the design of its hybrid version for future work.

Russo et al. [13] were the first to study the problem of securing information
flow in DOM-like dynamic tree structures. They present a monitor for a WHILE
language with primitives for manipulating DOM-like trees and prove it sound.
However, references are not modeled in this language; instead, program configu-
rations include the current working node of the program. This is, as the authors
point out, the main difference with respect to JavaScript DOM operations, since
in JavaScript tree nodes are treated as first-class values. In particular, in [13]
it is not possible to change the position of a node in the DOM forest without
deleting and re-creating it – its position remains the same during its whole “life-
time”. Consequently, the position level of a node coincides with its node level.
By treating nodes as first-class values we were able to give separate treatment
to position leaks, which cannot be directly expressed in the language of [13].

Hedin et al. [9] implemented the first information flow monitor for fully-
fledged JavaScript together with “statefull information-flow models” for the stan-
dard API, as well as several APIs that are present in a browser environment such
as the DOM API. The presentation includes an informal explanation on how the
problem of live collections returned by the method getElementsByName is dealt
with. Their approach for dealing with live leaks coincides with the technique we
employ to the particular case of the len primitive.

Gardner et al. [7] propose a compositional and concise formal specification
of the DOM called Minimal DOM. The authors show that their semantics has
no redundancy and that it is sufficient to describe the structural kernel of DOM
Core Level 1. Additionally, they apply local reasoning based on Separation Logic
and prove invariant properties of simple JavaScript programs that interact with
the DOM. Given that our aim is to track information flow in the DOM, we
use a simplified semantics that allows us to label DOM resources in a natural
way. Like Minimal DOM, Core DOM is also compositional. Furthermore, all the
primitives of Minimal DOM can be easily translated to Core DOM. Hence, we
expect the authors’ sufficiency claim to be applicable to Core DOM.

This paper contributes to the challenge of enforcing secure information flow
in client-side Web applications by presenting a provably sound flow-sensitive
security monitor that enforces noninterference over Core DOM, an expressive

representative subset of the DOM API. The proposed solution tackles open issues
in IF security such as references and live collections in dynamic tree structures.
By including references and live collections, Core DOM offers the expressive
power of the DOM in the form of a simple language that is well tailored for
automatic program analysis. We thus believe that it could be re-used in future
research on security aspects of the DOM API.

Acknowledgments. This work was partially supported by the Portuguese Gov-
ernment via the PhD grant SFRH/BD/71471/2010.

References

1. The 5th edition of ECMA 262 June 2011. ECMAScript Language Specification.
Technical report, ECMA, 2011.

2. A. Almeida Matos, J. Fragoso Santos, and T. Rezk. An IF monitor for a core of
DOM. http://web.ist.utl.pt/∼ana.matos/14-AFR-if+monitor+coredom-full.pdf.

3. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In PLAS, 2009.

4. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In
PLAS, 2010.

5. T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In
POPL, 2012.

6. A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement
in a Java-like language. In CSFW, 2002.

7. P. Gardner, G. Smith, M. J. Wheelhouse, and U. Zarfaty. DOM: Towards a formal
specification. In PLAN-X, 2008.

8. G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow
Analyses. PhD thesis, Kansas State University, 2007.

9. D. Hedin, B. Birgisson, L. Bello, and A. Sabelfeld. Jsflow: Tracking information
flow in JavaScript and its APIs. In SAC, 2014.

10. D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In
CSF, 2012.

11. W3C Recommendation. DOM: Document Object Model (DOM). Technical report,
W3C, 2005.

12. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In
CSF, 2010.

13. A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in dynamic
tree structures. In ESORICS, 2009.

14. A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller
coaster of information-flow control research. In Ershov Memorial Conference, 2009.

15. P. Shroff, S. F. Smith, and M. Thober. Dynamic dependency monitoring to secure
information flow. In CSF, 2007.

16. V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. Provably correct
runtime enforcement of non-interference properties. In ICICS, 2006.

