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Abstract. This paper introduces global session nets, an integration of
multiparty session types (MPST) and Petri nets, for role-based chore-
ographic specifications to verify distributed multiparty systems. The
graphical representation of session nets enables more liberal combina-
tions of branch, merge, fork and join patterns than the standard syntactic
MPST. We use session net token dynamics to verify a flexible conformance
between the graphical global net and syntactic endpoint types, and apply
the conformance to ensure type-safety and progress of endpoint processes
with channel mobility. We have implemented Java APIs for validating
global session graph well-formedness and endpoint type conformance.

1 Introduction

Backgrounds and motivations In the early 2000s, there was an active debate
on the ways in which various foundations could be applied to the description and
verification of Web service standards, triggered by both researchers and developers
working on Web services. Two of the major formalisms actively discussed are
Petri nets and the π-calculus: the former can offer flexible graphical models of
parallel workflows, while the latter can describe process interactions and mobility
of channels in a textual format. A working group called Petri-and-Pi was led by
Milner and van der Aalst in 2004 to seek meeting points. As a direction in a
similar vein, this paper develops a new graphical formulation of multiparty session
types (MPSTs) [12] based on Petri nets (PNs) that we call session nets. Our main
motivations are (1) to offer graphical global specifications based on Petri nets
that cannot be directly represented in MPST systems based on “linear” syntactic
types [2, 4, 9, 12]; and (2) to apply Petri net token dynamics to a conformance
validation which can guarantee independent endpoint processes satisfy safety and
progress. We believe the resulting graphical representation, similar to notations
used in BPMN [3] and UML [17], and accompanying token model will help
engineers to write and understand MPST global protocols.
Session nets An MPST framework starts with global descriptions of the
message passing protocols by which the participants should interact. In session
nets (Figure 1), global protocols are specified by a combination of multiparty role
(A, B, C, . . .) and message (a, b, c, . . .) information over a PN control flow structure.
Global session execution is modelled by standard PN token dynamics: branches
and merges at places correspond to internal and external choices in the protocol
flow at the specified roles; unlabelled transitions correspond to internal fork/join
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Fig. 1. Interleaved (i.e. non-nested) choice (branch-merge) and parallel (fork-join)
structures with “criss-crossing” paths, leading to a recursive protocol segment.

synchronisations; and labelled transitions to observable message I/O actions (e.g.
?a and !a). Decoupling I/O transitions gives a natural asynchronous model.

The session net in Figure 1 cannot be represented by the global type syntax
of [2, 4, 9, 12]. Firstly, because the “criss-crossing” of the middle two of the four
paths from p0 to t cannot be expressed in the tree structure of a linear syntax.
Secondly, each of these paths flows from the initial branch through a fork, but then
goes through a merge before the join. This interleaving of choice (branch-merge)
and parallel (fork-join) structures is not supported by the nesting of choice and
parallel constructors imposed by standard global type syntax. A technical report
[19] includes session graphs of larger application protocols from [3].

Due to the flexibility of PN structures, a key design point in session nets is
to characterise the nets that correspond to coherent protocols that are safely
realisable as a system of distributed, asynchronous endpoints. In our framework,
well-formed session graphs guarantee that net execution exhibits safety, in PN
terminology (i.e. 1-boundedness), and an MPST-based form of progress. Safety
states that no place is ever occupied by more than one token at a time. Progress
means that every marking reachable from the initial marking enables a transition
or is a terminal marking, in which tokens occupy only terminal places. § 2 defines
session graphs, which are free-choice PNs by construction, their well-formedness
conditions, and shows the above properties.
Conformance Unlike the typical top-down projection from global to local types
in previous MPST systems [2, 4, 9, 12], we introduce a conformance relation be-
tween syntactic endpoint types and well-formed nets. § 3 shows our conformance
allows each endpoint type to be validated against a net independently, while guar-
anteeing that their behaviour in composition respects the behaviour of the global
net. Conformance between syntactic endpoints and global graphs is also motivated
by practice: developers of Web services and other distributed applications often
use expressive graphical patterns [3, 7, 24] for global specifications, but implement
the endpoint programs using relatively primitive send/receive APIs, such as
network socket or RPC interfaces. Our conformance accepts valid expansions
of parallel specifications into a sequence of interleaved actions at the endpoint
implementation level, and captures several session typing concepts, such as branch
subtyping [8] and certain forms of asynchronous output permutations [6, 15].
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Conformance is validated as a bidirectional I/O simulation between the (lo-
calised) net execution of a session graph and the behaviour of an individual role
given by its type. It works by checking that every output specified by a local
output type is accepted by the session net (acting as an environment comprising
the external roles), and that every message sent in the session net by another
role to the local role is handled by a local input type. For example, T1 and T4
are different endpoint types that each conform to the session net in Figure 1 for
the A role.
T1 = !{B〈a〉.!C〈b〉.T2, C〈b〉.!B〈a〉.T2,

B〈c〉.!C〈d〉.T2, C〈d〉.!B〈c〉.T2}
T2 = ?{B〈e〉.?C〈f〉.T3, C〈f〉.?B〈e〉.T3}
T3 = µ t.!{B〈g〉.end, B〈h〉.?{B〈i〉.t}}

T4 = !{B〈a〉.!C〈b〉.T5, B〈c〉.!C〈d〉.T5}
T5 = ?{B〈e〉.?C〈f〉.T6, C〈f〉.?B〈e〉.T6}
T6 = !{B〈h〉.?{B〈i〉.!{B〈g〉.end}}}

The type !{B〈a〉.T, C〈b〉.T ′, . . .} denotes a choice between outputs B〈a〉 followed by
T , C〈b〉 followed by T ′, etc.; dually ?{...} for input choice. For singleton choices,
we can omit the curly braces, e.g. !C〈b〉. A recursive type is denoted by µt.T . Type
T1 corresponds most “directly” to the structure relevant to A in the graph. The
parallel forks after p0 to B and C are expanded into the sequential interleaved
outputs (a, b and c, d) in each branch. This is followed in T2 by the interleaved
inputs (e, f) in the next part joining at t. Conformance prioritizes parallel outputs
over inputs to prevent deadlocks (§ 3). T3 conforms to the final part (after t) with
a recursive type containing the branch by A to either enact the loop (g) or end
the protocol (h). T4 differs from T1 by safely under-specifying a subset of the
interleaved outputs (analogously to MPST output subtyping) in the first part,
and performing only one specific trace of the recursive branch; replacing T6 with
!{B〈g〉.end} would also be conformant. T1 and T4 are each guaranteed compatible
with any independently conformant B and C endpoints.

In § 3, we use conformant endpoint types to type check endpoint session
processes, including channel passing and session delegations [12]. We show that
safety and progress of a well-formed session net are reflected in the MPST safety
and progress of a system of conformant, well-typed endpoint processes. This
approach gives a natural application for our novel notion of progress in PNs. We
have implemented Java APIs for validating session graph well-formedness and
endpoint type conformance to demonstrate the tractability of our framework,
which are available from [18]. The technical report [19] contains use cases [3] and
full proofs.

2 Session Net Graphs

2.1 Role Structures and Session Net Graphs

We first define the labelled Petri net graphs that we have adapted to represent
message passing protocols in the manner of multiparty session types (MPST). We
then introduce role structures, which are labelled Petri net graphs given by a few
simple construction rules. Role structures are interconnected by asynchronous
communication places to form a complete session net graph.
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Fig. 2. An example role structure

Petri net graphs We extend standard Petri net graphs with functions f and g to
specify MPST roles and message labels [12]. A labelled Petri net graph (henceforth,
Petri net graph) is a tuple P = 〈P, T, F, f, g〉, where: P = {p0, . . . , pn} is a finite
set of places; T = {t0, . . . , tm} is a finite set of transitions; F ⊆ (P ×T )∪ (T ×P )
is a set of arcs (the flow relation); f : P ⇀ R is a partial function which associates
places to role names from the set R = {A, B, C, . . .}; and g : T ⇀ L is a partial
injective function which associates transitions to message labels from the set
L = {†1a, †2b, †3c, . . .} where † = ? | ! is an I/O decoration. Places and transitions
are required to be disjoint (P ∩T = ∅) and their union, denoted by X, is required
to be non-empty (X = P ∪ T 6= ∅). The elements (x, y, . . .) of X are called
nodes. The pre-set of x ∈ X is •x = {y ∈ X | (y, x) ∈ F} and its post-set is
x• = {y ∈ X | (x, y) ∈ F}.

We represent places as circles and arcs as arrows between places and tran-
sitions, as in the standard graphical representation. We call observable the
transitions in the domain of g and represent them as boxes. The other transitions
are called internal and represented as narrow rectangles, as in Figure 1. Observ-
able transitions are annotated according to the g labelling function: ?-decorated
observables are referred to as inputs, and !-decorated observables as outputs.
Places can be annotated according to the f function.

Role structures An inbound role tree (IRT) is a Petri net graph P =〈P, T, F, f, g〉
with dom(f) = P , which forms a directed tree rooted at a place, with set of nodes
X and edges F , and such that: (1) every arc is directed towards the root (the
root is reachable from every node); (2) every observable transition is an input;
(3) if |X| > 1, the set of inputs contains all and only leaves. An outbound role
tree (ORT) is defined dually, but permits observables in non-leaf positions: (1)
every arc is directed away from the root; (2) every observable transition is an
output; (3) if |X| > 1, every leaf is an output. An IRT or ORT with |X| = 1 is
just a single root place.

Using common terminology [3, 17], we refer to: a place in an IRT as a merge,
and in an ORT as a branch; and a transition in an IRT as a join, and in an ORT
as a fork. Intuitively, an IRT represents the internal synchronisations within a
role after receiving control through the arrival of external messages (the input
leaf nodes). An ORT represents the decisions leading to the transfer of control
to other roles by dispatching external messages (the output leaf nodes). Their
asymmetry reflects the I/O asymmetry of the conformance approach (see § 3).
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A role structure consists of an IRT and an ORT, rooted at a shared place and
disjoint elsewhere, for a single role. Figure 2 as a whole shows a RS for role A
with core place p0. We often annotate only the core place in each RS. Formally:

Definition 2.1 (Role structures). Let P1 = 〈P1, T1, F1, f1, g1〉 be an IRT and
P2 = 〈P2, T2, F2, f2, g2〉 an ORT. Then P = 〈P1∪P2, T1∪T2, F1∪F2, f1∪f2, g1∪
g2〉 is a role structure (RS) iff: (1) P1 ∩ P2 = {p} and p, called the core place,
is the root of P1 and P2; (2) T1 ∩ T2 = ∅; (3) f1(p1) = f2(p2) = {A} for all
p1 ∈ P1, p2 ∈ P2 and some A ∈ R. We use R1, R2,... to denote role structures.

Session net graphs We construct session net graphs, using communication
places to compose role structures by connecting their input and output transitions.

Definition 2.2 (Session net graphs). A session net graph (session graph or
SG for short) G is a Petri net graph generated by the following cases:

1. G = R is a role structure;
2. G = 〈P1 ∪P2, T1 ∪T2, F1 ∪F2, f1 ∪ f2, g1 ∪ g2〉 is the union of disjoint session

graphs G1 = 〈P1, T1, F1, f1, g1〉 and G2 = 〈P2, T2, F2, f2, g2〉;
3. G = 〈P ∪ {p}, T , F ∪ {(t!, p), (p, t?)}, f, g〉 where 〈P, T, F, f, g〉 is a session

graph, p /∈ P is a communication place, t! is an output and t? is an input and:
(1) ∃a∈L(g(t!) =!a ∧ g(t?) =?a); (2) @p′∈P\dom(f)((t!, p′) ∈ F ∨ (p′, t?) ∈ F ).

Communication places represent asynchronous message dependencies between
the roles of the connected RSs. Condition 3 prevents connecting any observable
transition to more than one communication place (P \ dom(f) gives the set of
communication places). In Figure 1, communication places p5 and p7 connect the
leftmost A and B RSs, while p6 and p8 connect the leftmost A and C RSs.

The behaviour of a role in an SG protocol is given by all the RSs for that role
and the message causalities with other RSs. Each RS represents a control point
in the protocol where an internal decision by the role is activated by incoming
messages, leading to the dispatch of subsequent messages. This decision may then
be handled as an external choice distributed over multiple RSs downstream. In
Figure 1, A’s internal choice to send g or h is handled by B over the two right-most
B-RSs. Recursive protocols are also formed from the composition of RSs.

Free-choice graphs [10] are a well-known class of Petri net graphs, where
complexity is limited by structurally preventing conflicts. A Petri net graph is
free-choice if, for any arc from a place p to a transition t, either •t = {p} or
p• = {t}. The following states that every SG is free-choice.

Proposition 2.1. If G is an SG, then G is a free-choice Petri net graph.

2.2 Well-formedness of Session Net Graphs

Paths, cycles and diamonds Let G = 〈P, T, F, f, g〉 and X = P ∪ T . A node
x ∈ X is initial if •x = ∅ and terminal if x• = ∅. We write Term(G) for the set of
terminal nodes in G. F x = {(x′, x′′) | x′ ∈ X \ {x}, x′′ ∈ X \ {x}, (x′, x′′) ∈ F}
denotes the restriction of F to X \{x}. We extend this definition to a set of nodes
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in the natural way, where we omit set parenthesis, e.g. we write F x,y = F {x,y}.
The reflexive and transitive closure of a relation < is denoted <∗.

A path in P is a finite, non-empty sequence of nodes x0..xn such that
(xi, xi+1)0≤i≤n−1 ∈ F . We let σ, σ′, . . . range over the set of paths augmented by
the empty sequence ε; σσ′ denotes the concatenation of σ and σ′. We sometimes
treat σ as the set of nodes occurring in it, e.g. we write σ ∪ σ′. We say σ is a
simple path iff every x ∈ σ occurs exactly once; σ contains a node x if x ∈ σ.

A cycle ϕ is a path xx1..xn x where xx1..xn is a simple path. A node x is: an
entry node of ϕ iff there is a path σ from an initial node to x and σ∩ϕ = {x}; an
exit node of ϕ iff there is a path σ′ from x to a terminal node and σ′ ∩ ϕ = {x}.
Figure 3 (left) shows a cycle, along with its entry and exit nodes.

A diamond δ from start x to end y, x 6= y, is a pair of paths δ = 〈xσ1 y, x σ2 y〉,
where σ1 ∩ σ2 = ∅, σ1 ∪ σ2 6= ∅ and x, y /∈ σ1 ∪ σ2. δ is pre-cross-free if for all
z′ ∈ σ1 and z′′ ∈ σ2, (z′, z′′) /∈ F ∗−x,y or (z′′, z′) /∈ F ∗−x,y. Informally, δ is pre-
cross-free if it does not feature a pair of criss-crossing paths between its two sides.
In Figure 3 (right), the diamond with start p and end t is pre-cross-free when the
dotted part is ignored. Finally, δ is cross-free if it is pre-cross-free in the graph
obtained by removing the nodes of a path, if any, from an initial node to each
z ∈ •x. That is, a cross-free diamond has an entry path via each z ∈ •x that
does not overlap the diamond. The p–t diamond in Figure 3 (right) is cross-free
due to the path from p′ to t′.

The conditions for an SG to be well-formed are as follows.

Definition 2.3 (Well-formed session graph). An SG G = 〈P, T, F, f, g〉 is
well-formed if it is a connected graph that respects the following conditions:
(Reachability) (R1) There is exactly one initial node: place pI ∈ P

(R2) All terminal nodes are core places
(R3) ∀x∈X ((pI , x) ∈ F ∗ ∧ ∃y∈Term(G) ((x, y) ∈ F ∗))

(Labels) (L1) ∀p∈P ,∀t,t′∈p• ({f(p′) | (t, p′) ∈ F ∗} = {f(p′) | (t′, p′) ∈ F ∗})
(L2) ∀t∈dom(g),∃p∈P\dom(f)((p, t) ∈ F ∨ (t, p) ∈ F )

(Cycles) (C1) If x is an entry node for some cycle ϕ, x ∈ P
(C2) If x is an exit node for some cycle ϕ, x ∈ P

(Diamonds) (D1) If 〈xσ1y, xσ2y〉 is a diamond, then x ∈ T ⇒ y ∈ T
(D2) If 〈xσ1y, xσ2y〉 is cross-free, then x ∈ P ⇒ y ∈ P
(D3) If 〈tσ1y, tσ2y〉 is cross-free, then for all p ∈ σ1 and t′ ∈ p•,

there is a σ′1 such that t′ ∈ σ′1y and 〈tσ′1y, tσ2y〉 is cross-free
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The first five conditions correspond to basic properties of MPST global types.
(R1)–(R3) ensure that every node is reachable from the initial place and a terminal
place is reachable from them. (L1) checks that the sets of roles involved in each
case of a branch are equal (branch mergeability [4, 9]). (L2) ensures that the SG
construction has connected every input and output to a communication place.

The remaining conditions ensure safety and progress of token dynamics, by
constraining the composition of branch-merge, fork-join and recursive structures
to be a realisable MPST protocol. (C1) and (C2) state that an entry or exit node
of any cycle is a place. (D1) requires a diamond starting at a transition to also
end at a transition. (D2) imposes a dual condition only on cross-free diamonds.
(D3) checks that branches along a cross-free transition-start diamond are re-
merged before the diamond ends. Cross-free diamonds represent the “minimal”
diamond structures for which these latter constraints need hold. Checking these
conditions on cross-free diamonds only (i.e. not all diamonds) permits a larger
set of well-formed SGs, e.g. the p0–t diamond in Figure 1 is not checked for (D2).

We illustrate conditions (C1), (C2) and (D1)–(D3) by examples. In Figure 3
(left), if the dotted structure in the top-left RS for B is added, the transition
t would be the entry node of a cycle, violating (C1): the net execution from
the initial place would be immediately stuck. If instead the dotted structure in
the bottom-right RS for A is added, the greyed-out internal transition would
be an exit node, violating (C2): the net execution would be unsafe, allowing an
unbounded number of tokens to accumulate within the cycle. Figure 4 (a)–(c)
give badly-formed SGs that violate conditions (D1)–(D3), respectively. In (a), the
diamond opened by a fork but closed by a place is unsafe (not 1-bounded). In
(b), the (cross-free) diamond opened by a branch but closed by a transition will
be stuck. Note that it is not necessary to apply this condition to non-cross-free
diamonds, e.g. the p0–t diamond in Figure 1. In (c), the branch at p along the
upper side of the t–y diamond will prevent the net from terminating if t′1 is
chosen by B.

Proposition 2.2. For any SG G, well-formedness is decidable.

Deciding well-formedness conditions (R1) to (C2) is straightforward from their
definitions. For (D1) and (D2), we can show that if the properties hold for any SG
diamond comprised of simple paths, they hold for all general diamonds that may
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be derived from the “simple diamond” by performing some number of cycles along
its sides. The case of (D3) is similarly decided by checking only the diamonds
restricted to simple paths from the start to p and from p to the end.

2.3 Session Nets

A Petri net 〈P,M〉 is a Petri net graph P = 〈P, T, F, f, g〉 with a marking
M : P → N0. The following is standard terminology. A place p ∈ P contains n
tokens in M , if M(p) = n. A transition t ∈ T is enabled at M (written 〈P,M〉 t−→)
when M(p) > 0 for every p ∈ •t. When t is enabled it may fire, yielding a new
marking M ′ (written 〈P,M〉 t−→ 〈P,M ′〉) such that: M ′(p) = M(p)− 1, for all
p ∈ (•t\t•); M ′(p) = M(p)+1, for all p ∈ (t•\•t); M ′(p) = M(p), otherwise. We
may omit P if it is clear from the context. A firing sequence M0

t1−→M1 . . .
tn−→Mn

can also be written φ : 〈P,M0〉
s−→ 〈P,Mn〉, where s = t1 . . . tn. A marking M ′ is

reachable from M in P if there is a firing sequence φ from 〈P,M〉 to 〈P,M ′〉.

Definition 2.4 (Session nets). Let G = 〈P, T, F, f, g〉 be a well-formed SG
with initial place pI ∈ P . A Petri net N = 〈G,M〉 is: 1) an initial session net and
M is the initial marking for G iff M(pI) = 1, and M(p) = 0 for all p ∈ P \ {pI};
2) a session net iff M is reachable from the initial marking M0 for G.

Session nets satisfy the standard safety of Petri nets [10, 16], i.e. no place contains
more than one token in any marking reachable from the initial marking. Formally:
a Petri net 〈P,M〉 is safe iff M ′(p) ≤ 1, for all p and M ′ reachable from M in P.

Theorem 2.1 (Safety). Every initial session net is safe.

We want to ensure that sessions can always terminate successfully [2, 12, 20].
Standard Petri nets liveness [10, 16] asks for continuous execution in a system
such that no part ever becomes redundant, which is not practical for general
sessions. Deadlock-freedom instead requires that every reachable marking enables
some transition, which does not ensure the progress of all session participants.

Let 〈G,M〉 be a session net for G = 〈P, T, F, f, g〉. The marking M is terminal
in G just when, for all p ∈ P , M(p) > 0 implies p ∈ Term(G), i.e. only terminal
places contain tokens. Progress asks for some terminal marking to be reachable:

Theorem 2.2 (Progress). Let N = 〈G,M〉 be a session net. Then there is a
terminal marking M ′ which is reachable from M in G.

The proofs of decidability of well-formedness (Proposition 2.2), safety (Theo-
rem 2.1) and progress (Theorem 2.2) are based on a conspicuous set of basic
properties of diamonds and cycles in well-formed SGs.

3 Endpoint Types and Conformance

Endpoint types represent the local view of a global protocol from the perspective
of a role. This section defines conformance between well-formed SGs and syntactic
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endpoint types. Using the results of § 2, we show the key property of our framework:
executing a system of independently conformant endpoints preserves conformance
to the corresponding global net execution, thereby ensuring safety and progress.

Endpoint multiparty session types Syntactic endpoint types provide a more
programmatic specification for implementation, to be verified by type checking
(as shown in § 3) or type inference (along the line of [23]). We define their syntax
and LTS with message buffers for asynchronous FIFO communication.

Endpoint types are defined as follows:
T ::= ?{ri〈ai〉.Ti}i∈I | !{ri〈ai〉.Ti}i∈I | µ t.T | t | end

Input choice (?{ri〈ai〉.Ti}i∈I) is an external choice, receiving one of the I-indexed
messages labelled ai from role ri (A, B, . . . ). Dually, output choice (!{ri〈ai〉.Ti}i∈I)
internally chooses one of the ai messages to send to ri. t is a recursion variable,
µ t.T is a recursive type that binds t in T , and end is the terminated type. We
assume that all labels in types are distinct and recursive types are guarded,
taking an equi-recursive view of types [2, 12]. Let R be a set of roles, then:

C ::= (~T , ~w) ~T = (Tr)r∈R ~w = (wrr′)r6=r′∈R w ::= ~a

where C denotes configurations and w denotes buffers. Let m denote the actions
m ::= r!r′〈a〉 | r?r′〈a〉. We write !m to stand for r!r′〈a〉 for some r, r′ and a;
similarly for ?m. The relation T m−→ T ′, on endpoint types for role r, is given by:

!{r′
i〈ai〉.Ti}i∈I

r!r′i〈ai〉
−−−−−→ Ti ?{r′

i〈ai〉.Ti}i∈I

r?r′i〈ai〉
−−−−−→ Ti

T [µ t.T/t] m−→ T ′

µ t.T m−→ T ′

We write T m−→ iff T
m−→ T ′ for some T ′. Lastly, (~T , ~w) r†r′〈a〉−−−−→ (~T ′, ~w′) iff:

† =! =⇒ (Tr
r!r′〈a〉−−−−→ T ′

r ∧ (i 6= r⇒ T ′
i = Ti) ∧ wrr′ · a = w′

rr′ ∧ (ij 6= rr′ ⇒ wij = w′
ij))

† =? =⇒ (Tr
r?r′〈a〉−−−−→ T ′

r ∧ (i 6= r⇒ T ′
i = Ti) ∧ wr′r = a · w′

r′r ∧ (ij 6= r′r⇒ wij = w′
ij))

Output by r to r′ enqueues a message in the buffer. Input by r′ consumes messages
in the same order, checking that the label matches one of those expected.

Conformance Conformance replaces the usual projection found in MPST sys-
tems [12]. Similarly to safe projections and session type subtyping [8], conformance
relates the local protocol behaviour of a role to the global specification. Unlike
projection, it uses the global behavioural model (i.e. net dynamics) to validate
each local behaviour at endpoint level.

The functions local(t) and remote(t) lookup the local and the remote role of
an observable transition t, respectively. Given G = 〈P, T, F, f, g〉, let t ∈ dom(g).
Then local(t) = f(p), for p ∈ dom(f) such that ((p, t) ∈ F∨(t, p) ∈ F ). Similarly,
remote(t) = f(p), for p ∈ dom(f) such that there are p′ /∈ dom(f) and t′, where
either: {(p, t′), (t′, p′), (p′, t)} ⊆ F if g(t) =?a; or {(t, p′), (p′, t′), (t′, p)} ⊆ F if
g(t) =!a. We define the projected LTS on session nets for a role r as follows:

1. 〈G,M〉 r†r′〈a〉−−−−→ 〈G,M ′〉 if M t→M ′, g(t)=†a, local(t)=r and remote(t)=r′

2. 〈G,M〉 τr−→ 〈G,M ′〉 if M t→M ′ and local(t) 6= r.
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A !a ?a

B
!b ?b

A

!c ?c

B
!d ?d

A

T bad
A =!B〈a〉.?B〈b〉.!B〈c〉.?B〈d〉.end
T bad

B =?{A〈a〉.?A〈c〉.!A〈b〉.!A〈d〉.end,
A〈c〉.?A〈a〉.!A〈b〉.!A〈d〉.end}

Fig. 5. Motivation for output priority in independent conformance to parallel SG flows

3. 〈G,M〉 τ−→ 〈G,M ′〉 if M t→M ′ and t /∈ dom(g).

We write τ∗−→ for the reflexive and transitive closure of τ−→, and =⇒ for the reflexive
and transitive closure of τ−→ ∪ τr−→. Conformance is defined as follows.

Definition 3.1 (Conformance). An endpoint type Tr conforms to a session
net 〈G,M〉, written Tr � 〈G,M〉, if the following conditions are satisfied:

1. (a) if Tr
r!r′〈a〉−−−−→ T ′r, then 〈G,M〉 =⇒ r!r′〈a〉−−−−→ 〈G,M ′〉 and T ′r � 〈G,M ′〉

(b) if Tr
?m−−→, then 〈G,M〉 =⇒ ?m′−−→ for some ?m′

2. (a) if 〈G,M〉 =⇒ r!r′〈a〉−−−−→, then Tr
!m−−→ for some m

(b) if 〈G,M〉 =⇒ r?r′〈a〉−−−−→ 〈G,M ′〉, then:
– Tr

~m−→ ?m−−→, for some ?m and sequence of output actions ~m
– if Tr

?m−−→ for some ?m, then Tr
r?r′〈a〉−−−−→ T ′r and T ′r � 〈G,M ′〉

3. if 〈G,M〉 τr−→ 〈G,M ′〉, then Tr � 〈G,M ′〉

Tr � G (Tr conforms to G) if Tr � 〈G,M0〉 where M0 is the initial marking.

The asymmetry between cases 1 and 2 is due to choice subtyping [8], and the
omission of parallel endpoint types. In 1(a), every endpoint output must be
simulated by the session net. In 2(a), an endpoint only has to perform some
output when the net outputs. Thus endpoint outputs may safely underspecify
the global model. Dually, endpoint inputs may be overspecified. In 2(b) and 1(b),
the endpoint simulates every input by the net, but not vice versa. In 2(b), we
allow the endpoint to output before simulating an input: this is sound because
the net can do the same outputs without disabling the original input. Note that
the subtyping [8] is included in the conformance: if Tr � 〈G,M〉 and T ′r 6 Tr
where 6 is defined as in [8, Definition 8], then T ′r � 〈G,M〉 (see [19]).

Conformant endpoint types for the SG in Figure 1 were explained in § 1.
Figure 5 shows a SG between roles A and B, and endpoint types T badA and T badB
for A and B, respectively (using the abbreviated notation described in § 1). Note
that these types do not independently conform to the SG: T badA refines the global
protocol by forcing a process to wait for an acknowledgement to a (message b),
before sending c; similarly, T badB mandates to wait for both a and c before doing
any output. When composed together, they get stuck in a deadlock. Conformance
is designed to prioritise outputs over inputs, thus ruling out incorrect protocols
as T badA and T badB . If output priority was to be relaxed, both T badA and T badB would
be conformant and deadlocks would not be prevented.

Weak transition sequences of a net are finite; hence we have:
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P ::= u[r1, .., rn](c).P Request
| u[r](c).P Accept
| c! r : l〈v〉;P Select
| c?{ri : li(zi).Pi}i∈I Branch
| P | Q | 0 Parallel, Nil
| µX.P | X Recursion
| (νa)P | (νs)P Hiding
| s[r, r′] : h Queue

h ::= ε | h · l〈v〉 | h · s[r]
v ::= a | s[r] | x (values)
u ::= a | x (identifiers)
c ::= x | s[r] (sessions)
s, s′, ... (session names)
a, b, ... (shared names)
x, y, z, ... (variables)

Fig. 6. Syntax of processes

Proposition 3.1. For any endpoint type Tr and SG G, conformance is decidable.

Theorem 3.1 (Soundness). Let G = 〈P, T, F, f, g〉 have initial marking M0
and f have range R. Let C0 = (~T0,~ε) be an initial configuration such that T0r �
〈G,M0〉, for all r ∈ R. Let also C0

m1−−→ C1 . . .
mn−−→ Cn be such that Ci = (~Ti, ~wi),

for all i ∈ {1, . . . , n}. Then 〈G,M0〉
τ∗−→ m1−−→ 〈G,M1〉 . . .

τ∗−→ mn−−→ 〈G,Mn〉, for
some M1 . . .Mn; such that Tir � 〈G,Mi〉, for all i ∈ {1, . . . , n} and r ∈ R.

We now define the safety properties of a configuration C, following those in
communicating automata [9, § 3]. We say C is terminal if C = ( ~end,~ε).

1. C is a deadlock configuration if ~w = ~ε, while C is not terminal and no Tr is
an output type, i.e. some types are blocked, waiting for messages.

2. C is an orphan message configuration if all Tr ∈ ~T are end but ~w 6= ∅, i.e.
there is at least an orphan message in a buffer.

3. C is an unspecified reception configuration if there is r ∈ R such that Tr is
an input and, for all r′ ∈ R and a, Tr

r?r′〈a〉−−−−→ T ′r implies that |wr′r| > 0 and
wr′r 6= a · w, i.e Tr is prevented from receiving any message from buffer r′r.

We say C is deadlock-free (resp. orphan message-free, reception error-free) if no
C ′ such that C ~m−→ C ′ is a deadlock (resp. orphan message, unspecified reception)
configuration. C is safe if it is deadlock-free, orphan-free and reception error-free.

Theorem 3.2 (Safety and Progress). Let G = 〈P, T, F, f, g〉 be a well-
formed SG, where the range of f is R. Let C0 = (~T0,~ε) be an initial configuration
such that T0r � G, for all r ∈ R. Then (1) C0 is safe; and (2) for all C such
that C0

~m−→ C, either C is terminal or C m′−−→ C ′, for some action m′.

4 Multiparty Asynchronous Session Calculus

Safety and progress are reflected from session graphs onto processes through
type conformance. The syntax (Figure 6) is extended from [2], allowing commu-
nication with different roles within a single branch. It supports channel mobility
and session delegation (i.e. passing and hiding shared/session channels). We

11



[Req]

Tr1 � G = 〈P, T, F, f, g〉 Γ ` u : G
range(f) = {r1, .., rn} Γ ` QB∆,x : Tr1

Γ ` u[r1, .., rn](x).QB∆
[Acc]

Tri � G Γ ` u : G
Γ ` QB∆,x : Tri i 6= 1

Γ ` u[ri](x).QB∆

[Sel]
j ∈ I Γ ` P B∆, c : Tj Γ ` u : Gj

Γ ` c! rj : lj〈u〉;P B∆, c :!{ri〈li〈Gi〉〉.Ti}i∈I

[Bra]
∀i ∈ I Γ, zi :Gi ` Pi B∆, c : Ti

Γ ` c?{ri : li(zi).Pi}i∈I B∆, c :?{ri〈li〈Gi〉〉.Ti}i∈I

[SSel]
j ∈ I Γ ` P B∆, c : Tj

Γ ` c! rj : lj〈c′〉;P B∆, c :!{ri〈li〈T ′
i 〉〉.Ti}i∈I , c

′ : T ′
j

[SBra]
∀i ∈ I Γ ` Pi B∆, c : Ti, zi :T ′

i

Γ ` c?{ri : li(zi).Pi}i∈I B∆, c :?{ri〈li〈T ′
i 〉〉.Ti}i∈I

Fig. 7. Process typing for conformant endpoints

summarise the semantics adapted from [2]. bLinkc creates a new session s with
bidirectional queues, where fn(P ) is the set of free names of P ; bSelc enqueues
and bBrac dequeues a message. Other rules give the closure under |, ν and
structural equivalence ≡ (including (νs)(s[r1, r′1] : ε | .. | s[rn, r′n] : ε) ≡ 0).
bLinkc a[r1, .., rn](x).P1 | a[r2](x).P2 | · · · | a[rn](x).Pn

−→ (νs)(Πi∈{1,..,n}(Pi[s[ri]/x] | Πj∈{1,..,n}\is[ri, rj ] : ε)) s 6∈ fn(Pi)

bSelc s[r]! r′ : l〈v〉;P | s[r, r′] : h −→ P | s[r, r′] : h · l〈v〉

bBrac s[r]?{r′
i : li(zi).Pi}i∈J | s[r′

j , r] : lj〈v〉 · h −→ Pj [v/zj ] | s[r′
j , r] : h

Conformance replaces the usual endpoint type projection [12]. Type environ-
ments use well-formed SGs G and endpoint types T from the previous sections:

Γ ::= ∅ | Γ · u :G | Γ ·X :∆ ∆ ::= ∅ | ∆ · c :T
SG/endpoint type messages are injectively mapped to pairs of process labels
l1, l2, . . . and G or T , e.g. ?{ri〈li〈Si〉〉.Ti}i∈I where each S is either G (shared
channel passing) or T (session delegation). X : ∆ types a recursive process.
Γ ` P B∆ is a typing judgement.

Figure 7 lists the key rules, adapted from [2], for typing conformant endpoint
processes in the session net setting; the omitted rules are as in [2]. Rule [Req] types
a session initiation request by checking that the endpoint type for the session
body conforms to the G associated to the shared channel for role r1; [Acc] types
an initiation accept in the dual manner. Rules [Sel] and [Bra] type selection and
branching with shared channel passing (i.e. passing SG-typed messages). Rules
[SSel] and [SBra] similarly type selection and branching with session delegation
(i.e. linear communication of endpoint-typed messages).

Without explicit subsumption typing rules, conformance still enables the
typing of processes with branch/select and recursive subtype behaviours [8] and
permutation of selections [15], via parallel expansion. By Theorem 3.1, we have
the following subject reduction theorem, from which the safety properties for
processes are derived as a corollary [12].
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Theorem 4.1. Suppose Γ ` P B ∅ and P −→∗ P ′. Then Γ ` P ′ B ∅.

Session net progress (Theorem 2.2) corresponds to the following progress property
for processes within a single session [12] (a session net, as any individual global
type, models a single protocol). We say P0 = a[r1, .., rn](x).P1 | a[r2](x).P2 |
· · · | a[rn](x).Pn is simple if a :G ` P0 B ∅, Pi does not contain session delegation,
accept, request and hiding, and G = 〈P, T, F, f, g〉 where range(f) = {r1, .., rn}.

Theorem 4.2 (Progress). Let a : G ` P0 B ∅ and let P0 be simple. Then for
all P such that P0 −→∗ P , either P ≡ 0 or P −→ P ′, for some P ′.

Thus safety and progress of a well-formed net ensure those of the conforming,
well-typed processes. Progress across separate sessions can be obtained by using
advanced typing systems, e.g. [2], at the top of the typing systems in Figure 7.

5 Implementation and Related Work

Implementation We have implemented Java APIs for validating session graph
well-formedness and endpoint type conformance to demonstrate the tractability
of our framework. The code and implementations of all the examples in this
paper and [19]. are available at [18]. We plan to integrate this framework into
an extension of Session Java [13], using these well-formedness and conformance
APIs to extend the type system following § 3.

Related Work Workflow nets [20] (WFNs) are a class of Petri nets originally
introduced to describe the operation of business processes. A WFN is an ab-
straction of a global system on which Petri net techniques are used to verify
properties such as dead-lock freedom and proper termination. Session nets differ
firstly by specifying multiparty role and message details that WFNs are not
concerned with. A sound WFN is a good single, self-contained system, whereas
a well-formed session net further ensures that the global protocol, given by the
configuration of roles and messages on the structure of the net, is safely realisable
as a set of independent, distributed endpoints. Secondly, as an MPST framework,
session nets bridge from the global graph to syntactic endpoint specifications
(via conformance), that are then used to type-check endpoint code.

Open WF-nets (oWFNs) [14, 22] are an endpoint-oriented adaptation of WF-
nets to distributed systems, that starts from constructing a separate net for each
endpoint. In contrast, session nets start from the global-oriented SG model of a
protocol against which each endpoint is checked for conformance. In oWFNs, the
final system properties depend on the specific endpoint composition (effectively
treating the complete system as a standalone WF-net), whereas in session nets,
any endpoints that are independently conformant to an SG are guaranteed to
give a good composition. Like basic WFNs, oWFNs do not explicitly specify or
validate multiparty protocol details.

Although Petri nets classes such as WFNs can be interpreted in a communi-
cations setting (e.g. in [21], the validation of a sequence of I/O action sequences
is subsumed under the general task of accepting traces of fired transitions), they
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do not explicitly describe communication protocols. The multiparty protocol
information captured by an SG and their associated well-formedness is crucial
in the design of session nets, allowing us to validate the safe decomposition of
the global system into distributed endpoints. Without these concerns, it is not
necessary to consider as many structural constraints for WFNs as for well-formed
SGs. (A basic WFN requires only (1) one initial and one terminal place, and (2)
that any transition is contained in a path from the initial to the terminal place;
an SG with a single terminal node is thus a WFN.) As an example, the following
shows a SG whose underlying Petri net satisfies safety and progress, but not the
conditions on role labelling (specifically, Def. 2.3 (L1)).

A
!a ?a

B
!b ?b

C
!c ?c

A
!d ?d

B
!e ?e

This global protocol cannot be safely realised between the distributed endpoints
at the implementation level. If an A endpoint chooses to send d in an instance of
this protocol, the C endpoint will not receive any message. However, this means C
cannot locally determine whether A has indeed selected !d, or whether A actually
selected !a and C should wait (indefinitely) to do ?b. A simple way to amend this
SG is to ensure that C is also present along the lower branch (not necessarily in the
same order), so that the initial internal choice by A is explicitly communicated to C
in all eventualities. Other cases of incoherent message labelling, but otherwise safe
in terms of the underlying Petri net, are similarly ruled out by well-formedness,
e.g. race conditions in parallel protocol flows.

In [21], WF-nets are used to implement tools for checking the conformance
of an executed process to a BPEL specification. Their conformance checking,
however, is done at run-time and is used to verify the execution trace of a process,
via e.g. a logging service or runtime monitor. Our notion of conformance is
different, as it is used to statically check the local correctness of each endpoint
type by relating them all to an agreed SG. A well-typed system of endpoint
processes is guaranteed to behave safely for all executions.

Session nets, as in [2, 4, 9, 12] and other type structures for Web services (e.g. [1,
5, 11]), abstract from specific data types so that data typing can be integrated
orthogonally. Recently there have been several works to bridge communicating
automata with choreographies or session types [1, 9]. The main focus of [1, 4, 9] are
projectability conditions for more general forms of global specifications. The unit
of their specifications is an input-output relation between two roles (i.e. A→ B),
whereas a main new feature of session nets is the explicit representation of the
internal decision structures of participants to produce outputs in response to
inputs. This enables more flexible well-formed global types than those in [1, 4, 9].
None of these works proposed conformance as we have developed for session nets.
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