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Abstract. Two conflicting high-level goals govern the enforcement of
security policies, abridged in the phrase “high security at a low cost”.
While these drivers seem irreconcilable, formal modelling languages and
automated verification techniques can facilitate the task of finding the
right balance. We propose a modelling language and a framework in
which security checks can be relaxed or strengthened to save resources
or increase protection, on the basis of trust relationships among commu-
nicating parties. Such relationships are automatically derived through a
reputation system, hence adapt dynamically to the observed behaviour
of the parties and are not fixed a priori. In order to evaluate the impact
of the approach, we encode our modelling language in StoKlaim, which
enables verification via the dedicated statistical model checker SAM. The
overall approach is applied to a fragment of a Wireless Sensor Network,
where there is a clear tension between devices with limited resources and
the cost for securing the communication.

Keywords: Security policies, probabilistic aspects, reputation systems,
stochastic verification.

1 Introduction

Security policies are usually formalised as fixed rules concerning actions that have
to be executed whenever given conditions are met. Nonetheless, the scenarios in
which security policies operate are often open and highly dynamic, and decisions
may depend on external factors, not entirely known at design-time: this is for
example the case when human agents play a role in the system, or when systems
components have limited resources that need be used carefully.

The challenge of modelling security policies in an uncertain world has been
first addressed by AspectKP [1], where policies are implemented as probabilis-
tic aspects: when the triggering conditions are met, an aspect (i.e., a policy) is
enforced with a given probability. This approach is suitable for taking into ac-
count a great many real concerns, including the possibility that some undertaken
security measures are eluded.



In a more complex scenario, the probabilistic enforcement of security policies
can account for relaxing or strengthening a security check, aiming at saving re-
sources or increasing protection. In order to react to a dynamic environment, the
probability to undertake, relax, or strengthen a given security measure cannot
be fixed a priori, as in [1], but depends on our knowledge of the past and on
our expectations for the future. In a distributed system, knowledge and expecta-
tion can be interpreted as the opinion we have formed about the parties we are
interacting with, hence they can be connected to the trust we put on our peers.

Probabilistic reputation systems [2, 3] offer a framework for quantifying trust
in probabilistic terms. In a reputation system, communicating parties rate each
other when an interaction is completed, and then use such rates to compute a
reputation score, which is levered to decide about future interactions. The main
advantage of reputation systems is that they permit computing the probability
that a policy is enforced as the system evolves and according to its observed
behaviour. This leads to the notion of trust-based enforcement of security policies.

The trust we put on the involved parties at a given time can be used to de-
termine the actual enforcement of security polices. A policy can be relaxed with
the aim of saving resources: in case enforcing the prescribed checks is expensive
(in terms of time, energy, etc.), they can be skipped or relaxed when interacting
with parties who exhibited fair behaviour in the past. On the contrary, we can
strengthen a security check when interacting with a party we do not trust, or
dually we can exchange critical information only with highly-trusted parties. In
this view, the enforcement or relaxation of security policies becomes (probabilis-
tically) optional with respect to a default mode, which is to be followed when
we do not have enough information to take meaningful decisions.

In order to tackle the challenge of modelling and reasoning about systems
where security policies are enforced on a trust basis, we propose TESP (Trust-
based Enforcement of Security Policies), a calculus inspired by [1], that enriches
the StoKlaim [4] formalism with probabilistic aspects for security policies and
with primitives for managing reputation scores. The transformational semantics
of TESP associates to each TESP term a StoKlaim one, thus enabling the
verification of properties specified in MoSL (Mobile Stochastic Logic) [5] by
means of the model checker SAM [6]. The main technical challenge addressed
in this work is the integration of all these elements (in particular, probabilistic
aspects, security policies, and reputations) in a uniform framework. The key role
in this integration is played by the policy evaluation described in Sect. 2.3.

The choice of a stochastic process calculus seems natural once one considers
that trust relationships vary over time. Moreover, also resource usage is con-
ditioned temporally: batteries deplete and may recharge, and for instance we
might wonder whether the probability of disclosing some information to a third
party within the average life-span of a component meets a given threshold.

The flexibility of the framework is demonstrated on the example of a Wireless
Sensor Network, where the need for securing the communication in an open
environment coexists with “lazy” components that have limited resources and
thus want to perform as few operations as possible.



Related work. Aspects Oriented Programming (AOP) [7] focuses on separation
of concerns in developing software systems, and has been extensively studied in
connection with the enforcement of security policies [8–10]. TESP extends and
combines two lines of research, putting reputation systems to use in the devel-
opment of security policies through aspects. On the one hand, the integration of
aspects into a coordination language in the Klaim family [11] has been explored
in [10]. On the other hand, StoKlaim has been used in [12] to model and verify
properties of reputation systems, aiming at providing a formal understanding of
such objects. The statistical model checker [13] SAM is presented in [14].

The relationship of TESP with respect to its inspiring languages, namely
AspectKP and StoKlaim, can be summarized as follows. On the one hand, our
language is essentially a superset of AspectKP, and can certainly model all the
systems expressible with AspectKP. In fact, one of our aims is to loosen the
rigidity of the latter, where policies are applied with fixed probabilities. On the
other hand, we have that our language is fully encodable in StoKlaim, as argued
throughout Sect. 2, and we can thus exploit the statistical model checker SAM,
that works on StoKlaim models, to check properties expressed in MoSL.

Statistical inference offers a formal framework for analysing historical obser-
vation and synthesising probability distributions. Whilst probabilistic reputation
systems surely relies on the applications of statistical methods, they have the spe-
cific merit of defining a framework where trust scores are adjusted dynamically,
as the system evolves. We consider here reputation systems based on probabilis-
tic trust [15], whose basic postulate is that the behaviour of each player in the
system can be modelled as a probability distribution over a given set of interac-
tion outcomes. Once this postulate is accepted, the task of computing reputation
scores reduces to inferring the true distribution parameters for a given player. A
study of reputation systems in the realm on WSNs is presented in [16].

In this work we stick to basic mechanisms for managing policies, focusing in-
stead on their trust-based enforcement. For more elaborate approaches to policy
selection and combination the reader may refer to XACML [17].

Outline. We present TESP syntax in Sect. 2, showing how to encode the new
constructs in StoKlaim. The developments of the language is demonstrated on
a running example, showing how reputation management and policy enforce-
ment seamlessly integrate in the basic calculus. Some quantitative properties of
interest are verified by means of statistical model checking and simulation in
Sect. 3. Finally, Sect. 4 concludes and sketches a line for future work.

2 TESP: Syntax and Informal Semantics

TESP (Trust-based Enforcement of Security Policies) is a distributed process
calculus which can be used to model security policies and their probabilistic en-
forcement, relying on a reputation system to infer probabilities. The calculus,
displayed in Table 1, enriches (a subset of) StoKlaim with primitives for han-
dling reputations and inherits the aspect-oriented mind-set of AspectKP for the
design of security policies.



A system is rendered as a network whose nodes represent the communi-
cating parties (referred to also as players in the following). As customary in
Klaim [18], each node is equipped with a tuplespace, modelling a local memory.
Communication between nodes is asynchronous and point-to-point: sending is
modelled as storing a tuple in the receiver’s locality space, whereas receiving is
modelled as reading a tuple from the local tuplespace. However, other forms of
interaction typical of tuplespace-based communication are allowed: e.g., receiv-
ing can be rendered as reading a tuple from the sender’s locality. With respect to
Klaim-like calculi we refrain from allowing process mobility. We deem that this
simplification facilitates focusing on the novelty of our work, and that the tech-
nical developments needed to encompass the full-fledged version of StoKlaim
would provide little additional insight into our approach.

In the following we present the syntax and the intended semantics of the
calculus. The formal semantics of StoKlaim is introduced in [4]; we provide
the semantics of the new constructs by means of a translation into StoKlaim
processes.

2.1 Basic calculus

The top-level entities of the calculus are networks. A network is a collection of

nodes l ::
Π

(P, T ) combined with the parallel operator ||. Each node represents
a player, which is uniquely identified by its locality l, and is characterised by a
list of policies Π, a running process P , and a tuplespace T .

Given a process P , the special locality self denotes the locality where P is
executing. A process is either the parallel composition of processes (i.e., threads),
the guarded sum of action-prefixed processes, or the invocation of a process
identifier. We assume that each process identifier A has a unique definition of
the form A , P , visible from any locality of a network. The terminated process
nil is obtained as the empty sum. For the sake of writing more readable processes,
we introduce the conditional statement if e then P1 else P2, which is is not pure
StoKlaim syntax but can be easily encoded in the language and is available
in the model checker SAM together with Boolean expressions e, that can check
locality equality or compare integers.

An action has the form a@u :λ, denoting that action a has target locality u
and a stochastic duration governed by a negative exponential distribution with
rate λ. We write l ::a@u :λ to stress that a is attempted from locality l.

An action can be an output to or an input from a tuplespace. Tuples t are
communicable objects consisting of sequences of data elements u. Such elements
can be constant locality values l4 and applied occurrences of variables v. Tem-
plates T consist of sequences of data element u and defining occurrences of
variables v?. Prefixes in(. . . , v?, . . .)@u : λ.P and read(. . . , v?, . . .)@u : λ.P bind

4 For the sake of simplicity we consider here only localities as communicable values.
Observe however that Boolean, integer, and string values can be encoded with ad
hoc localities.



Table 1. Syntax: Networks, Processes and Actions.

N ::= N1||N2 | l ::Π (P, T ) (Network)

P ::= P1|P2 |
∑
i ai@u :λi.Pi | A | if e then P1 else P2 (Process)

a ::= out(t) | in(T ) | inp(T ) | read(T ) | readp(T ) | rate(res) (Action)

res ::= true | false (Interaction result)

T ::= {{}} | T ] 〈t〉 (Tuplespace)

u ::= l | v t ::= u | t1, t2 T ::= u | v? | T1, T2 (Data)

variable v in P . Operator ] increments tuplespaces, modelled as multi-sets of
tuples.

As for communication, input works by pattern-matching on tuples: the pro-
cess in(T )@u :λ.P looks for a tuple t matching the template T in the tuplespace
located at u, and whenever such a t is found it is removed from u and the process
evolves to Pσ, where σ is a substitution containing the bindings of variables de-
fined in T and instantiated as in t. If t is not found, then in(T )@u :λ.P is blocked
until a matching tuple is available. The input action read(T )@u :λ behaves like
in(T )@u :λ, except that t is not removed from u. A process out(t)@u :λ.P puts
tuple t in the tuplespace at locality u and proceeds as P .

For convenience, we inherit from Linda and some versions of Klaim the
distinction between blocking and non-blocking input actions, the latter being
denoted inp(T )@u : λ and readp(T )@u : λ, for destructive and non-destructive
input, respectively. These are predicate operations that returns true if a matching
tuple is found, false otherwise. As inp, readp always allow progressing with the
computation, some defining occurrence of variable might have not received a
value after such an operation is consumed. There are different approaches to
handle a non-bound variable in a continuation process. In Linda, where non-
blocking input operations have been first introduced, the intention was to check
the boolean result of the operation, so as to split the continuation process in
two branches, and use such variables only in the branch related to a successful
input [19, pg. 2-25]. However, no enforcement mechanism is provided which
guarantees that a variable is accessed only if it carries some information. A more
elegant approach has been recently proposed in [20], where the notion of option
data type is exploited to differentiate an input variable possibly carrying no
value from one actually bound to some value. Whilst this would be an interesting
development, it is independent from the use of reputation systems, and thus in
the following we resort to Linda style, to avoid overly complicating the syntax.
Finally, a third possibility consists in restricting the syntax of inp, readp not to
range on binding occurrences of variables, hence writing inp(t)@u :λ.

As usual, in the following we consider closed processes (no free variables).

Running example 1/3. Consider a hierarchical Wireless Sensor Network in which
a number of sensors monitor environmental parameters (e.g., temperature, pres-
sure, etc.) and communicate them to base stations, in charge of validating the



data and forwarding them to a central server. Since sensors and stations are gen-
erally powered by batteries and have limited computational capabilities, com-
munication between them is not encrypted but relies on signatures appended
to messages, so as to enable stations to verify the integrity of received sensor
readings. Due to cheap hardware, unreliable wireless communication, and active
attackers it may indeed be the case that the message received by a station gets
corrupted.

A possibly faulty sensor can be modelled by the following process:

sensori , sensorsoundi | sensorfaultyi

sensorsoundi , in(“token”)@self :λsign. out(“reading”,m, self, self)@stationj :λ1.

out(“token”)@self :λ2. sensor
sound
i

sensorfaultyi , in(“token”)@self :λcorrupt. out(“reading”,m, n, self)@stationj :λ1.

out(“token”)@self :λ2. sensor
faulty
i

where the first parallel component (sensorsoundi ) models the case in which the
sensor issues a reading with the correct message signature, and the second com-
ponent (sensorfaultyi ) describes the case in which the message is corrupted. The
choice is modelled by two concurrent withdrawals (in) of a local (@self) shared
tuple (“token”), whose rates (λsign and λcorrupt) determine the frequency with
which a message is delivered intact or corrupted, respectively. Sending a sensor
reading to the parent stationj corresponds to storing (out) a tuple in its tu-
plespace (@stationj), containing the string “reading” as first field, the content of
the reading m (assumed to be a fresh constant), the signature, and the source
locality. For the sake of simplicity, a signed message is ideally described by a pair
(m, l), where m is the message payload and l the signature (second and third
fields, respectively), represented as the locality that generated the message5. If
the delivered message is not corrupted, at stationj the third and fourth fields of
the tuple will be identical (declared and actual source coincide), otherwise they
will not (n is a fresh constant). Once the sensor reading is sent, the component
releases the token (out(“token”)@self) and restarts.

A base station is then in charge of receiving readings and forwarding them to
the central server. A sensor reading is forwarded only after the signature check
is successfully passed. A station can modelled by the following process:

stationj , in(“reading”, vm?, vs?, vsource?)@self :λ3.

out(“check req”, vm, vs, vsource)@self :λ4.

in(“check res”, vres?)@self :λ5.

if (vres) then out(“reading”, vm)@server :λ7. stationj else stationj

The retrieval of a reading from the local tuplespace binds variables vm, vs, vsource
to the reading measure, the corresponding signature, and the sensor’s locality,

5 Modelling cryptographic primitives and keys falls outside the scope of this work.
The presence of the sender locality in the signed message accounts for the usage of
a private key in a more precise encoding.



respectively. The signature check is then performed by a check service local to
each base station, rendered as the following parallel process:

checkj , in(“check req”, vm?, vs?, vsource?)@self :λ8.

if (vs = vsource) then out(“check res”, true)@self :λ9. checkj
else out(“check res”, false)@self :λ9. checkj

This process consumes a check request, compares6 the signature with the source
locality and sends a Boolean value representing the result of the comparison to
the requester. In case the check fails, i.e., the message is corrupted, the base
station discards it, otherwise it is forwarded to the server.

2.2 Reputations

The novelty of TESP consists in coupling networks with reputation systems;
specifically, we focus on probabilistic reputation systems [2], where players’ be-
haviour is modelled as a probability distribution over a set of interaction out-
comes.

We assume that each locality l (i.e., player) has an associated reputation
value rep(l) ∈ [0, 1], representing the trust that the system puts on l, namely
0 denoting a completely distrusted player and 1 a completely trusted one. A
new action is introduced to deal with reputations: rate(res)@u :λ updates rep(u)
according to the outcome res of an interaction involving the process located at
u. We shall see in Sect. 2.3 how reputation scores are levered to enforce policies
probabilistically.

In the StoKlaim implementation, the reputation score of a player is mod-
elled as a set of tuples stored in some tuplespace. Accordingly, rate(res)@u would
take the form of one or more output actions, whose values and target tuplespaces
are defined by the reputation model.

For the sake of simplicity, in the grammar of Table 1 the outcome of an
interaction between processes is a Boolean value, ideally denoting whether or
not the interaction took place as expected. We refrain from discussing more
complex choices (e.g., using Boolean expressions as argument of rate), as they
would provide no additional insight into our approach. The specification of a
system, finally, requires defining the initial reputation of each locality. This is
an application-dependent task: in our running example we make a conservative
choice and start with rep(l) = 0 for all localities.

Running example 2/3. As a base station is connected to a great many sensors, it
is the bottle-neck on the way to the server in charge of transforming sensed data
into information. In order to save time and energy, the behaviour of stations can
be revised so that they check signatures probabilistically, on a trust basis. In
fact, together with communication, checking a signature is the most demanding

6 In a real-world application this consists in hashing the message plain-text, decrypting
the signature with the source’s public key, and comparing the two bit-strings.



operation performed by stations. The first step consists in coupling processes
with a reputation system, where sensors are rated by stations according to their
behaviour. In the base station process the last line is replaced by:

if (vres) then rate(true)@vsource :λ6. out(“reading”, vm)@server :λ7. stationj
else rate(false)@vsource :λ6. stationj

The base station exploits the result of the signature check to rate sensors: in
case the check succeeds, the sensor receives a positive score (rate(true)@vsource),
otherwise if the message is corrupted the sensor receives a negative score.

As for the reputation system, in the implementation of the example we chose
the ML model [3], where the reputation score of a sensor is given by the number
of positive interactions (i.e., successful signature checks) over the total number
of interactions. rate is thus implemented as an output performed by the base
station to its own locality, recording for each sensor the number of positive
and negative interactions. In case more base stations were considered, each one
would have its own opinion about the reputation of connected sensors, even if a
sensor were communicating with more than one station, hence obtaining a local
view of reputations. A global perspective would be implemented with a unique
tuplespace (e.g., at the server) where all the reputation scores were stored and
retrieved from.

2.3 Policies

We assume that each locality l is annotated with a list of policies π1.π2.π3 . . . ,
denoted Π(l). The syntax of policies is displayed in Table 2, and extends Table 1.
Basic policies do and skip stand for policies allowing and denying everything,
respectively, while more interesting policies are implemented with aspects.

A policy [?rep(u)rec if cut : cond] is applied when an action l :: a@u is executed
which matches the aspect trigger cut. The selection mechanism scans policy lists
from left to right and selects the first policy that applies, disregarding other
relevant policies that may occur later in the list. First, the local policies Π(l)
are scanned, and only upon local approval by the action source l the policies
at the target u are scanned. This approach is suitable to combine optimisation
with security concerns: while the source l may deny the execution of an action
to save resources or to ensure security, the target u implements access control
on its local tuplespace and thus has the last word. Hence, either no policy is
enforced (action denied at source), or one policy (action allowed at source and
no policy at target), or two policies (both at source and target).

The matching between an action l :: a@u and an aspect trigger cut works
via pattern-matching and produces a substitution from variables that occur free
in cut to terms in corresponding positions in a. We shall feel free to use the
wild-card symbol (obtained by matching a variable never used in the policy.)

Assume that the execution of a process located at l reaches a point a@u :λ.Q,
and that [?rep(u′)rec if cut : cond] is the policy to be enforced. If the predicate



Table 2. Syntax: Aspects and Policies.

π ::= do | skip | [?rep(u)rec if cut : cond] | π1.π2 (Policy)

cut ::= l :: a@u (Aspect trigger)

cond ::= true | false | d1 = d2 | readp(T )@u : λ (Applicability condition)

| ¬cond | cond1 ∧ cond2 | cond1 ∨ cond2

rec ::= skip | do | P (Recommendation)

specified by the condition cond evaluates to true then the probabilistic recommen-
dation ?rep(u′)rec is evaluated. The condition cond can either test the presence
of a tuple in a given tuplespace (and thus generates a substitutions that applies
to the whole policy), check locality equality, or be the Boolean combination of
simpler conditions.

A recommendation can prescribe to skip the triggering action l ::a@u, to ex-
ecute a@u, or to replace a@u and its continuation with a closed process P . Rec-
ommendations behave probabilistically, levering trust relationships. ?rep(u)rec
enforces rec with probability rep(u), while with probability 1 − rep(u) the rec-
ommendation is not enforced and a@u is executed according to the default plan.
Hence, the enforcement of policies relies on reputation scores rather than fixed
probabilities (that can however be introduced seamlessly).

Running example 3/3. We can now show how a base station exploits reputation
scores to enforce checking signatures probabilistically: the higher reputation a
sensor has, the less wary the station will be when interacting with it.

A base station is instrumented with a policy triggered by the output request-
ing to check a signature. The policy allows or denies such request according to
the reputation of the message source, as prescribed by the probabilistic recom-
mendation:

Polcheck ,

[
?rep(vsource) out(“reading”, vm)@server :λ7. stationj

if self ::out(“check req”, vm, , vsource)@self : true

]
Whenever an output matching out(“check req”, vm, , vsource) is attempted by
the base station, the probabilistic recommendation is evaluated (the condition
being true). The higher the reputation of the source vsource, the higher the prob-
ability to enforce the recommendation, which simply replaces the output and its
continuation with a new process that directly forwards the message to the server
skipping the signature check and the emission of the rating, and then restarts
the original process.

It is worth noticing that another way to obtain similar (or better) results in
reducing the computational overhead of sensors is by redesigning and modifying
the system using checks less expensive than those based on digital signatures
(e.g., based on Message Authentication Codes). However, refactoring the system
is much more costly than deploying new aspects, which are independent from
the implementation once the binding mechanism is in place.



Semantics. Our policy selection mechanism leads to replace an action li :: a@u : λ
with a conditional structure testing whether a local policy applies to the action
and, in case the action is granted, whether a remote policy applies to the action.
In particular, the more interesting latter check translates as follows:

if(u = l1) then

select the first π in Π(l1) s.t. π applies to a;
evaluate(π);

else if (u = l2) then ...

where l1, . . . , ln are all the localities in the network, skip and do apply to every
action, and an aspect applies if its cut matches a (yielding another conditional
structure). Assuming that a@u : λ triggered the policy and that Q is its contin-
uation, the evaluation of π is defined as follows:

evaluate(π) =


a@u : λ.Q if π = do

Q if π = skip

. . . if π = [?rep(u)rec if cut : cond]

(the last case is detailed below). Observe that we can only achieve this behaviour
in closed systems, where nodes know each other’s policies. As the lists of poli-
cies are fixed, the translation can be automatically generated. The machinery
necessary to remove this restriction would imply fairly elaborate technical devel-
opments that falls outside the scope of this work (basically, code mobility and re-
flection capabilities). Similarly, more complex look-up criteria can be considered,
well-beyond the sequential priority we resort to (which is however motivated by
implementations common in firewalls). Nonetheless, such elaborate mechanisms
are independent from our usage of reputation, hence we point the curious reader
to [1] for further details on policy combination in an aspect-oriented mind-set.

It is worthwhile noticing that skip allows ignoring an action and going on
with the continuation process, whereas in [1] the failure of a policy leads to
entering a busy waiting state where the action might be attempted at a later
time. Obviously, due care has to be paid in the continuation process, as variables
bound by an action that might be skipped cannot be used freely. This issue
advocates for a programming style similar to the one prescribed with predicate
input actions inp and readp. Other actions do not return a Boolean value denoting
success or failure, but this behaviour can be encoded initialising variables with
a default value not used elsewhere (e.g., ⊥) and check whether or not they have
been modified after the evaluation of the policy and before accessing them. This
would result in replacing a@u : λ.Q with Q[⊥/v1, . . . ,⊥/vn] in the definition of
evaluate for the case π = skip, the vi’s being the variables bound by action a.

It remains to show how aspects are translated. Consider the policy π ,
[?rep(u)rec if cut : cond], and assume that the matching between the action a
and the trigger cut yields substitution θ1, under which cond yields substitution
θ2. Then, evaluate(π) is defined as

if(θ1(cond)) then



if([[(θ2 ◦ θ1)(?rep(u)rec)]]) then enforce(rec, a@u : λ.Q) else Q
else a@u : λ.Q

where θ2 ◦θ1 denotes the composition of substitutions, and its application to the
probabilistic recommendation can only determine the location u whose reputa-
tion is being considered, as skip, do, P are closed.

The translation relies on the auxiliary functions [[·]] and enforce, for evaluat-
ing probabilistic recommendations and the outcome of their enforcement. The
probabilistic enforcement of a recommendation translates to a Boolean guard:

[[?rep(u)skip]] = ((rand(0, 1) > rep(u)) ∨ (rep(u) = 0)) = [[?rep(u)P ]]

[[?rep(u)do]] = ((rand(0, 1) < rep(u)) ∨ (rep(u) = 1))

where rand(x, y) picks a number randomly7 in the interval [x, y]. For instance,
with ?rep(u)skip we obtain false, i.e., the action governed by the policy is skipped,
with probability rep(u): the higher the trust, the higher the chances to skip
executing the action governed by the policy. Conversely, with ?rep(u)do we obtain
true, i.e., the action governed by the policy is executed, with probability rep(u):
the higher the trust, the higher the chances to execute the action.

The result of enforcing a recommendation is defined as follows:

enforce(skip, a@u : λ.Q) = enforce(do, a@u : λ.Q) = a@u : λ.Q

enforce(P, a@u : λ.Q) = P

Finally, observe that ?rep(u)skip and ?rep(u)do may be both used to relax or
strengthen probabilistically a security measure, depending on the application.
For example, by enforcing to encrypt a message by default sent as plain-text,
or by skipping outputting it at all when possible, we are heightening the overall
security of the system either way.

3 Analysing TESP

The stochastic nature of TESP specifications inherently calls for a quantitative
verification approach. Quantitative techniques allow determining the probability
that a given event will occur, and thus checking whether or not such value meets
a threshold of interest.

In Sect. 2.3 we showed how a system in TESP can be translated into StoK-
laim. Once a StoKlaim specification is obtained for the system under study,
we can express the properties of interest in the temporal stochastic logic MoSL,
and then verify whether or not a property holds by means of SAM, a statistical
model checker that determines the probability associated to a path formula after
a set of independent observations. The model checking algorithm is parametrised

7 Function rand(x, y) is implemented in StoKlaim as a selection among a number of
tuples representing the interval values. In fact, the semantics of StoKlaim chooses
with uniform probability among all matching tuples.



Table 3. Results of the analysis of the formula true U≤tφFwdCorrupted.

Behaviour θ Time t Threshold th Probabilities Time t Probabilities

0.2 20 1% 0.6534 40 0.8894

0.2 20 5% 0.4693 40 0.6087

0.2 20 10% 0.2378 40 0.2565

0.5 20 1% 0.8974 40 0.9869

0.5 20 5% 0.7256 40 0.8584

0.5 20 10% 0.3747 40 0.4010

0.8 20 1% 0.9279 40 0.9928

0.8 20 5% 0.5535 40 0.6151

0.8 20 10% 0.1379 40 0.1382

on a given tolerance threshold ε and error probability p, and guarantees that the
difference between the computed values and the exact ones exceeds ε with a
probability that is less than p.

In order to carry out a quantitative analysis on a StoKlaim network, we first
have to specify the value of the rates characterising the actions. As an illustrative
example, we show how the rate λ1 of action out(“reading”,m, self, self)@stationj
can be determined. The rate specifies the duration of a communicating action:
assuming that the sensors are relying on an wireless connection providing 250
Kbit/s transfer rate, and that sending a reading requires transferring 20KB, we
obtain λ1 = 1

(20×8)/250 = 1.5 actions per unit of time.

3.1 Experimental results

The implementation of the example is available at

http://www.imm.dtu.dk/~rvig/reputation-policies-WSN.zip

The first property we investigate tests whether the probability that the number
of corrupted messages forwarded by a base station is greater than a fixed fraction
of the total number of forwarded messages. This property is expressed in MoSL
by the formula

φFwdCorrupted = 〈“forwarded corrupted”〉@server→ true

This formula relies on the consumption operator 〈T 〉@l→ φ [4], which is satisfied
whenever a tuple matching template T is located at l and the remaining part of
the system satisfies φ. Hence, the formula φFwdCorrupted is satisfied if and only
if a tuple 〈“forwarded corrupted”〉 is stored in the server tuplespace. Notice that
the TESP model of the example has been enriched with some outputs: the base
station takes note of the numbers of corrupted and forwarded messages, and
uses this information to produce a service tuple in case the number of corrupted
forwarded is greater than the fixed percentage.

Exploiting the previous formula, we can specify the more interesting property
whether the number of corrupted messages forwarded by a base station is greater
than a fixed percentage of the total number of forwarded messages within time t,
defined as true U≤tφFwdCorrupted, where the until formula φ1U

≤tφ2 is satisfied
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Fig. 1. Ratio between unchecked and forwarded messages.

by all the runs that reach within t time units a state satisfying φ2 while only
traversing states that satisfy φ1. The model checking analysis estimates the total
probability of the set of runs satisfying such formula. Table 3 reports the results
of the analysis with respect to the following parameters: ε and p are both set to
0.05; in the network there are four sensors and one base station; three sensors
always send correct messages while one behaves according to a parameter θ; three
possible sensor’s behaviours θ, with θ ∈ {0.2, 0.5, 0.8} being the probability of
sending a correct message; two time limits t, with t ∈ {20, 40}; three threshold
percentages th, with th ∈ {1%, 5%, 10%}.

Inspecting the table, we observe that the probability of satisfying the for-
mula is strictly related to the sensor’s behaviour and to the threshold value. In
particular, it is not always true that the better the behaviour of the sensor, the
lower the probability of forwarding corrupted messages, as one might expect.
For th = 1% the best result - that is, the lowest probability of sending more
than 1% corrupted messages - is achieved when the sensor’s behaviour is the
worst (θ = 0.2). This is due do to the fact that messages from trusted parties
are seldom checked, yielding a higher number of forwarded messages.

Figures 1 and 2 show the ratio between the number of unchecked and for-
warded messages, and the number of corrupted and forwarded messages, respec-
tively. These results have been obtained thanks to the simulation engine provided
with SAM. As expected (see Fig. 1) we observe that the better the sensor be-
haviour, the higher the ratio of unchecked messages, and thus the higher the
quantity of saved resources. On the contrary, Fig. 2 seems not to confirm the
results of the model checking analysis: the ratio of corrupted messages over the
forwarded is lower for θ = 0.8 than for θ = 0.2. Nonetheless, mind to observe
that the simulation computes an average value, while the model checking algo-
rithm estimates the probability of exceeding a threshold. Hence, we can conclude
that on average the ratio between corrupted and forwarded messages is lower
for θ = 0.8, but the probability that the number of corrupted messages exceeds
a percentage of the forwarded messages is lower for θ = 0.2. This is due to the
decreasing number of checks that are performed for θ = 0.8, and to the fact that
the model checking analysis has a temporal horizon: for a fixed time limit t, the
total number of messages processed by the system is higher for θ = 0.8 than for
θ = 0.2 (less checks, more time for processing new messages).
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Hence, the analysis facilitates determining the best trade-off between sav-
ing resources (skipping checks) and guaranteeing security (enforcing them, thus
forwarding only correct messages). Comparing the number of saved checks with
the number of wrong messages that are forwarded we are indeed studying the
effect of the policy in terms of resource optimisation and security relaxation,
that should match an utility function defined by the system administrator.

4 Conclusions

This work combines two lines of research, showing how aspects and reputation
systems can be used to obtain trust-based enforcement of security policies, where
trust relationships are determined as the system evolves and according to the
behaviour of the parties. Moreover, it shows how the notion of trust can be
exploited to optimise resources or increase security, skipping controls if peers
are trustworthy or enforcing additional checks when they are not, thus adapting
to the environment.

In order to reason about trust-based enforcement of security policies in a
natural way we have defined TESP, a stochastic process calculus that extends
StoKlaim with primitives for reputation management and aspects. By means
of a translation to the original StoKlaim we can verify quantitative properties
of interest via statistical model checking and simulation. The expressiveness of
the framework has been demonstrated on the simple yet meaningful example of
a WSN, where reputations are used to balance the need for security with the
shortage of computational resources and power supply.

A promising direction for future work is to investigate the impact of trust-
based enforcement of policies on a more optimisation-oriented framework, where
explicit optimisation goals are given. This is a challenging task, as even in our
simple example multiple conflicting criteria need be considered. At the imple-
mentation level, a more succinct translation of TESP into StoKlaim would
seem desirable. Moreover, concerning the translation, we also intend to provide
a formal proof of its correctness.
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