
Does my program ever finish?

Alexey Bakhirkin
Supervisor: Nir Piterman

University of Leicester, Department of Computer Science



What program analysis people do

They reason about programs (without running them),

I especially, low-level imperative programs, e.g., device drivers;

I because the price of failure is high, and there’s demand from
software industry;

I because low-level programs usually do simple things, and can
be tackled by formal methods.

They like hard problems, e.g.,

I boolean satisfiability – a famous NP-complete problem
important for analyzing digital hardware;

I or halting problem – a famous undecidable problem.



What program analysis people do

They reason about programs (without running them),

I especially, low-level imperative programs, e.g., device drivers;

I because the price of failure is high, and there’s demand from
software industry;

I because low-level programs usually do simple things, and can
be tackled by formal methods.

They like hard problems, e.g.,

I boolean satisfiability – a famous NP-complete problem
important for analyzing digital hardware;

I or halting problem – a famous undecidable problem.



Many programs are supposed to finish

And many of them are important.

I Device drivers (a set of procedures that react to events).

I GPU programs (load program – provide input – wait – collect
result).

I And many more (a recent Microsoft Azure outage is
attributed to a non-termination of bug).



Does my program print “Hello world”?

If you can prove that a program finishes, you can prove that it
does something good eventually.

print "Hello world"

while True:
do something

print "Hello world"



Does my program print “Hello world”?

If you can prove that a program finishes, you can prove that it
does something good eventually.

print "Hello world" while True:
do something

print "Hello world"



Does my program print “Hello world”?

days = // days since 1 Jan 1980
year = 1980
while days > 365:

if year is leap:
if days > 366:

days = days - 366
year = year + 1

else:
days = days - 365
year = year + 1

print "Hello world"

I Based on a bug that froze many Zune devices on 31 Dec
2008. The official response was, “Wait until battery dies”.

I People are bad at finding such bugs; machines can be good.

I But the problem is hard.



Does my program print “Hello world”?

days = // days since 1 Jan 1980
year = 1980
while days > 365:

if year is leap:
if days > 366:

days = days - 366
year = year + 1

else:
days = days - 365
year = year + 1

print "Hello world"

I Based on a bug that froze many Zune devices on 31 Dec
2008. The official response was, “Wait until battery dies”.

I People are bad at finding such bugs; machines can be good.

I But the problem is hard.



Programs are (not) Turing machines

We do not see programs as Turing machines, we think of transition
systems instead, i.e.,

I a program has states (configurations): which line we’re
executing and what are the values of variables;

I and transitions (transition relation): how can we move
between states.

Two general approaches

I Variables are finite strings of bits, and operations are logical.
Then, finite number of configurations, and problems reduce to
decidable boolean satisfiability. But for programs, its model
(description) might be huge.

I Variables are mathematical numbers. Then infinite numebr of
configurations, undecidability translates, and you need more
complicated math. But the models are smaller.



Programs are (not) Turing machines

We do not see programs as Turing machines, we think of transition
systems instead, i.e.,

I a program has states (configurations): which line we’re
executing and what are the values of variables;

I and transitions (transition relation): how can we move
between states.

Two general approaches

I Variables are finite strings of bits, and operations are logical.
Then, finite number of configurations, and problems reduce to
decidable boolean satisfiability. But for programs, its model
(description) might be huge.

I Variables are mathematical numbers. Then infinite numebr of
configurations, undecidability translates, and you need more
complicated math. But the models are smaller.



Does my program print “Hello world”?

x = // ask user for a positive number
while x 6= 1:

if x is even:
x = x / 2

else:
x = 3*x + 1

print "Hello world"

I If x is a natural number – then no one knows, but
mathematicians suspect that it does (Collatz conjecture).

I Checked up to 5 · 260 (as Wikipedia claims).

I So, undecidability translates, but maths offers many tools for
numbers (e.g., linear programming).



Does my program print “Hello world”?

x = // ask user for a positive number
while x 6= 1:

if x is even:
x = x / 2

else:
x = 3*x + 1

print "Hello world"

I If x is a natural number – then no one knows, but
mathematicians suspect that it does (Collatz conjecture).

I Checked up to 5 · 260 (as Wikipedia claims).

I So, undecidability translates, but maths offers many tools for
numbers (e.g., linear programming).



Soundness vs. completeness

Computer scientists are used to undecidable problems. They try to
devise techniques that are

I sound: if we give a definite answer, it should be correct;

I may be incomplete: we are allowed to say that we do not
know.

An undecidable problem will become a pair of complementary:

I try to prove that a program finishes (i.e., try to prove that
there’s no bug);

I try to prove that a program may not finish (i.e., try to find a
bug).

Not all programs that finish can be proven to do so and vice versa.
The idea it to handle as many interesting programs as possible.
E.g., many interesting programs mostly use linear arithmetic.



Soundness vs. completeness

Computer scientists are used to undecidable problems. They try to
devise techniques that are

I sound: if we give a definite answer, it should be correct;

I may be incomplete: we are allowed to say that we do not
know.

An undecidable problem will become a pair of complementary:

I try to prove that a program finishes (i.e., try to prove that
there’s no bug);

I try to prove that a program may not finish (i.e., try to find a
bug).

Not all programs that finish can be proven to do so and vice versa.
The idea it to handle as many interesting programs as possible.
E.g., many interesting programs mostly use linear arithmetic.



What is a proof of that a program finishes?

A better studied problem

I Remember, computer scientists like simple things.

I For a state, find a bound on the number of steps (lines of
code, loop iterations) until the program finishes.

Ranking function

Try to map every state to a value that

I cannot decrease forever (e.g., a natural number);

I decreases as the program runs;

I keyword: well-founded relation.



What is a proof of that a program finishes?

A better studied problem

I Remember, computer scientists like simple things.

I For a state, find a bound on the number of steps (lines of
code, loop iterations) until the program finishes.

Ranking function

Try to map every state to a value that

I cannot decrease forever (e.g., a natural number);

I decreases as the program runs;

I keyword: well-founded relation.



So, a ranking function

x = // ask user for a
// positive number

k = // ask user
while x > 0:

x = x + k

{
0, if x ≤ 0

x , if x > 0 and k < 0

The ranking function is usually partial, so 2 aspects:

I what decreases;

I when it decreases (from what states our program finishes).

If there is a piecewise-linear ranking function, it will usually be
found by modern techniques. They are good at finding linear
relations between things, e.g., the number of steps and variables.



So, a ranking function

x = // ask user for a
// positive number

k = // ask user
while x > 0:

x = x + k{
0, if x ≤ 0

x , if x > 0 and k < 0

The ranking function is usually partial, so 2 aspects:

I what decreases;

I when it decreases (from what states our program finishes).

If there is a piecewise-linear ranking function, it will usually be
found by modern techniques. They are good at finding linear
relations between things, e.g., the number of steps and variables.



So, a ranking function

x = // ask user for a
// positive number

k = // ask user
while x > 0:

x = x + k{
0, if x ≤ 0

x , if x > 0 and k < 0

The ranking function is usually partial, so 2 aspects:

I what decreases;

I when it decreases (from what states our program finishes).

If there is a piecewise-linear ranking function, it will usually be
found by modern techniques. They are good at finding linear
relations between things, e.g., the number of steps and variables.



What is a proof that a program might never finish?

A less studied problem

Remember, two aspects.

I The where-aspect is more or less agreed upon (recurrence set).

What is being researched.

I The what-aspect (some
finite proof that there is an
infinite execution).

I How to find recurrence sets
(right heuristics are needed).

I In case of uncertainty, which
choices lead to which
behaviours (a hidden
when-aspect).

And a bit on what do I do
Just submitted a conference paper on (just another approach to)
what can be a proof.



What is a proof that a program might never finish?

A less studied problem

Remember, two aspects.

I The where-aspect is more or less agreed upon (recurrence set).

What is being researched.

I The what-aspect (some
finite proof that there is an
infinite execution).

I How to find recurrence sets
(right heuristics are needed).

I In case of uncertainty, which
choices lead to which
behaviours (a hidden
when-aspect).

And a bit on what do I do
Just submitted a conference paper on (just another approach to)
what can be a proof.



What is a proof that a program might never finish?

A less studied problem

Remember, two aspects.

I The where-aspect is more or less agreed upon (recurrence set).

What is being researched.

I The what-aspect (some
finite proof that there is an
infinite execution).

I How to find recurrence sets
(right heuristics are needed).

I In case of uncertainty, which
choices lead to which
behaviours (a hidden
when-aspect).

And a bit on what do I do
Just submitted a conference paper on (just another approach to)
what can be a proof.



A few words on the research area

I The questions and the mathematical foundations of
techniques are not new.

I But the important advances are quite recent.

I The problem is chalenging: need to produce many things at
the same time: what, where, when.

I Useful on its own to debug critical programs, but also other
problems reduce to (non-)termination.

I Much is to be done, and every small advancement is
appreciated.

Thanks



A few words on the research area

I The questions and the mathematical foundations of
techniques are not new.

I But the important advances are quite recent.

I The problem is chalenging: need to produce many things at
the same time: what, where, when.

I Useful on its own to debug critical programs, but also other
problems reduce to (non-)termination.

I Much is to be done, and every small advancement is
appreciated.

Thanks


