
Backward Analysis via Over-Approximate
Abstraction and Under-Approximate Subtraction

Alexey Bakhirkin1 Josh Berdine2 Nir Piterman1

1University of Leicester, Department of Computer Science

2Microsoft Research

Goal

A backwards analysis inferring sufficient preconditions for safety.

while (x) {
/* Possible invalid pointer */
x = x->next;
/* Possible null dereference */
x = x->next;

}

I In our model, unsafe actions bring the program to an error
memory state.

I General technique applicable to more than one domain.
I Hence, assume that backward transformers can be designed.
I Intraprocedural (I’ll be mostly talking about loops).

Goal

A backwards analysis inferring sufficient preconditions for safety.

while (x) {
/* Possible invalid pointer */
x = x->next;
/* Possible null dereference */
x = x->next;

}

I In our model, unsafe actions bring the program to an error
memory state.

I General technique applicable to more than one domain.
I Hence, assume that backward transformers can be designed.
I Intraprocedural (I’ll be mostly talking about loops).

Goal

A backwards analysis inferring sufficient preconditions for safety.

while (x) {
/* Possible invalid pointer */
x = x->next;
/* Possible null dereference */
x = x->next;

}

I In our model, unsafe actions bring the program to an error
memory state.

I General technique applicable to more than one domain.
I Hence, assume that backward transformers can be designed.
I Intraprocedural (I’ll be mostly talking about loops).

A loop

Cfrag:

. . .

Cbody

[ψ]

[ϕ]

Crest

...
while (f(state)) {

/* Loop body */
...

}
/* Rest of procedure */
...

Standard: gfp

Cfrag:

. . .

Cbody

[ψ]

[ϕ]

Crest

An input state makes Cfrag safe when

ϕ⇒ (Crest is safe)
and
ψ ⇒ (Cbody ; Cfrag is safe)

Leads to a system of recursive equations
where (an under-approximation of) the
greatest solution is of interest.

Standard: complement of an lfp

Cfrag:

. . .

Cbody

[ψ]

[ϕ]

Crest

An input state makes Cfrag unsafe when
an unsafe state is reachable

ϕ ∧ (Crest is unsafe)
or
ψ ∧ (Cbody ; Cfrag is unsafe)

I Find (an over-approximation of)
the least solution of the resulting
recursive equations.

I Complement the result.

Why alternative formulation?

Why not gfp?
Domains are often geared towards least fixed points and
over-approximation. For example:

I For shape analysis with 3-valued logic (Sagiv, Reps, and
Wilhelm 2002), over-approximation is the default way of
ensuring convergence.

I For polyhedra, direct under-approximating analysis uses a
different approach to representing states (Miné 2012).

Why not complement of lfp?

I Under-approximating complementation may not be readily
supported (e.g., 3-valued structures).

Our formulation

Cfrag:

. . .

Cbody

[ψ]

[ϕ]

Crest

I Walk backwards.
I Over-approximate the unsafe states

(negative side).
I Characterize the safe states

(positive side) as an lfp above a
recurrent set.

I Use the negative side to prevent
over-approximation of the positive
side.

Semantics of statements

I U – all memory states, ε – a disjoint error state.
I For a statement, JCK ⊆ U × (U ∪ {ε}).
I Loop semantics is an lfp.

x = x + 1

s1

s2

x = x + [1; 2]

s1

s2 s3

x = 2x/[0, 1]

s1

s2 ε

Positive and negative sides

P(Cprg,U) is the goal, and N(Cprg,∅) is its inverse. The analysis
uses both.

Positive side P(C , S)

I Safe states assuming S is safe after the execution.
I Corresponds to weakest liberal precondition.
I wp(C , S) = {s ∈ U | ∀s ′ ∈ U ∪ {ε}. JCK(s, s ′) ⇒ s ′ ∈ S}

Negative side N(C ,V)

I Unsafe states, assuming V is unsafe after the execution.
I Corresponds to the union of predecessors and unsafe states.
I pre(C ,V) = {s ∈ U | ∃s ′ ∈ V . JCK(s, s ′)}
I fail(C) = {s ∈ U | JCK(s, ε)}

Positive and negative sides

P(Cprg,U) is the goal, and N(Cprg,∅) is its inverse. The analysis
uses both.

Positive side P(C , S)

I Safe states assuming S is safe after the execution.
I P(C , S) = wp (C , S)

I Has a standard characterization as a gfp.
I We restate it as an lfp.

Negative side N(C ,V)

I Unsafe states, assuming V is unsafe after the execution.
I N(C ,V) = pre(C ,V) ∪ fail(V)

I Has a standard characterization as an lfp.

Under-approximating the positive side

I Over-approximate negative side N] computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

I Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side Q]

i .
I Subtraction of the negative side produces a sequence of

under-approximate positive side P[
i , from which one element

(e.g., final) is picked.

P N

Under-approximating the positive side

I Over-approximate negative side N] computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

I Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side Q]

i .
I Subtraction of the negative side produces a sequence of

under-approximate positive side P[
i , from which one element

(e.g., final) is picked.

Q]
i

N]

Under-approximating the positive side

I Over-approximate negative side N] computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

I Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side Q]

i .
I Subtraction of the negative side produces a sequence of

under-approximate positive side P[
i , from which one element

(e.g., final) is picked.

Abstract subtraction
Function (· − ·) : L → L → L such that for l1, l2 ∈ L

I γ(l1 − l2) ⊆ γ(l1)
I γ(l1 − l2) ∩ γ(l2) = ∅

Under-approximating the positive side

I Over-approximate negative side N] computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

I Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side Q]

i .
I Subtraction of the negative side produces a sequence of

under-approximate positive side P[
i , from which one element

(e.g., final) is picked.

N]P[
i

Under-approximating the positive side

I Over-approximate negative side N] computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

I Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side Q]

i .
I Subtraction of the negative side produces a sequence of

under-approximate positive side P[
i , from which one element

(e.g., final) is picked.

Abstract subtraction
We claim that it is easier to implement than complementation.
E.g., for a powerset domain P(L) a coarse one can be used:

L1 − L2 = {l1 ∈ L1| ∀ l2 ∈ L2. γ(l1) ∩ γ(l2) = ∅}

Positive side via universal recurrence

Cloop:
Cbody

[ψ]

[ϕ]
U

P N

R∀ Tmay

I R∀ – universal recurrent set (states that must cause
non-termination):

R∀ ⊆ J¬ϕK
∀s ∈ R∀.

(
∀s ′ ∈ U ∪ {ε}. JCbodyK(s, s ′)⇒ s ′ ∈ R∀

)
I Tmay – states that may cause successful termination. An lfp

involving pre.
I Characterize P as lfp involving pre \N above R∀.

Positive side via existential recurrence

Cloop:
Cbody

[ψ]

[ϕ]
U

P N

Tmust R∃

I R∃ – existential recurrent set (states that may cause
non-termination):

R∃ ⊆ JψK
∀s ∈ R∃. ∃s ′ ∈ R∃. JCbodyK(s, s ′)

I Tmust – states that must cause succesful termination. An lfp
involving wp.

I Characterize P as lfp involving wp above R∃ \ N.

Positive side via recurrence

U

P N

R∀ Tmay

U

P N

Tmust R∃

I P characterized as lfp above a recurrent set.
I We claim that finding a recurrent set is a less general problem

than approximating a gfp.
I Recurrent set is produced by an external procedure.

Evaluation

We evaluated the approach on simple examples of the level of

while (x) {
x = x->next;

}

while (x ≥ 1) {
if (x == 60)

x = 50;
++x;
if (x == 100)

x = 0;
}
assert (!x);

I E-HSF (Beyene, Popeea, and Rybalchenko 2013) used to
produce recurrent sets for numeric programs.

I An internal prototype procedure based on TVLA (Lev-Ami,
Manevich, and Sagiv 2004) – for heap-manipulating programs.

Conclusion

I Theoretical construction based on recurrent sets and
subtraction.

I Prototype implementation for two domains.
I Possible future work.

I Lifting restrictions (program language, nested loops).
I Recurrence search for various domains.
I Feasibility of abstract counterexamples.

I Check out our technical report.

Thank you

Related work

I (Lev-Ami et al. 2007) – backwards analysis with 3-valued
logic, via complementing an lfp.

I (Calcagno et al. 2009) – inferring pre-conditions with
separation logic, bi-abduction, and over-approximation.

I (Popeea and Chin 2013) – numeric analysis with positive and
negative sides.

I (Miné 2012) – backwards analysis with polyhedra and gfps.
I (Beyene, Popeea, and Rybalchenko 2013) – an solver for

quantified Horn clauses allowing to encode search for
pre-conditions in linear programs.

