Backward Analysis via Over-Approximate
Abstraction and Under-Approximate Subtraction

Alexey Bakhirkin! Josh Berdine?> Nir Piterman!

LUniversity of Leicester, Department of Computer Science

2Microsoft Research

& & Microsoft:
5l University of

Leicester Research

Goal

A backwards analysis inferring sufficient preconditions for safety.

while (x) {
/* Possible invalid pointer =x/
X = Xx->next;
/* Possible null dereference */
X = Xx->next;

Goal

A backwards analysis inferring sufficient preconditions for safety.

while (x) {
/* Possible invalid pointer =/
X = Xx->next;
/* Possible null dereference */
X = Xx->next;

» |n our model, unsafe actions bring the program to an error
memory state.

Goal

A backwards analysis inferring sufficient preconditions for safety.

while (x) {
/* Possible invalid pointer =/
X = Xx->next;
/* Possible null dereference =*/
X = Xx->next;
}
» |n our model, unsafe actions bring the program to an error
memory state.
» General technique applicable to more than one domain.

» Hence, assume that backward transformers can be designed.

v

Intraprocedural (I'll be mostly talking about loops).

A loop

l while (f(state)) {
/* Loop body x*/

}

/* Rest of procedure */

Crest

Standard: gfp

Cfrag:
An input state makes C,o safe when

© = (Gest is safe)
and

¢ = (Cbody ' Cfrag is Safe)

Leads to a system of recursive equations
where (an under-approximation of) the
greatest solution is of interest.

Crest

Standard: complement of an Ifp

Cirag: An input state makes C,s unsafe when
an unsafe state is reachable

© A (Crest is unsafe)

or
Chody) A (Coody ; Chrag is unsafe)
[+]
[V]

» Find (an over-approximation of)
the least solution of the resulting
recursive equations.

Crest

» Complement the result.

Why alternative formulation?

Why not gfp?
Domains are often geared towards least fixed points and

over-approximation. For example:

» For shape analysis with 3-valued logic (Sagiv, Reps, and
Wilhelm 2002), over-approximation is the default way of
ensuring convergence.

» For polyhedra, direct under-approximating analysis uses a
different approach to representing states (Miné 2012).

Why not complement of Ifp?

» Under-approximating complementation may not be readily
supported (e.g., 3-valued structures).

Our formulation

Cfrag :

Crest

»

Walk backwards.

Over-approximate the unsafe states
(negative side).

Characterize the safe states
(positive side) as an Ifp above a
recurrent set.

Use the negative side to prevent
over-approximation of the positive
side.

Semantics of statements

» U — all memory states, € — a disjoint error state.
» For a statement, [C] CU x (U U {e}).
» Loop semantics is an Ifp.

x=x+1 x=x+[1;2] x =2x/[0,1]

51

S1 S1
So S3 So €

Positive and negative sides

P(Cporg,U) is the goal, and N(Cpg, @) is its inverse. The analysis
uses both.

Positive side P(C,S)

» Safe states assuming S is safe after the execution.

» Corresponds to weakest liberal precondition.

» wp(C,S)={seU | Vs eUU{e}. [C](s,s') = s’ €S}
Negative side N(C, V)

» Unsafe states, assuming V is unsafe after the execution.

v

Corresponds to the union of predecessors and unsafe states.
pre(C,V)={selU | 3" € V.[C](s,s)}
fail(C)={seU | [C](s,e)}

v

v

Positive and negative sides
P(Cporg,U) is the goal, and N(Cpg, @) is its inverse. The analysis
uses both.
Positive side P(C,S)
» Safe states assuming S is safe after the execution.
» P(C,S)=wp(C,S)
» Has a standard characterization as a gfp.
» We restate it as an Ifp.

Negative side N(C, V)

» Unsafe states, assuming V is unsafe after the execution.
» N(C,V)=pre(C, V) U fail(V)
» Has a standard characterization as an Ifp.

Under-approximating the positive side

» Over-approximate negative side N* computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

» Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side Q?.

» Subtraction of the negative side produces a sequence of
under-approximate positive side P?, from which one element
(e.g., final) is picked.

P N

Under-approximating the positive side

» Over-approximate negative side N* computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

» Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side QF.

» Subtraction of the negative side produces a sequence of
under-approximate positive side P,-b, from which one element
(e.g., final) is picked.

Q*

NA

Under-approximating the positive side

» Over-approximate negative side N* computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

» Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side Q?-

» Subtraction of the negative side produces a sequence of
under-approximate positive side P?, from which one element
(e.g., final) is picked.

Abstract subtraction
Function (- — -): L — £ — L such that for h,h € L

> y(h — k) C~(h)
> y(h—k)ny(k) =2

Under-approximating the positive side

» Over-approximate negative side N* computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

» Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side QF.

» Subtraction of the negative side produces a sequence of
under-approximate positive side P,-b, from which one element
(e.g., final) is picked.

=

N

Under-approximating the positive side

» Over-approximate negative side N* computed as usual (moving
to an abstract domain with ascending chain condition or
widening).

» Lfp-characterization of the positive side gives rise to an
ascending chain of over-approximate positive side QF.

» Subtraction of the negative side produces a sequence of
under-approximate positive side P,-b, from which one element
(e.g., final) is picked.

Abstract subtraction
We claim that it is easier to implement than complementation.
E.g., for a powerset domain P(L) a coarse one can be used:

Ll — L2 = {/1 S L1| \V//z S L2. ’7(/1) ﬂ’y(/g) = @}

Positive side via universal recurrence

Cloop:
Ghod
Yy

[¢]

~v

P

=4

» Ry — universal recurrent set (states that must cause
non-termination):

Ry € [-+]
Vs € Ry. (Vs € U U {e}. [Croay](s,s') = s’ € Ry)

> Tmay — states that may cause successful termination. An Ifp
involving pre.

» Characterize P as Ifp involving pre \\N above Ry.

Positive side via existential recurrence

Tmust R 3
Cloop : U - : - .
Cb d : :
[] o ! !
o i Y
P N

» R5 — existential recurrent set (states that may cause
non-termination):

Rs € [V]
Vs € Rs. s’ € R5. chody]](s, S/)

> Tmust — States that must cause succesful termination. An Ifp
involving wp.

» Characterize P as Ifp involving wp above R3\ N.

Positive side via recurrence

RV Tmay Tmust R 3

A A A A

A v~

P N P

=<

» P characterized as Ifp above a recurrent set.
» We claim that finding a recurrent set is a less general problem
than approximating a gfp.

» Recurrent set is produced by an external procedure.

Evaluation

We evaluated the approach on simple examples of the level of

while (x) {
X = X->next;

}

while (x > 1) {

if (x == 60)
x = 50;

++X;

if (x == 100)
X = 0;

3

assert(!x);

» E-HSF (Beyene, Popeea, and Rybalchenko 2013) used to
produce recurrent sets for numeric programs.

» An internal prototype procedure based on TVLA (Lev-Ami,
Manevich, and Sagiv 2004) — for heap-manipulating programs.

Conclusion

v

Theoretical construction based on recurrent sets and
subtraction.

v

Prototype implementation for two domains.
Possible future work.

v

» Lifting restrictions (program language, nested loops).
» Recurrence search for various domains.
» Feasibility of abstract counterexamples.

v

Check out our technical report.

Thank you

Related work

v

(Lev-Ami et al. 2007) — backwards analysis with 3-valued
logic, via complementing an Ifp.

v

(Calcagno et al. 2009) — inferring pre-conditions with
separation logic, bi-abduction, and over-approximation.

v

(Popeea and Chin 2013) — numeric analysis with positive and
negative sides.

v

(Miné 2012) — backwards analysis with polyhedra and gfps.

v

(Beyene, Popeea, and Rybalchenko 2013) — an solver for
quantified Horn clauses allowing to encode search for
pre-conditions in linear programs.

