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Abstract. Non-termination of structured imperative programs is primarily due
to infinite loops. An important class of non-terminating loop behaviors can be
characterized using the notion of recurrent sets. A recurrent set is a set of states
from which execution of the loop cannot or might not escape. Existing analyses
that infer recurrent sets to our knowledge rely on one of: the combination of for-
ward and backward analyses, quantifier elimination, or SMT-solvers. We propose
a purely forward abstract interpretation–based analysis that can be used together
with a possibly complicated abstract domain where none of the above is readily
available. The analysis searches for a recurrent set of every individual loop in a
program by building a graph of abstract states and analyzing it in a novel way.
The graph is searched for a witness of a recurrent set that takes the form of what
we call a recurrent component which is somewhat similar to the notion of an end
component in a Markov decision process.

1 Introduction

Termination is a fundamental property of software routines. The majority of code is re-
quired to terminate, e.g., dispatch routines of device drivers or other event-driven code,
GPU programs – and the existence of non-terminating behaviors is a severe bug that
might freeze a device, an entire system, or cause a multi-region cloud service disrup-
tion [1]. The problem of proving termination has seen much attention lately [14,15,26]
but the techniques are sound and hence necessarily incomplete. That is, failure to prove
termination does not imply the existence of non-terminating behaviors. Therefore, prov-
ing non-termination is an interesting complementary problem.

Several modern analyses [12,10,13] characterize non-terminating behaviors of pro-
grams or fragments of programs by a notion of recurrent set, i.e., a set of input states
from which execution of the program or fragment cannot or might not escape (there
are different flavors of recurrent sets). The analyses that can infer recurrent sets to our
knowledge rely on one of: the combination of forward and backward analyses [12],
quantifier elimination [10,13], or SMT-solvers [11]. We propose a purely forward ab-
stract interpretation–based analysis that can be used with a potentially complicated ab-
stract domain where none of the above is readily available. In our approach, we consider
structured imperative programs without recursion where loops are the only source of
non-termination. Our analysis searches for what we call a universal recurrent set (that
cannot be escaped) of every individual loop in a program by building and analyzing
a graph of its abstract states. The main challenge of a forward approach is that while



recurrent sets can be characterized by greatest fixed points of backward transformers
(and this gives an intuition into the success of the approach [12] combining forward
and backward analyses), we are not aware of a way to characterize them in terms of
forward transformers. Instead, we produce a condition for a set of states to be recurrent
and systematically explore the state space of a program searching for satisfying sets of
abstract states. Our approach is similar to the one of Brockschmidt et al. [11], but the
analysis of the state graph that we employ is novel. The graph is searched for a witness
of a recurrent set that takes the form of what we call a recurrent component which is
somewhat similar to the notion of an end component in a Markov decision process [8].

Note that finding a recurrent set is a sub-problem of proving non-termination. To
prove non-termination, we would need to show that a recurrent set is reachable from
the program entry. Also, some divergent behaviors do not fit the form discussed in this
paper, and a non-terminating loop need not necessarily have a universal recurrent set.

2 Background

We define the analysis for a simple structured language without procedures. For a set of
atomic statements A ranged over by a, statements C of the language are built as follows:

C F a atomic statement
| C1 ; C2 sequential composition: executes C1 and then C2
| C1 + C2 branch: non-deterministically branches to either C1 or C2
| C∗ loop: iterated sequential composition of ≥ 0 copies of C

We assume that A contains the passive statement skip and an assumption statement [θ]
for each state formula θ, and that the language of state formulas is closed under nega-
tion. Informally, assumption statements work by filtering out the violating executions.
Standard conditionals if(θ) C1 else C2 can be expressed by ([θ]; C1) + ([¬θ]; C2).
Similarly, loops while(θ) C can be expressed by ([θ]; C)∗ ; [¬θ].

2.1 Concrete Semantics

We use 1 and 0 to mean logical truth and falsity respectively. For a set S, we use ∆S
to mean the diagonal relation ∆S = {(s, s) | s ∈ S}. For a relation T , we use T (s, s′)
to mean (s, s′) ∈ T . We use ◦ for right composition of relations: T2 ◦ T1 = {(s, s′′) |
∃s′. (s, s′) ∈ T1 ∧ (s′, s′′) ∈ T2}. For a function F, we use lfp F to mean its least fixed
point. We use Kleene’s 3-valued logic [20] to represent truth values of state formulas in
abstract, and sets of concrete, states. It uses a set of three valuesK = {1,0,1/2} meaning
true, false, and maybe respectively. K is arranged in partial information order vK , s.t.
1 and 0 are incomparable, 1 vK 1/2, and 0 vK 1/2. For k1, k2 ∈ K the least upper bound
tK is defined s.t. k1 tK k2 = k1 if k1 = k2, and 1/2 otherwise.

Let U be the set of all memory states. The concrete domain of the analysis is the
powerset P (U ) with least element ∅, greatest element U , partial order ⊆, and join ∪.
This particular concrete domain is used for clarity of presentation, and another domain
can be used if needed. A state formula θ denotes a set of states JθK ⊆ U . We say that
a state s satisfies θ if s ∈ JθK. For a state formula θ and a set of states S, the value
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of θ over S is defined by: eval(θ,S) = 1 if S ⊆ JθK; eval(θ,S) = 0 if S ∩ JθK = ∅;
eval(θ,S) = 1/2 otherwise. That is, a formula evaluates to 1 in a set of states, if all states
in the set satisfy the formula, to 0 if none satisfy the formula, and to 1/2 if some of the
states satisfy the formula and some do not.

The semantics of a statement C is a relation JCK ⊆ U × U . For a state s, JCK(s, s′)
holds for every state s′ that it is possible to reach by executing C from s. For an atomic
statement a, we assume that JaK is pre-defined. Then JCK is defined as follows:

JskipK = ∆U JC1 ; C2K = JC2K ◦ JC1K
J[θ]K = {(s, s) | s ∈ JθK} JC1 + C2K = JC1K ∪ JC2K

JC∗K = lfp λX.∆U ∪ (X ◦ JCK)

If for a state s, there exists no state s′ s.t. JCK(s, s′), we say that the execution of C
diverges from s. For “normal” programs, this definition agrees with the common one
based on a small-step semantics: all traces starting from s are infinite, and there exists
at least one. That is, if assumption statements appear only at the start of a branch or at
the entry or exit of a loop (they cannot be used as normal atomic statements):

C F a | C1 ; C2 | ([ϕ] ; C1) + ([ψ] ; C2) | ([ψ] ; C)∗ ; [ϕ]

and branch and loop guard assumptions are exhaustive: ϕ ∨ ψ = 1, then the only way
for an execution to diverge is to get stuck in an infinite loop.

As standard, we define a state transformer, post, that for a statement C and a set
of states S, gives the states a program might reach after executing C from a state in S:
post(C,S) = {s′ | ∃s ∈ S. JCK(s, s′)}.

In what follows, we focus on the loop statement:

Cloop = ([ψent] ; Cbody)∗ ; [ϕexit] (1)

where Cbody is the loop body; if ψent holds the execution may enter the loop body; if
ϕexit holds the execution may exit the loop; and ψent ∨ ϕexit = 1. What is important for
us is that this form of loop has a single point serving as both the entry and the exit. As
currently formulated, our analysis relies on this property, although we anticipate that
more complicated control flow graphs can be analyzed in a similar way.

For a loop as in (1), a universal recurrent set is a set R∀, s.t.,

R∀ ⊆ J¬ϕexitK ∀s ∈ R∀.
(
∀s′ ∈ U . JCbodyK(s, s′) ⇒ s′ ∈ R∀

)
These are states that must cause non-termination, i.e., must cause the computation to
stay inside the loop forever. Chen et al. [12] call a similar notion closed recurrence set.
There is also a related notion of an existential, or open, recurrent set, i.e., a set of states
that may cause non-termination, but it is not discussed here. Thus, in what follows, by
just recurrent set we mean universal recurrent set.

Lemma 1. For a loop as in (1), the set R ⊆ U is universally recurrent iff
eval(¬ϕexit,R) = 1 and post(Cbody,R) ⊆ R.

Proof. Follows from the definitions of eval, post, and universal recurrent set. ut
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2.2 Recurrent Sets in the Abstract

It is standard for forward program analyses to introduce an abstract domain D with
least element ⊥D , greatest element >D , partial order vD , and join tD . Every element
of the abstract domain d ∈ D represents the set of concrete states γ(d) ⊆ U . Then,
over-approximate versions of post and eval, are introduced, s.t. for a statement C, state
formula θ and abstract element d,

γ(postD (C,d)) ⊇ post(C, γ(d)) evalD (θ,d) wK eval(θ,γ(d))

We require that evalD is homomorphic: for a formula θ and d1,d2 ∈ D, d1 v d2 ⇒

evalD (θ,d1) vK evalD (θ,d2). Normally, evalD is given for atomic statements, and for
arbitrary formulas it is defined by induction over the formula structure, using 3-valued
logical operators, possibly over-approximate with respect to vK .

Note: For proof,
see Appendix A.

Theorem 1. For a loop as in (1), an abstract domain D, and an element d ∈ D, if
evalD (¬ϕexit,d) = 1 and postD (Cbody,d) vD d, then γ(d) is universally recurrent.

Note that in Theorem 1, the post-condition is taken with respect to the loop body
without the preceding assumption statement.

3 Finding a Universal Recurrent Set

We define our analysis for a finite powerset domain P (L), where the underlying set L
of abstract elements is partially ordered by vL with least element ⊥L . For example, in
a numeric analysis, L may be the domain of intervals or polyhedra [16]. We call the
elements of L abstract states. We assume that P (L) uses the Hoare order, and that
concretization is defined as shown below. For L,L1,L2 ⊆ L,

γ(L) =
⋃
{γ(l) | l ∈ L} L1 vP (L) L2 iff ∀l1 ∈ L1. ∃l2 ∈ L2. l1 vL l2

We assume that evaluation function evalP (L) and forward transformers postP (L) for all
statements (e.g. Cbody in (1)) are given. We assume that ⊥L represents unreachability,
and is transformed and evaluated precisely: γ(⊥L ) = ∅, postP (L) (C, {⊥L }) = ∅, and
evalP (L) (θ, {⊥L }) = 1. Then, we define pointwise transformers eval] and post] as
follows. For L ⊆ L, statement C, and state formula θ,

post] (C,L) =
⋃
l∈L

postP (L) (C, {l}) eval] (θ,L) =
⊔
K

l∈L

evalP (L) (θ, {l})

Note that post] and eval] are sound over-approximations of concrete post and eval.
Also, if postP (L) and evalP (L) distribute over set union, then post] = postP (L) and
eval] = evalP (L) . For a single state l ∈ L, we overload post] (C, l) to mean post] (C, {l})
and eval] (θ, l) to mean eval] (θ, {l}). We use [θ, l]] and [θ,L]] to mean post] ([θ], l) and
post] ([θ],L) respectively.

We use a powerset domain for the following reason. Only a subset of the loop in-
variant belongs to a recurrent set, so there needs to be a mechanism in the abstract
domain to partition the “interesting” and “not interesting” states. Therefore, we search
for a recurrent set in the form of a set of abstract elements. We use Theorem 1 to show
soundness: P (L) is D for its purposes; post] and eval] are postD and evalD .
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3.1 Idea of the Algorithm

For a loop as in (1), if we find X ⊆ L, s.t. eval] (¬ϕexit,X ) = 1 and post] (Cbody,X ) v
X , then γ(X ) is definitely a recurrent set. The idea is to explore the state space of
the program with forward analysis until such an X is found. We proceed as follows.
Separately for every loop, we build a graph where vertices are abstract elements, or
states, from L, all representing sets of concrete states at the loop head. We initialize the
graph with some set of states I ⊆ L and then repeatedly apply the transformer for the
whole loop body, post] (Cbody, · ), to the vertices and add the elements of the resulting
set to the graph as successors. Our experiments suggest that in many cases a subset X
of vertices satisfying the conditions of Theorem 1 will emerge as a result. To be able
to efficiently find such a subset, we remember which elements are related w.r.t. abstract
order v, as a second kind of edges in the graph. Note that in case of nested loops, we
analyze inner and outer loops separately; when analyzing the outer one, the effect of the
inner needs to be summarized in an over-approximating way.

We use a number of heuristics to help the analysis. First, we try to distinguish states
that took different paths through the loop body. Currently, we take a simplistic approach:
when possible, we prefer powerset domains where join is set union, s.t. states produced
by different branches are not joined, and post] (C1 + C2, l) = post] (C1, l) ∪ post] (C2, l).
If needed, a more involved trace partitioning [23] could be introduced instead. Second,
with a similar intent, we compute the post-conditions with respect to a modified loop
body Cbody

′ = Cbody ; ([ψent] + [¬ψent]). This is sound since in the concrete case,
for every set S ⊆ U , post(Cbody

′,S) = post(Cbody,S). Also, for a set of initial states
I, we initialize the graph with a set I′ = [ψent, I]] ∪ [¬ψent, I]] . This is helpful when
(as is often the case) there is a specific path through the loop body that infinite traces
take. The heuristics introduce control-flow distinctions and enable states taking such
path to be partitioned from others. But these heuristics may not be helpful when addi-
tional distinguishing power is needed for the data in states, e.g, when certain kinds of
non-determinism are present, when non-termination depends on the properties of math-
ematical functions that the program implements, or when the abstract domain is not
expressive enough to capture the states that take the interesting control paths.

Example 1 Consider the loop shown in pseudocode in Fig. 1. The loop does not termi-
nate for some inputs, and the maximal recurrent set is (1 ≤ x ≤ 60) ∨ (x ≥ 100). Let
us informally demonstrate how the algorithm that we propose works, assuming that x
ranges over integers and using intervals to represent its values. Since we do not know the
initial value of x, we start with a graph consisting of a pair of states: {(−∞; 0], [1; +∞)}
– one represents the loop condition and another represents its complement. We then
start adding new states to the graph by computing post] as described above, s.t. paths
through the loop body are represented in a post-condition of a state by different dis-
juncts. For example, let us see what happens to [1; +∞) when it enters the loop. In line
2, we consider three cases. If x < 60, then the conditional body in line 2 is skipped,
x is incremented at line 3, the conditional body in line 4 is skipped, and the output
state is [2,60]. If x = 60, the conditional body in line 2 sets x to 50, at line 3 x is
incremented, the conditional body in line 4 is skipped, and the output state is 51. If
x > 60, the conditional body at line 2 is skipped and at line 3 x is incremented to
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[62; +∞). Then, if x < 100, the conditional body at line 4 is skipped, and the output
state is [62,99]. If x = 100, the conditional body at line 4 sets x to 0, and the output
state is 0. If x > 100, the conditional body at line 4 is skipped, and the output state is
[101; +∞). Thus, post] (Cbody, [1; +∞)) = {[3,60], 51, [62,99], 0, [101; +∞)}. We add
these states to the graph and continue the exploration. Fig. 2 shows a state graph that
could be produced this way after a number of steps. In the graph, boxes represent states,
and solid edges represent post-conditions. Note that in the graph, there exists a subset
of states X = {[2,60], [101; +∞)} has the desired property: eval] (¬ϕexit,X ) = 1 and
post] (Cbody,X ) v X , thus γ(X ) is a recurrent set. In what follows, we discuss how to
efficiently find such subset of states if it exists. We revisit this example in Section 4.

1 while x ≥ 1:
2 if x = 60: x ← 50
3 x ← x + 1
4 if x = 100: x ← 0

Fig. 1. Program for Example 1.

[1; +∞) (−∞; 0]

[2,60]

51

0

[101; +∞) [62,99]

[3,60]

[102; +∞) [63,99]

· · ·

Fig. 2. Graph of the states of the program in
Fig. 1.

For some domains (e.g., for shape
analysis with 3-valued logic [25]), the
analysis benefits from case splits that
post] naturally performs. For example,
when a program traverses a potentially
cyclic list, post] would consider a def-
initely cyclic list as a separate case. If
the abstraction is expressive enough, the
cyclic list case will appear as a separate
vertex and become part of a recurrent set.

Finally, the choice of the set of initial
states I may matter. When the abstract
domain is finite (and no widening is re-
quired) and the loop is not nested, we ini-
tialize the graph with the states that reach
the loop via the rest of the program, i.e.,
produced by the standard forward analy-
sis of the preceding part of the program.
In this case, the analysis will explore all
the states reachable at the head of the
loop, and the success relies only on how
refined the resulting graph is. When the
abstract domain is infinite (e.g., for in-
tervals or polyhedra) or for inner nested
loops, we normally initialize the graph
with a pre-fixpoint of post] . That is, we
assume that initially, a standard forward

analysis is run to produce a pre-fixpoint for every loop. Starting with a state below
(w.r.t. v) a pre-fixpoint makes it less likely that the analysis terminates, as our proce-
dure does not include widening. Starting with a state above a pre-fixpoint is more likely
to drive the search towards the states unreachable from the program entry. Note that it
is sound to start with any set of states, and we sometimes use >.

Our procedure is sound (by Theorems 1 and 2), but incomplete: if we do not find
a recurrent set after a number of steps, we do not know the reason: whether the loop
does not have a universal recurrent set; or the abstraction and post] are not expressive
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enough; or we did not explore enough states. And for an infinite domain, the procedure
might not terminate. So, we perform the exploration incrementally: we proceed breadth-
first until some recurrent set is found. Then, we may decide to stop or to continue the
search for a larger recurrent set.

3.2 Abstract State Graph

For a loop as in (1), an abstract state graph is a graph G = 〈V,Ep ,Ec〉, s.t.,
– V is finite non-empty set of vertices which are abstract elements, or states: V ⊆ L.

All states belong to the loop entry location.
– There are two independent sets of edges: Ec ,Ep ⊆ V × V .
– Ep is a set of post-edges. For every state l ∈ V , one of the following holds:

(i) there are no outgoing post-edges: ({l} × V ) ∩ Ep = ∅; or
(ii) ψent may hold in l, eval] (ψent, l) , 0; post-condition of l with respect to the

loop body is not empty, post] (Cbody, l) , ∅; the whole post-condition is in the
graph, post] (Cbody, l) ⊆ V , and connected to l by post-edges, ({l} × V )∩Ep =

{l} × post] (Cbody, l); or
(iii) ψent may hold in l, eval] (ψent, l) , 0; post-condition of l is empty,

post] (Cbody, l) = ∅; l has ⊥L as the only post-successor, {l} × V ∩ Ep =

{(l,⊥L )}; and ⊥L has a post-self-loop (⊥L ,⊥L ) ∈ Ep .
– Ec is a set of containment-edges. For l1, l2 ∈ V , (l1, l2) ∈ Ec ⇔ (l1 , l2 ∧ l1 v l2).

This forbids self-loops. Due to properties of v, G may not have containment cycles.
Note that this is similar to the notion of termination graph of [11]. For a loop as in (1),
a state graph G = 〈V,Ep ,Ec〉, a state l ∈ V , and a set of states L ⊆ V , let

postG (l) = {l′ ∈ V | (l, l′) ∈ Ep } postG (L) = {l′ ∈ V | ∃l ∈ L. (l, l′) ∈ Ep }

For a loop as in (1) and a graph G = 〈V,Ep ,Ec〉, a recurrent component is a set of
states R ⊆ V , s.t. for every state l ∈ R, l cannot exit the loop, eval] (¬ϕexit, l) = 1, l has
at least one outgoing edge, ∃l′ ∈ V. (l, l′) ∈ Ep ∪ Ec , and at least one is true:

(i) l has a containment-edge into R, ∃l′ ∈ R. (l, l′) ∈ Ec ; or
(ii) the outgoing post-edges of l lead exclusively into R, postG (l) , ∅∧postG (l) ⊆ R.

Lemma 2. The union of two recurrent components is a recurrent component.

Lemma 3. In a state graph G, there exists a unique maximal (possibly, empty) recur-
rent component.

Proof. Lemma 2 follows from the definition of recurrent component. Lemma 3 follows
from Lemma 2 and finiteness of G. ut

Note: For proof,
see Appendix A.

Theorem 2. For a loop as in (1) and a state graph G = 〈V,Ep ,Ec〉 we say X ⊆ V is
fully closed if eval] (¬ϕexit,X ) = 1, ∀l ∈ X. postG (l) , ∅, and post] (Cbody,X ) v X.
Note that in this case, γ(X ) is a recurrent set. Then, for every state graph G:

(i) For a recurrent component R, there exists a fully closed X ⊆ R s.t. γ(X ) = γ(R).
(ii) For a fully closed X, there exists a recurrent component R ⊇ X, s.t. γ(R) = γ(X ).
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3.3 The Algorithm

The algorithm, whose main body is shown in pseudocode in Fig. 3, is applied individu-
ally to every loop in a program. Initially, we call FindFirst giving it the set of elements
I ⊆ L to start the search from (normally, a loop invariant). After performing initial-
ization, FindFirst calls FindNext once. FindNext contains a loop in which we build the
state graph G = 〈V,Ep ,Ec〉. In every iteration, proceeding in breadth-first order, we pick
from the worklist F a state without post-edges and add its successors to the graph, to-
gether with relevant post- and containment-edges. This happens in lines 12–17 of Fig. 3;
new states and post-edges are created by MakeStates shown in Fig. 4. We choose not
to explore the successors of a state belonging to a recurrent component (line 13) even
though when post] is non-monotonic, they might lie outside the recurrent component.
Similarly, we do not explore the successors of a must-exiting state, even if ψent may
hold in it. If adding new states and edges could create a larger recurrent component,
we call FindRecComp to search for it (lines 20–21). If a new recurrent component is
found, we return 1, and Rec contains those states of the component found so far that
have no outgoing containment-edges (lines 22–27). If we wish to find a larger recurrent
component, we can call FindNext again to resume the search. If the search terminates
and no new recurrent component can be found, the procedure returns 0.

For every abstract state l ∈ V , we maintain the status as follows.
The state l ∈ V must exit, mustE(l) = 1, if all executions starting in it exit the loop,

i.e., if it is definitely the case that for every concrete state s ∈ γ(l) the loop eventually
terminates. We mark l as must-exiting if

(i) eval] (ψent, l) = 0; or if
(ii) all post-successors of l are already must-exiting; or if

(iii) there exists a larger (w.r.t. v) state that is already must-exiting.
The state l ∈ V may exit, mayE(l) = 1, if we know that it cannot be part of a

recurrent component. We mark l as may-exiting if
(i) it is must-exiting or if eval] (¬ϕexit, l) , 1; or if

(ii) post] is monotonic and l has a post-successor that is already may-exiting; or if
(iii) post] is monotonic, and there exists a smaller (w.r.t. v) already may-exiting state.

The state l ∈ V is recurrent, rec(l) = 1, if it is a part of a recurrent component. If
post] is monotonic, we also mark as recurrent all successors of a recurrent state. Note
that here, the term recurrent is overloaded. For a recurrent state l ∈ V , γ(l) is in general
not a recurrent set itself, but is included in some recurrent set.

Otherwise, the state l ∈ V is unknown, unk(l) = 1, i.e., unk(l) ⇒ (¬mayE(l) ∧
¬rec(l)). This is the case if eval] (¬ϕexit, l) = 1, and the state may potentially be a part
of a recurrent component, but is not part of the recurrent component found so far.

Lemma 4. May-exiting states cannot be part of a recurrent component.Note: For proof,
see Appendix A. When searching for a recurrent component, it is only necessary to consider unknown

and recurrent states, therefore every step of the algorithm only creates new containment-
edges between unknown states or from an unknown to a recurrent state.

Note that when new states or edges are added to the graph, or the status of an
existing state changes, we make a call to PropagateStatus. For brevity, we do not show
the pseudocode, and only informally describe its effect. PropagateStatus propagates the
statuses through the edges of the graph according to the following rules. For a state l:
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1 global G = 〈V,Ep ,Ec 〉, F, Rec
2
3 proc FindFirst(I):
4 for l ∈ L:
5 mayE(l) ← mustE(l) ← rec(l) ← 0; unk(l) ← 1
6 MakeStates(I,nil)
7 F ← {l ∈ V | ¬mustE(l) ∧ l , ⊥L }
8 FindNext()
9
10 proc FindNext():
11 while F , ∅:
12 l ← first(F); F ← F \ {l}
13 if mustE(l) ∨ rec(l): continue

14 newPost ← MakeStates(post] (Cbody, l), l)
15 E+

c ←{(l
′, l′′) ∈ V × V | unk(l′) ∧ (unk(l′′) ∨ rec(l′′)) ∧ l′ v l′′ ∧

(l′′ ∈ newPost ∨ l′ ∈ newPost)}
16 Ec ← Ec ∪ E+

c
17 F ← F ∪ {l′ ∈ newPost | ¬mustE(l′) ∧ l′ , ⊥L }
18 PropagateStatus()
19 R← ∅
20 if

(
newPost = ∅ ∧ (∀l′ ∈ postG (l). unk(l′) ∨ rec(l′))

)
∨ E+

c , ∅:
21 R← FindRecComp()
22 if R , ∅:
23 for l ∈ R: rec(l) ← 1; unk(l) ← 0
24 PropagateStatus()
25 Rec′ ← Rec
26 Rec← {l′ ∈ V | rec(l′) ∧ ({(l′, l′′) | l′′ ∈ V ∧ rec(l′′)} ∩ Ec = ∅)}
27 if (Rec , Rec′): return 1
28 return 0

Fig. 3. Main algorithm

1. if postG (l) , ∅ ∧ ∀l′ ∈ postG (l). mustE(l′), then mustE(l)
2. if mustE(l), then ∀l′. (l′, l) ∈ Ec ⇒ mustE(l′)
3. if postG (l) , ∅ ∧ ∀l′ ∈ postG (l). rec(l′), then rec(l)
4. if rec(l), then ∀l′. (l′, l) ∈ Ec ⇒ rec(l′)

Additionally, if post] is monotonic:
5. if ∃l′ ∈ postG (l). mayE(l′), then mayE(l)
6. if mayE(l), then ∀l′. (l, l′) ∈ Ec ⇒ mayE(l′)
7. if rec(l), then ∀l′ ∈ postG (l). rec(l′)
8. if mustE(l), then ∀l′ ∈ postG (l). mustE(l′)

Rules 1 and 2 are derived from the definition of must-exiting state. Rules 3 and 4 mark
as recurrent those states that would be included in a recurrent component next time
FindRecComp is called. Rules 5 and 6 are derived from the definition of may-exiting
states. Rule 7 is for the case when for some l, first its post-condition is computed, and
later, l is marked as recurrent by rule 4. If post] is monotonic, the successors of l would
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1 proc MakeStates(L, lp ):
2 N ← ∅
3 if L = ∅: L′ ← {⊥L }
4 else: L′ ← [ψent,L]] ∪ [¬ψent,L]]

5 for l ∈ L′:
6 if lp , nil: Ep ← Ep ∪ (lp , l)
7 if l < V :

8 if eval] (ψent, l) = 0:
9 unk(l) ← 0
10 mayE(l) ← mustE(l) ← 1
11 elif eval] (¬ϕexit, l) , 1:
12 unk(l) ← 0
13 mayE(l) ← 1
14 V ← V ∪ l
15 N ← N ∪ l
16 if l = ⊥L :
17 Ep ← Ep ∪ {(l, l)}
18 return N

Fig. 4. Adding new states. New states are
unknown unless marked otherwise.

1 proc FindRecComp():
2 C ← {l ∈ V | unk(l)}
3 R← {l ∈ V | rec(l)}
4 while 1:
5 C− ← {l ∈ C |

{(l, l′) | l′ ∈ C ∪ R} ∩ Ec = ∅ ∧

(postG (l) = ∅ ∨ postG (l) * C ∪ R)}
6 if C− = ∅: break
7 C ← C \ C−

8 return C

Fig. 5. Finding a recurrent component

eventually become part of a recurrent component. Similarly, rule 8 is for the case when
for some l, first its post-condition is computed, and later, l is marked as must-exiting by
rule 2. If post] is monotonic, the successors of l would eventually be marked as must-
exiting. This is not necessary for the correctness: every state that PropagateStatus marks
as may- or must-exiting, cannot be part of a recurrent component, and every state that it
marks as recurrent would eventually become a part of a recurrent component. But this
allows to eliminate unknown states earlier, create fewer containment-edges, and search
for recurrent component in a smaller portion of the graph.

Fig. 4 shows the procedure MakeStates that adds new states to the graph. Given a
set of abstract elements L ⊆ L and a predecessor state lp ∈ V , it adds abstract states
corresponding to L to the graph and creates post-edges from lp to them. Every l ∈ L
is split into a pair of states with [ · ]] , then is possibly marked as may- or must- exiting
depending on the values of ϕexit and ψent and added to the graph together with a post-
edge from lp . The procedure returns the set N of new states produced from L that were
not present in the graph before.

Fig. 5 shows the procedure FindRecComp that finds a recurrent component among
the unknown states. It is called from FindNext when a new containment-edge is created
or a state is discovered such that all its outgoing post-edges lead to existing unknown
or recurrent states (i.e., when a larger recurrent component could emerge). It starts the
search with the whole set of unknowns as the candidate C and iteratively removes the
states C− that make the candidate violate the definition of recurrent component. Note
that FindRecComp works incrementally: assuming that R is a set of states that are cur-
rently marked as recurrent (i.e., R is the recurrent component found so far), the proce-
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dure produces a set C, s.t. C ∪ R is a recurrent component. In general, C might not be a
recurrent component by itself.

Note: For proof,
see Appendix A.

Theorem 3. For an abstract state graph G = 〈V,Ep ,Ec〉 and some recurrent compo-
nent R ⊆ V, FindRecComp produces C ⊆ V such that C ∪ R is the maximal recurrent
component of G.

4 Examples

In this section, we demonstrate how our analysis can be successfully applied to numeric
and heap-manipulating programs. Examples 1 and 2 present Numeric Programs. Pro-

Note: We treat an
additional example
of a
heap-manipulating
program in
Appendix B.

gram variables range over integers, and we use intervals to represent their values.

Example 1 (continued) Let us revisit Fig. 2. The figure displays a state graph of the
program in Fig. 1 at a stage when the algorithm cannot find a larger recurrent com-
ponent, and FindNext returns 0. The recurrent component is shown grayed, post-edges
are solid, containment edges are dotted, and for clarity, containment-edges to and from
may-exiting states are not displayed. The state [1; +∞) is may-exiting, and must-exiting
states are marked with a cross. The resulting recurrent set is {[2,60], [101; +∞)}. Note
that the states x = 1 and x = 100 are lost compared to the maximal recurrent set, and the
discovered recurrent set is closed under application of the forward transformer, but not
the backward transformer. This can be the case for some other tools based on forward
semantics. For example, E-HSF [10] when presented with this example, may report the
recurrent set to be {[4,60], [100; +∞)}. Also, note the set of must-exiting states (on the
right in Fig. 2). While our algorithm often succeeds in proving that a recurrent set ex-
ists, it behaves badly when no recurrent set can be found. For example, in this case,
it had to enumerate all states of the form [62,99], [63,99], [64,99], and so on. Finally,
note that our procedure did terminate, although the domain is infinite and no measures
were taken to guarantee termination.

Example 2 Fig. 6 demonstrates a bug in the software of Zune players that on 31 Dec
2008 caused many devices to freeze [2]. The example is extracted from a procedure
that was used to calculate the year based on the number of days passed since 1 Jan
1980. The loop repeatedly subtracts 365 or 366 from the number of days depending on
whether the year is leap and increases the year by 1. Due to a logical error, if the year
is leap and the number of days is 366, the variables are not updated, and the program
goes into an infinite loop. We presented this program to our tool with the starting state
being the loop invariant: year ≥ 1980 ∧ days ≥ 0. Every call to FindNext extends the
recurrent set with a single state: year = 1980∧ days = 366, year = 1984∧ days = 366,
year = 1988 ∧ days = 366, and so on. The abstract domain was not strong enough to
infer that every leap year causes non-termination. Also, because the analysis is forward-
only, it did not explore the predecessors of those states: e.g., from the state year =

1983∧ days = 731, the loop also diverges, but this was not discovered by the tool. Still,
we count this result as success: our tool does expose the bug even if it does not find all
inputs for which the bug manifests.
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1 days← a number ≥ 0
2 year ← 1980
3 while days > 365:
4 if leap(year):
5 if days > 366:
6 days← days − 366
7 year ← year + 1
8 else:
9 days← days − 365

10 year ← year + 1

Fig. 6. A potentially non-terminating
loop in Zune software (simplified).

Shape Analysis Examples 3 and 4 present heap-
manipulating programs. We use 3-valued logic
[25] to represent heaps, and build the analysis
on top of TVLA [22,3]. For more information on
shape analysis with 3-valued logic, please refer to
Sagiv et al. [25] and related papers [24,7,22]. In
this framework, abstract heaps are represented by
3-valued structures, i.e., models of 3-valued first-
order logic with transitive closure. Every individ-
ual represents either a single heap cell or a set
of heap cells that share some properties. Pointer
variables are represented by unary predicates: the
predicate is true for the cell where the variable
points. Pointer fields are represented by binary

predicates: the predicate is true for those pairs of cells where the corresponding field
of one cell points to another. The analysis also maintains in the form of predicates ad-
ditional information about the heap: whether the cells are reachable from each other,
whether some condition is true of the cells, and so on. Three-valued structures can be
displayed as shape graphs, and an example is shown in Fig. 7. The graph represents an
acyclic singly-linked list with two or more elements and is read as follows. Left node
represents a single cell which is the head of the list and is pointed to by pointer variables
x and y. The text c = 1/2 means that some condition c might or might not be true for
the head – we do not know. The right node displayed with double border represents a
finite non-empty set of cells that are the tail of the list. The dotted edge annotated by n
between the head and the tail means that the pointer field n of the head points to some
node of the tail, but not to all of them. The analysis is usually instructed that predicate n
induces a function, but this is not reflected in the shape graph. The analysis also keeps
track of reachability between cells with the predicate tn . Solid tn-edge between the head
and the tail means that all cells of the tail are reachable from the head by traversing the
n-pointers. Dotted n- and tn-loops on the tail mean that there are pointers and reacha-
bility between some pairs of cells in the tail but not between all of them. Absence of
n- and tn edges from the tail to the head means that no cell in the tail points to or can
reach head. In this case, the analysis is also instructed that there are no shared cells, i.e.,
every cell is pointed to by at most one cell. The above is sufficient for Fig. 7 to represent
exactly the set of acyclic singly-linked lists with two or more elements. Similarly, Fig. 9
represents a set of cyclic lists with two or more elements.

Example 3 One source of non-termination in heap-manipulating programs is incorrect
traversal of cyclic data structures. In the past, this has been the source of critical bugs
in device drivers [9]. Fig. 8 shows a procedure that searches a list pointed to by x for

Note: An
additional example
in Appendix B
discusses a
non-termination
bug in a device
driver that was
found by a
termination prover
[9].

an element y s.t. the condition c(y) holds. The search terminates when such y is found
or when the end of the list is reached, and it does not handle cyclic lists correctly. In
this and the next example, the initial statement: y ← x – is disregarded by the analysis
and only emphasizes that when the loop is reached for the first time, both x and y point
to the head of the list. Due to canonical abstraction [25], the set of 3-valued structures
that we can explore is finite, and there is no need to perform pre-analysis for the loop
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x, y c= 1
2

tn

c= 1
2

n

tn
tn

n

Fig. 7. Acyclic list with 2+ elements.

1 y ← x
2 while y , nil ∧ ¬c(y):
3 y ← (y → n)

Fig. 8. Search in a list.

x, y c= 1
2

tn

c= 1
2

n

tn
tn

n

Fig. 9. Cyclic list with 2+ elements.

1 y ← x
2 while y , nil:
3 y ← new struct
4 if y , nil:
5 (y → n) ← x
6 x ← y

Fig. 10. Prepending to a non-empty list.

invariant. Thus, we analyze the loop starting with the set of states containing cyclic and
acyclic lists with both x and y pointing to the head and with unknown value of c for all
the cells: the structures shown in Figures 7 and 9, plus structures to represent single-
element lists and an empty list. This way, our tool reports as the recurrent set all the
heaps that cause non-termination of the loop, i.e., the cyclic lists where the condition c
is false for all the elements. One of such lists (with three or more elements, y pointing
into the list) is shown in Fig. 11.

Example 4 Another interesting class of bugs in heap-manipulating programs is related
to heap allocation. Sometimes, models of programs do not take into account that heap
allocation can fail. For example, in a real program, an infinite loop performing alloca-
tion would usually lead to an out-of-memory error and may consume much time and
system resources. But in a model of the program this may appear as potential non-
termination. Fig. 10 shows a program that repeatedly prepends a newly allocated el-
ement to a (non-empty) list. The loop is supposed to terminate if the allocation fails,
but this is not possible in our TVLA model. The state space for the example is shown
in Fig. 12. The initial states are: a list with two or more elements (state 1, as shown in
Fig. 7), an empty heap (2), and a single-element list (3). The empty heap is must-exiting,
and the states 1, 3, and 4 (list with exactly two elements) form the recurrent set. State 4
does not have an outgoing post-edge as the algorithm finishes before the post-condition
of the state is computed. Note the post-loop on state 1. Because of canonical abstraction
[25], the post-condition of a list with two or more elements is again a list with two or
more elements, i.e., the analysis loses track of the length of the list.

5 Experiments

We implemented our technique in a prototype tool that supports numeric and 3-valued
programs. The analysis of 3-valued programs is based on TVLA [22], and for numeric

Note: For more
detailed experiment
results, see
Appendix C.
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x ¬c

tn

¬c
n

tn
tn

n

¬c

tn

n
tn n

tn

y

Fig. 11. Example of a cyclic list where c is
false for all elements.

1

2 3

4

Fig. 12. State graph for the program in
Fig. 10. State 1 is shown in Fig. 7. Grayed
are recurrent states and must-exiting state is
marked with a cross.

programs, we use interval domain with ad hoc support for modulo operation: we per-
form some artificial case splits when modulo operation is invoked. We applied our anal-
ysis to the test set [4] of Invel [27], and to the non-terminating programs from the Ul-
timate Büchi Automizer [19] test set [5]. Out of 52 non-terminating Invel programs,
our tool was able to find recurrent sets in 39. For the remaining 13, the analysis either
terminates without producing a result or diverges. We attribute 8 cases of failure to the
lack of expressiveness in the abstract domain. In those programs, successful analysis
would require relational reasoning, e.g., with polyhedra [16]. Another two cases of fail-
ure come from the limitations of our prototype tool that does not support nested loops
(while the approach does). In one case, the program uses a break statement which is
not currently supported by our technique. Finally, two cases of failure seem problem-
atic for our general approach. Those programs implement mathematical functions (least
common multiplier and k-th Fibonacci number respectively) and their termination de-
pends on the relation between the properties of those functions and program input, e.g.,
whether there exists such k that k-th Fibonacci number is equal to the argument of the
function. As a result, we fail to isolate the path through the program that is taken by non-
terminating traces. We may speculate that for a forward analysis to succeed, it needs to
perform some artificial case splits, but we are not aware of a possible heuristic at this
point. While specialized numeric tools (e.g., AProVE with SMT backend [11]) han-
dle more of the Invel test programs [6], they do not subsume our tool. We believe, our
approach can complement existing numeric tools in cases when the underlying linear
solvers struggle.

Out of 18 Automizer programs that we considered, our tool handles 10 success-
fully. Among the remaining 8 programs, five use unsupported features (arrays, break
statements, recursion), one would require additional case splits that our tool does not
perform, and two have non-terminating behaviors, but do not have universal recurrent
sets (non-termination relies on making a specific series of non-deterministic choices in
the loop body). The latter points to a limitation of universal recurrent sets. Though a
non-termination bug may cause the program to have one, it may be hard to build an ab-
straction that preserves it and does not introduce spurious terminating traces from every
interesting state.
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In some of the test programs, the main loop was preceded by a loop-free stem that
performed initialization of the variables. We observed that in all cases (where our tool
was able to find a recurrent set) this initial state had non-empty intersection with the
recurrent set produced by the tool. For example, the program ‘GCD’ from the Invel test
set, has two integer valuables: a an b – and the stem sets up the initial state a ≥ b. The
recurrent set that our tool finds is of the form (a ≥ 1 ∧ b ≤ −1) ∨ (a ≤ −1 ∧ b ≥ 1).
The fact that this recurrent set has non-empty intersection with the initial state can be
checked using the operations of the polyhedral abstract domain. This result is specific
to the tests programs and the choice of abstract domain. In general, it might not be
possible to check the recurrent sets for concrete reachability using standard forward
analysis techniques.

6 Related Work

The approach [11] implemented in AProVE [17] is similar to ours in that it builds and
analyzes an abstract state graph (termination graph, in their terms). However, they are
interested in proving the existence of at least one non-terminating trace (which is dual
to the notion of universal recurrent set) and they analyze the graph differently. They
relate cycles in the graph to loops in the program and either try to prove that some loop
does not modify the variables affecting termination, or employ SMT-based analysis
(available when non-termination relies on integer arithmetic) to show that for some
loop, at least one path through it is always enabled. In contrast, we introduce a notion
of recurrent component which witnesses a recurrent set and search the graph for those.

Cook et al. [13] analyze linear over-approximations of programs and use Farkas’
lemma to find universal recurrent sets. Their soundness result is similar to ours and
is more general: they state it for arbitrary transition systems and require a property
of upward termination (for every concrete final state, the corresponding abstract state
is also final) which for us implicitly holds. Note that linear abstractions have not yet
demonstrated to be very effective for analyzing heap-manipulating programs.

The analysis of Chen et al. [12] combines a forward model checker and back-
wards analysis of single traces to modify the original program and turn it into a non-
terminating one, by adding assumption statements. On the low level their approach is
dual to ours, as they work with under-approximations of programs and try to prove the
existence of at least one infinite trace.

The above analyses are predated by that of Gupta et al. [18] where existential recur-
rent sets are produced from lasso-shaped symbolic executions using Farkas’ lemma.

Velroyen and Rümmer developed their analysis [27] independently of Gupta et al.
[18]. They propose a template and a refinement scheme to infer invariants proving that
terminating states of a program are unreachable.

Larraz et al. [21] use the notion of an edge-closed quasi-invariant (a set of states
that, one reached, cannot be escaped) as a generalization of recurrent set. They encode
the search for such set as a max-SMT problem.

We note that the above analyses focus on proving non-termination, while we con-
sider a sub-problem of finding a recurrent set. To prove non-termination of a program
we would need to show that a recurrent set is reachable from the program entry.
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The analysis implemented in E-HSF [10] allows to specify the semantics of pro-
grams and express verified properties in the form of ∀∃ quantified Horn clauses ex-
tended with well-foundedness conditions. In particular, the input language allows to
query for the existence of universal and existential recurrent sets. The implementation
is to our knowledge targeted at linear programs and relies on Farkas’ lemma.

7 Conclusion and Future Work

We have described a forward technique for finding recurrent sets in imperative programs
where loops of a specific form are the source of non-termination. The recurrent sets that
we produce are genuine, but may not be reachable from the program entry. We applied
our analysis to numeric and heap-manipulating programs and were successful if (i) we
were able to capture the paths through the program that infinite traces take, and (ii) we
were able to perform enough case splits to isolate the recurrent set into a separate set of
abstract states. The latter point can benefit from heuristics in some cases.

Our analysis only admits structured programs without goto statements and a re-
stricted form of loops: while-loops without statements that affect control flow (break,
continue, etc). One direction for future work is to enable the analysis of a larger class
of loops: either by introducing relevant program transformations and studying their
effect on the outcome of the analysis or by extending the technique to handle more
complicated control flow graphs. Another direction is to solidify the analysis: elimi-
nate the need for a separate forward pre-analysis by weaving it into the main algorithm,
introduce a proper trace partitioning, etc.
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A Proofs

Here, we present the proofs omitted from the main text.

Theorem 1. For a loop as in (1), an abstract domain D, and an element d ∈ D, if
evalD (¬ϕexit,d) = 1 and postD (Cbody,d) vD d, then γ(d) is universally recurrent.

Proof. From the properties of evalD , eval(¬ϕexit, γ(d)) = 1. From the properties of
postD and γ, post(Cbody, γ(d)) ⊆ γ(postD (Cbody,d)) ⊆ γ(d). Then, universal recur-
rence of γ(d) follows from Lemma 1. ut

Theorem 2. For a loop as in (1) and a state graph G = 〈V,Ep ,Ec〉 we say X ⊆ V is
fully closed if eval] (¬ϕexit,X ) = 1, ∀l ∈ X. postG (l) , ∅, and post] (Cbody,X ) v X.
Note that in this case, γ(X ) is a recurrent set. Then, for every state graph G:

(i) For a recurrent component R, there exists a fully closed X ⊆ R s.t. γ(X ) = γ(R).
(ii) For a fully closed X, there exists a recurrent component R ⊇ X, s.t. γ(R) = γ(X ).

Proof. (i) Let R be a recurrent component. Let X be the set of states in R without
outgoing containment-edges into R. This set is always not empty. Since R is finite, if
every states in R had a containment-edge into R, there would be an infinite containment
path within R, and therefore – a containment cycle, which is assumed to never happen.
Since states in X have no containment-edges into R, it must be that every state in X has
an non-empty set of outgoing post-edges, all leading into R: ∀l ∈ X postG (l) , ∅ ∧
postG (l) ⊆ R. This means that post] (Cbody,X ) = postG (X ) (since post] is pointwise)
and post] (Cbody,X ) ⊆ R. Note that we use Hoare order. Since every containment path
that stays within R is finite, every state in R can reach a state in X by crossing 0 or more
containment-edges, hence R v X , and post] (Cbody,X ) v X . That is, γ(X ) is a recurrent
set via Theorem 1. Also, since X ⊆ R, then X v R, and hence γ(R) = γ(X ).

(ii) Let X ∈ V be such that ∀l ∈ X. postG (l) , ∅, eval] (¬ϕexit,X ) =

1, and post] (Cbody,X ) v X . From the properties of eval] , ∀l ∈

post] (Cbody,X ). eval] (¬ϕexit, l) = 1. Let R = X ∪ postG (X ) ⊆ V . Note the
following: (i) every l ∈ X has a non-empty set of outgoing post-edges, all leading into
R; (ii) since post] (Cbody,X ) v X , either R = X = {⊥L } or every l ∈ postG (X ) has a
containment-edge leading into R ⊇ X . Hence, R satisfies the definition of recurrent
component. ut

Lemma 4. May-exiting states cannot be part of a recurrent component.

Proof. Let l ∈ V be s.t. eval] (¬ϕexit, l) , 1. Then it cannot be part of a recurrent
component by definition.

Let l ∈ V be s.t. eval] (ψent, l) = 0. That is, from the properties of eval] , for every
concrete state s ∈ γ(l), ψent does not hold. Since ψent ∨ ϕexit = 1, for every s ∈ γ(l),
ϕexit holds, and it cannot be that eval] (¬ϕexit, l) = 1.

Let l ∈ V be s.t. it would be marked as must-exiting by recursively applying the
rules (ii) and (iii) from the definition of must-exiting state. By induction, this means that
for every concrete state s ∈ γ(l), every concrete path that originates in it, eventually
reaches a state where ψent does not hold. That is, γ(l) cannot be contained in a recurrent
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set. From Theorem 2, it follows that l cannot be part of a recurrent component, since
otherwise γ(l) would have to be contained in a recurrent set, and we would have a
contradiction.

Let post] be monotonic and let l ∈ V be such that (a) it would be marked as may-
exiting by recursively applying rules (ii) and (iii) from the definition of may-exiting
state; and (b) let l belong to a recurrent component R ⊆ V . Let us show that this is
impossible. From assumption (a), is follows by induction that by taking one or more
post- and reversed containment-edges l can reach a state l′ ∈ V , s.t. l′ is must-exiting
or s.t. eval] (¬ϕexit, l′) , 1. From assumption (b) and Theorem 2, there is X ⊆ R s.t.
eval] (¬ϕexit,X ) = 0, post] (Cbody,X ) v X , and l ⊆ X . Consider an arbitrary state l′ ∈ V
that is reachable from l by taking one or more post- and reversed containment-edges.
From monotonicity of post] , it follows by induction that {l′} v X and therefore, from
the properties of eval] , eval] (¬ϕexit, l′) = 1. Also, but the above development, l′ cannot
be must-exiting. Note that the corollaries of assumption (b) contradict the corollaries of
assumption (a). Therefore, it cannot be that a may-exiting state l is a part of a recurrent
component. ut

Theorem 3. For an abstract state graph G = 〈V,Ep ,Ec〉 and some recurrent compo-
nent R ⊆ V, FindRecComp produces C ⊆ V such that C ∪ R is the maximal recurrent
component of G.

Proof. Let Rmax ∈ V be the maximal recurrent component of G, which does exist due
to Lemma 3.

First, note that C ∪ R is indeed a recurrent component. If it was not, in lines 5-7, the
states that make C ∪ R violate the definition of recurrent component would be excluded
from C (such states can only be in C). That is, C ∪ R ⊆ Rmax.

Next, let us represent the execution of FindRecComp as a chain of n approximations
C0 w C1 w · · · w Cn−1 where C0 is as in line 2, Cn−1 = C is the output of the procedure,
for 0 ≤ i ≤ n − 2, Ci+1 = Ci \ C−i ,

C−i = {l ∈ Ci | ({(l, l′) | l′ ∈ Ci ∪ R} ∩ Ec = ∅)∧ (postG (l) = ∅∨postG (l) * Ci ∪ R)}

And C−
n−1 = ∅. That is C−i is the set of states that make Ci ∪ R violate the definition of

recurrent component.
Let us by induction prove that Rmax ⊆ C ∪ R. From Lemma 4, it follows that

Rmax ⊆ C0 ∪ R as no may- or must-exiting state can be in a recurrent component. For
0 ≤ i ≤ n − 2, let us assume that Rmax ⊆ Ci ∪ R. From the definition of recurrent
component, for every l ∈ Rmax,

(∃l′ ∈ Rmax. (l, l′) ∈ Ec ) ∨ (postG (l) , ∅ ∧ postG (l) ⊆ Rmax)

From the definition of C−i above, it follows that C−i ∩ Rmax = ∅ (that is, no l ∈ Rmax
satisfies the condition to be included in C−i . Thus we have that Rmax ⊆ Ci ∪ R, and
C−i ∩ Rmax = ∅, and Ci+1 = Ci \ C−i , hence Rmax ⊆ Ci+1 ∪ R.

By induction, Rmax ⊆ C ∪ R and hence Rmax = C ∪ R. ut
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B Additional Example

Example 5 Fig. 13 shows a fragment of a device driver procedure that has a non-
termination-related bug discovered by a termination prover [9]. The fragment is a loop
that traverses a cyclic doubly-linked list. Every entry of the list is embedded in a larger
record and line 4 extracts a pointer to the containing record. If the condition in line 7
holds, the current entry is removed from the list in line 8. If the condition in line 9
also holds, the loop terminates. Otherwise, in line 12 the current entry’s next-pointer
(Flink) gets directed to the entry itself and the loop continues. In the latter case, the
execution will stay in the loop as long as the conditions in lines 7 and 9 continue to hold
for the entry.

Fig. 14 shows a simplified version of the loop that can be presented to our tool.
Variable x always points to the head of the list, and y traverses the list. We did not have
a template for working with cyclic doubly linked lists in TVLA, and we use a singly
linked list, and explicitly track the pointer yp to the previous list element. We also unify
the list entries and containing records. To handle the early return in line 10, we manually
transform the program to use an auxiliary condition c(x).

What happens to conditions in lines 7 and 9 is more important. We need to abstract
them, as they need much context to be modelled precisely. One option is to abstract
them as non-deterministic conditions, but in this case there will be no universal non-
termination, as there will always be the possibility for the execution to reach the return
statement in line 10. It may also be sound to model these conditions as predicates on list
entries, s.t. they are not changed in the loop body, and initially we do not know whether
they hold. In Fig. 14 we assume that this is the case, and introduce a pair of predicates
k1 and k2 for the conditions in line 7 and 9 respectively. With the above assumptions,
we were able to find a recurrent set of the program fragment. Fig. 15 shows an example
of a 3-valued structure belonging to the discovered recurrent component. Notice the
node pointed to by y where k1 definitely holds, and k2 definitely does not. Due to a
logical error, this node became detached from the original list, and the traversal along
its self-loop never terminates.

This example shows that our approach can in principle handle real-world non-
termination problems. At the same time, it points out the following limitations. First,
universal recurrent sets are fragile. Even though a non-termination bug may cause the
program to have one (this is the case in Example 2 and may be the case in this ex-
ample), it may be hard to build an abstraction that preserves it and does not introduce
spurious terminating traces from every interesting state. In this example, building such
abstraction requires certain knowledge about the context. Second, the recurrent sets that
we discover are genuine, but may not be reachable from the program entry. Also, we
cannot identify the subset of the input set of states that may reach the recurrent set.
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1 for (entry = DeviceExtension ->ReadQueue.Flink;
2 entry != &DeviceExtension ->ReadQueue;
3 entry = entry ->Flink) {
4 irp = (IRP *)((CHAR *)(entry)-(ULONG *)
5 (&(( IRP *)0)->Tail.Overlay.ListEntry));
6 stack = IoGetCurrentIrpStackLocation (irp);
7 if (stack ->FileObject == FileObject) {
8 RemoveEntryList(entry);
9 if (IoSetCancelRoutine (irp , NULL)) {
10 return irp;
11 } else {
12 InitializeListHead (&irp ->Tail.Overlay.ListEntry);
13 }
14 }
15 }

Fig. 13. C program fragment for Example 5.

1 y ← x
2 yp ← y

3 y ← (y → n)
4 while x , y ∧ ¬c(x):
5 if k1(y):
6 (yp → n) ← (y → n)
7 if k2(y):
8 c(x) ← 1
9 else:
10 (y → n) ← y

11 if ¬c(x):
12 yp ← y

13 y ← (y → n)

Fig. 14. Simplified version of the program
in Fig. 13.

x

¬c

¬k1
k2 = 1

2
n

n

k1 = 1
2

k2 = 1
2

n

n

k1
¬k2

n

y, yp

Fig. 15. Example of a structure from a re-
current component in Example 5.
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C Detailed experiment results

Table 1 details the results of running our tool on the test set of Invel [27]. Out of 55
programs in the set, we analyzed 52 that are known to be non-terminating (1 program
terminates, 1 misses source code, and 1 encodes the Collatz conjecture). The test set was
obtained from [4] and manually converted to our tool’s input format where possible.
The column Test name refers to the short name of the test in the test set, the column
Result displays “V” for the programs where a recurrent set was found, “X” where the
tool terminated but not produce a recurrent set, “TO” where the tool timed out, and “–”
for the skipped tests. Unless stated otherwise, a manually computed loop invariant was
used as a starting state for the analysis. Similarly, Table 2 details the result of running
out tool on a set of 18 non-terminating programs taken from Ultimate Büchi Automizer
[19] test set [5].

Table 1: Results of the analysis applied to Invel’s test set.

Test name Result Comment
alternatingIncr V
alternDiv V
alternDivWide V
alternKonv V
complInterv V
complInterv2 V
complInterv3 V
convLower V
cousot V
even V
ex01 V
ex02 V
ex03 V
ex04 V
ex05 V
ex06 V
ex07 V
ex08 V
flip V
gauss V
gcd V Computes greatest common divisor
marbie1 V
marbie2 V
mirrorIntervSim V
moduloLower V
moduloUp V
narrowing V The first state reaching the loop taken as starting state
narrowKonv V The first state reaching the loop taken as starting state
plait V
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sunset V
trueDiv V
twoFloatInterv V
upAndDown V
upAndDownIneq V
whileIncr V
whileIncrPart V
whilePart V
whileSingle V
whileTrue V
alternDivWidening TO Might work in a polyhedral domain
complxStruc X Might work in a polyhedral domain
ex09half X Might work in a polyhedral domain
flip2 TO Might work in a polyhedral domain
middle X Might work in a polyhedral domain
mirrorInterv X Might work in a polyhedral domain
whileSum X Might work in a polyhedral domain
doubleNeg X Needs a domain that can represent a condition i j > 0
whileNested X Not implemented, the tool does not support nested loops
whileNestedOffset X Not implemented, the tool does not support nested loops
fib TO Computes Fibonacci numbers until a specific value is reached
lcm X Computes lest common multiple
whileBreak X Not implemented, uses break statement
collatz – Collatz conjecture
factorial – Program text missing
whileDecr – Terminates

Table 2: Results of the analysis applied to selected Automizer programs.

Test name Result Comment
madrid V
nonTermination1 V
nonTermination4 V
nonTerminationSimple2 V
nonTerminationSimple4 V
nonTerminationSimple6 V
nonTerminationSimple7 V
rotation180 V
whileTrue V
division V
arrays02EquivalentConstantIndices X Not implemented, uses arrays
nonTermination2 X Not implemented, uses break
nonTermination3 X
nonTerminationSimple3 X Not implemented, uses arrays
nonTerminationSimple5 TO Does not have a universal recurrent set
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nonTerminationSimple8 X Not implemented, uses break
nonTerminationSimple9 X Does not have a universal recurrent set
recursiveNonterminating X Not implemented, uses recursion
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