Forward Analysis for Recurrent Sets

Alexey Bakhirkin® Josh Berdine? Nir Piterman'

LUniversity of Leicester, Department of Computer Science
2Microsoft Research

\g.(mg University of

Leicester

Why (non-)termination

A non-termination bug in the below code made many Zune devices
freeze on 31 Dec 2008.

days < // days since 1 Jan 1980
year < 1980
while days > 365:
if leap(year):
if days > 366:
days < days — 366
year < year + 1
else:
days < days — 365
year < year + 1

The official response was, “"Wait until battery dies”.

Why (non-)termination

» Many programs are supposed to terminate.
» People are bad at finding (non-)termination bugs.

» There are other analyses (for example, CTL model checking)
that rely on (non-)termination results.

Termination and Nontermination

A family of undecidable problems.

Find a set of states, such that from every state:

Every trace is finite
(what termination
provers do)

There exists an infinite
trace

There exists a finite

Every trace is infinite
trace

A sub-problem of showing non-termination

» We search for a set of states that the program cannot escape
— a recurrent set.

> Recurrent sets can be characterized as fixed points of
backward transformers.

» Because of incompleteness, we may not be able to find the
largest set.

» To show non-termination, we would need to show reachability
of this set from the initial states. We do not do it.

Recurrent set of a loop

We search for recurrent sets of
individual loops:

Ry satisfies —¢ [¢]
Vs € Ry. (Vs'.(s,5") € [Ghoay] = ' € Ry)

Under reasonable assumptions, every I
execution from Ry is infinite.

Recurrent sets with forward analysis

Can we restrict ourselves to a forward over-approximating analysis
and still be good?

» Forward analyses have more features, e.g., more abstract
domains are available.

» For example, for separation logic, backward analysis is known
to be harder (Calcagno, Yang, and O'Hearn 2001).
» We used shape analysis with 3-valued logic (Sagiv, Reps, and

Wilhelm 2002). It is less popular, but a good representative of
non-numeric abstract domain.

Recurrent sets with forward analysis

(Recap of) Goals

v

Find recurrent sets of individual loops.

v

Forward analysis.

v

Prove non-termination of “textbook” numeric programs. They
often rely on unbounded numbers.

v

Prove non-termination of some heap-manipulating programs.

Sketch of the analysis

Assuming unbounded integers

[1; +00)

while x>1:
if x=60: x <+ 50
x4+ x+1
if x=100: x<+ 0

Sketch of the analysis

Assuming unbounded integers

[1; +00)
Y \\ while x >1:

[2,60] [101; +00) [62,99] if x=60: x<+ 50
x+—x+1
if x=100: x<«0

Sketch of the analysis

Assuming unbounded integers

[1; +00)
T
2,60]| | [[101; +o0)] [[62,99]
) \
[102;,+00) | / 16399
3, 60]

while x>1:
if x=060:
x4+ x+1
if x=100:

x < 50

x<+0

Sketch of the analysis

Assuming unbounded integers

while x>1:
if x=60: x <+ 50
x4+ x+1
if x=100: x<+ 0

Sketch of the analysis

Assuming unbounded integers

while x>1:
if x=60: x <+ 50
x4+ x+1
if x=100: x<+ 0

Sketch of the analysis

Assuming unbounded integers, note how states in [101; +-00) are
not re-visited

|
[1; +00)
Y \\ while x>1:

[2,60] | | | [101; +o0) | [[62,99] if x=60: x+« 50

/..,.4 > 4) \ X+ x+1

3, 66]

Recurrent sets with forward over-approximation

» Seems, we cannot characterize a recurrent set via a fixpoint of
forward transformers.

> Intuitively, we would characterize states that have infinite
traces into them. Not suitable when infinite traces do not
re-visit states.

> Instead, we produce a condition:

Vs € Ry. (Vs'(s,5") € [Gooay] = ' € Ry)

< post(Cpoay, Ry) € Ry

<~ pOStD(Cbodya dV) Cp dV
In domain D, with y(dy) = Ry

Sketch of the analysis

Assuming unbounded integers

v

v

D is a finite powerset
domain.

A condition for dy to
represent a recurrent
set:

post?(C, dy) Cp dy.
Exploration via
symbolic execution.
A tractable way to
find suitable subsets.

Conclusions

» Tractable way to find recurrent sets of abstract states.

» We need for the recurrent set to be materialized in the state
graph.

» When non-terminating traces take specific branching choices
(seems to often be the case), simple symbolic execution works.

> In shape analysis with 3-valued logic, abstract transformers
themselves make relevant case splits.

» For more complicated cases, tailored heuristics would be
needed. Currently, we do not have them.

Future(?) work

» Upgrade to abstract interpretation.

» For more complicated cases, heuristics for state partitioning
would be needed. Currently, we do not have those.

k=//nondet while x> 0:
while x> 0: X<+ —2x+9
X x+ k

» Obviously, cannot deal with too much nondeterminism (no
universal recurrent set in the below).

while x> 0:
k=//nondet
X+ x+ k

Future(?) work

» Upgrade to abstract interpretation.

» For more complicated cases, heuristics for state partitioning
would be needed. Currently, we do not have those.

k=//nondet while x> 0:
while x> 0: X<+ —2x+9
X x+ k

» Obviously, cannot deal with too much nondeterminism (no
universal recurrent set in the below).

while x> 0:
k=//nondet
X+ x+ k

Thanks

Related work

> (Brockschmidt et al. 2011) Implemented in AProVE. Builds a
similar graph, but the rest is different.

» (Cook et al. 2014) Finds universal recurrent sets in
over-approximated linear programs via Farkas' lemma.

» (Velroyen and Riimmer 2008) Invel. One of the early analyses,
and a set of bechmarks.

