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Why (non-)termination

A non-termination bug in the below code made many Zune devices
freeze on 31 Dec 2008.

days ←// days since 1 Jan 1980
year ← 1980
while days > 365:

if leap(year):
if days > 366:

days ← days − 366
year ← year + 1

else:
days ← days − 365
year ← year + 1

The official response was, “Wait until battery dies”.



Why (non-)termination

I Many programs are supposed to terminate.

I People are bad at finding (non-)termination bugs.

I There are other analyses (for example, CTL model checking)
that rely on (non-)termination results.



Termination and Nontermination

A family of undecidable problems.

Find a set of states, such that from every state:

Every trace is finite
(what termination

provers do)

There exists an infinite
trace

There exists a finite
trace

Every trace is infinite



A sub-problem of showing non-termination

I We search for a set of states that the program cannot escape
– a recurrent set.

I Recurrent sets can be characterized as fixed points of
backward transformers.

I Because of incompleteness, we may not be able to find the
largest set.

I To show non-termination, we would need to show reachability
of this set from the initial states. We do not do it.



Recurrent set of a loop

We search for recurrent sets of
individual loops:

R∀ satisfies ¬ϕ
∀s ∈ R∀.

(
∀s ′. (s, s ′) ∈ JCbodyK⇒ s ′ ∈ R∀

)
Under reasonable assumptions, every
execution from R∀ is infinite.

. . .
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. . .
Cbody

[ϕ]

· · ·



Recurrent sets with forward analysis

Can we restrict ourselves to a forward over-approximating analysis
and still be good?

I Forward analyses have more features, e.g., more abstract
domains are available.

I For example, for separation logic, backward analysis is known
to be harder (Calcagno, Yang, and O’Hearn 2001).

I We used shape analysis with 3-valued logic (Sagiv, Reps, and
Wilhelm 2002). It is less popular, but a good representative of
non-numeric abstract domain.



Recurrent sets with forward analysis

(Recap of) Goals

I Find recurrent sets of individual loops.

I Forward analysis.

I Prove non-termination of “textbook” numeric programs. They
often rely on unbounded numbers.

I Prove non-termination of some heap-manipulating programs.



Sketch of the analysis

Assuming unbounded integers

[1; +∞)

[2, 60]

51

0

[101; +∞) [62, 99]

[3, 60]

[102; +∞)
[63, 99]

· · ·

while x ≥ 1:
if x = 60: x ← 50
x ← x + 1
if x = 100: x ← 0
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Sketch of the analysis

Assuming unbounded integers, note how states in [101; +∞) are
not re-visited
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Recurrent sets with forward over-approximation

I Seems, we cannot characterize a recurrent set via a fixpoint of
forward transformers.

I Intuitively, we would characterize states that have infinite
traces into them. Not suitable when infinite traces do not
re-visit states.

I Instead, we produce a condition:

∀s ∈ R∀.
(
∀s ′ (s, s ′) ∈ JCbodyK⇒ s ′ ∈ R∀

)
⇔ post(Cbody,R∀) ⊆ R∀

⇐ postD(Cbody, d∀) vD d∀

In domain D, with γ(d∀) = R∀



Sketch of the analysis

Assuming unbounded integers

[1; +∞)

[2, 60]

51

0

[101; +∞) [62, 99]

[3, 60]

[102; +∞)
[63, 99]

· · ·

I D is a finite powerset
domain.

I A condition for d∀ to
represent a recurrent
set:
postD(C , d∀) vD d∀.

I Exploration via
symbolic execution.

I A tractable way to
find suitable subsets.



Conclusions

I Tractable way to find recurrent sets of abstract states.

I We need for the recurrent set to be materialized in the state
graph.

I When non-terminating traces take specific branching choices
(seems to often be the case), simple symbolic execution works.

I In shape analysis with 3-valued logic, abstract transformers
themselves make relevant case splits.

I For more complicated cases, tailored heuristics would be
needed. Currently, we do not have them.



Future(?) work

I Upgrade to abstract interpretation.

I For more complicated cases, heuristics for state partitioning
would be needed. Currently, we do not have those.

k =// nondet
while x > 0:

x ← x + k

while x > 0:
x ← −2x + 9

I Obviously, cannot deal with too much nondeterminism (no
universal recurrent set in the below).

while x > 0:
k =// nondet
x ← x + k

Thanks



Future(?) work

I Upgrade to abstract interpretation.

I For more complicated cases, heuristics for state partitioning
would be needed. Currently, we do not have those.

k =// nondet
while x > 0:

x ← x + k

while x > 0:
x ← −2x + 9

I Obviously, cannot deal with too much nondeterminism (no
universal recurrent set in the below).

while x > 0:
k =// nondet
x ← x + k

Thanks



Related work

I (Brockschmidt et al. 2011) Implemented in AProVE. Builds a
similar graph, but the rest is different.

I (Cook et al. 2014) Finds universal recurrent sets in
over-approximated linear programs via Farkas’ lemma.

I (Velroyen and Rümmer 2008) Invel. One of the early analyses,
and a set of bechmarks.


