Forward Analysis for Recurrent Sets

Alexey Bakhirkin¹ Josh Berdine² Nir Piterman¹

¹University of Leicester, Department of Computer Science ²Microsoft Research

Why (non-)termination

A non-termination bug in the below code made many Zune devices freeze on 31 Dec 2008.

The official response was, "Wait until battery dies".

Why (non-)termination

- Many programs are supposed to terminate.
- People are bad at finding (non-)termination bugs.
- There are other analyses (for example, CTL model checking) that rely on (non-)termination results.

Termination and Nontermination

A family of undecidable problems.

Find a set of states, such that from every state:

Every trace is finite (what termination provers do)	There exists an infinite trace
There exists a finite trace	Every trace is infinite

A sub-problem of showing non-termination

- We search for a set of states that the program cannot escape
 a recurrent set.
- Recurrent sets can be characterized as fixed points of backward transformers.
- Because of incompleteness, we may not be able to find the largest set.
- ► To show non-termination, we would need to show reachability of this set from the initial states. *We do not do it.*

Recurrent set of a loop

We search for recurrent sets of individual loops:

$$egin{aligned} & R_orall\ ext{satisfies} \
eg arphi & s \in R_orall . \left(orall s'. \left(s, s'
ight) \in \llbracket \mathcal{C}_ ext{body}
ight] \Rightarrow s' \in R_orall & s' \end{aligned}$$

Under reasonable assumptions, every execution from R_{\forall} is infinite.

Recurrent sets with forward analysis

Can we restrict ourselves to a forward over-approximating analysis and still be good?

- Forward analyses have more features, e.g., more abstract domains are available.
- ► For example, for separation logic, backward analysis is known to be harder (Calcagno, Yang, and O'Hearn 2001).
- We used shape analysis with 3-valued logic (Sagiv, Reps, and Wilhelm 2002). It is less popular, but a good representative of non-numeric abstract domain.

Recurrent sets with forward analysis

(Recap of) Goals

- Find recurrent sets of individual loops.
- Forward analysis.
- Prove non-termination of "textbook" numeric programs. They often rely on unbounded numbers.
- Prove non-termination of some heap-manipulating programs.

Assuming unbounded integers

$$[1;+\infty)$$

while
$$x \ge 1$$
:
if $x = 60$: $x \leftarrow 50$
 $x \leftarrow x + 1$
if $x = 100$: $x \leftarrow 0$

Assuming unbounded integers

Assuming unbounded integers

Assuming unbounded integers

Assuming unbounded integers

Assuming unbounded integers, note how states in $\left[101;+\infty\right)$ are not re-visited

Recurrent sets with forward over-approximation

- Seems, we cannot *characterize* a recurrent set via a fixpoint of forward transformers.
- Intuitively, we would characterize states that have infinite traces *into* them. Not suitable when infinite traces do not re-visit states.
- Instead, we produce a condition:

$$orall s \in \mathit{R}_{orall} \left(orall s'\left(s,s'
ight) \in \left[\!\left[\mathcal{C}_{\mathrm{body}}
ight]\!
ight] \Rightarrow s' \in \mathit{R}_{orall}
ight)$$

$$\Leftrightarrow \textit{post}(\textit{C}_{\mathrm{body}},\textit{R}_{\forall}) \subseteq \textit{R}_{\forall}$$

$$\Leftarrow post^{\mathcal{D}}(C_{body}, d_{\forall}) \sqsubseteq_{\mathcal{D}} d_{\forall}$$

In domain \mathcal{D} , with $\gamma(d_{\forall}) = R_{\forall}$

Assuming unbounded integers

- ► *D* is a finite powerset domain.
- A condition for d_∀ to represent a recurrent set:

 $post^{\mathcal{D}}(C, d_{\forall}) \sqsubseteq_{\mathcal{D}} d_{\forall}.$

- Exploration via symbolic execution.
 - A tractable way to find suitable subsets.

Conclusions

- Tractable way to find recurrent sets of abstract states.
- ▶ We need for the recurrent set to be materialized in the state graph.
 - When non-terminating traces take specific branching choices (seems to often be the case), simple symbolic execution works.
 - In shape analysis with 3-valued logic, abstract transformers themselves make relevant case splits.
- For more complicated cases, tailored heuristics would be needed. Currently, we do not have them.

Future(?) work

- Upgrade to abstract interpretation.
- For more complicated cases, heuristics for state partitioning would be needed. Currently, we do not have those.

$$k = // \text{nondet}$$
while $x > 0$:while $x > 0$: $x \leftarrow -2x + 9$ $x \leftarrow x + k$

 Obviously, cannot deal with too much nondeterminism (no universal recurrent set in the below).

> while x > 0: k = // nondet $x \leftarrow x + k$

Future(?) work

- Upgrade to abstract interpretation.
- For more complicated cases, heuristics for state partitioning would be needed. Currently, we do not have those.

$$k = // \text{nondet}$$
while $x > 0$:while $x > 0$: $x \leftarrow -2x + 9$ $x \leftarrow x + k$

 Obviously, cannot deal with too much nondeterminism (no universal recurrent set in the below).

> while x > 0: k = // nondet $x \leftarrow x + k$

Thanks

Related work

- (Brockschmidt et al. 2011) Implemented in AProVE. Builds a similar graph, but the rest is different.
- (Cook et al. 2014) Finds universal recurrent sets in over-approximated linear programs via Farkas' lemma.
- (Velroyen and Rümmer 2008) Invel. One of the early analyses, and a set of bechmarks.