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Abstract. Wepropose an abstract-interpretation-based analysis for recurrent sets.
A recurrent set is a set of states from which the execution of a program cannot or
might not (as in our case) escape. A recurrent set is a part of a program’s non-
termination proof (that needs to be complemented by reachability analysis). We
find recurrent sets by performing a potentially over-approximate backward analysis
that produces an initial candidate. We then perform over-approximate forward
analysis on the candidate to check and refine it and ensure soundness. In practice,
the analysis relies on trace partitioning that predicts future paths through the
program that non-terminating executions will take. Using our technique, we were
able to find recurrent sets in many benchmarks found in the literature including
some that, to our knowledge, cannot be handled by existing tools. In addition,
we note that typically, analyses that search for recurrent sets are applied to linear
under-approximations of programs or employ some form of non-approximate
numeric reasoning. In contrast, our analysis uses standard abstract-interpretation
techniques and is potentially applicable to a larger class of abstract domains (and
therefore – programs).

1 Introduction

Termination is a fundamental property of software routines. The majority of code is
required to terminate (e.g., dispatch routines of device drivers or other event-driven
code, GPU programs) and the existence of a non-terminating behavior is a severe
bug that might freeze a device, an entire system [1], or cause a multi-region cloud
service disruption [2]. The problem of proving termination has seen much attention
lately [15, 16, 33], but the techniques are sound and hence necessarily incomplete. That
is, failure to prove termination does not imply the existence of non-terminating behaviors.
Hence, proving non-termination is an interesting complementary problem.

Several modern analyses [8,13,14,26] characterize non-terminating behaviors with
a notion of recurrent set, i.e., a set of states from which an execution of the program or
fragment cannot or might not escape (there exist multiple definitions). In this paper, we
focus on the notion of an existential recurrent set – a set of states, s.t., from every state
in the set there exists at least one non-terminating execution. Typically, the analyses
that find existential recurrent sets and/or prove non-termination are applied to linear
under-approximations of programs [13] and/or employ some form of non-approximate
numeric reasoning, e.g., using an SMT-solver as in [12], or applying Farkas’ lemma
as (to our knowledge) in [10]. This allows the analyses to produce genuine recurrent
sets. In the context of abstract interpretation (that may go beyond numeric reasoning),



under-approximation is problematic. For example, as we show later, fixed-point charac-
terization of an existential recurrent set involves set union, and in most abstract domains
it is hard to define an under-approximate join operation.

In this paper, we propose a sound abstract-interpretation-based analysis that finds
existential recurrent sets via approximate reasoning. The proposed analysis works in two
steps. First, we perform approximate (potentially, over-approximate) backward analysis
to find a candidate recurrent set. An important technique that allows finding successful
candidates is trace partitioning (for trace partitioning in forward analysis, see [29]).
Then, we perform over-approximate forward analysis on the candidate to check and
refine it and ensure soundness. We define the analysis for imperative programs without
procedures, and we apply it separately for every loop of the program (i.e., every strongly
connected component of the program graph). We evaluated the analysis on the test
set [3] of Invel [35], on non-terminating programs from the SV-COMP 2015 [4] termi-
nation category, and on a set of non-deterministic numeric programs that we produced
ourselves. In this paper, we make a number of assumptions on the memory domain. In
particular, we assume that there exists a meet operation that allows backward analysis to
build a descending chain; then, we use lower widening to ensure convergence of back-
ward analysis. Non-numeric domains may employ different techniques. For example,
in shape analysis with 3-valued logic [31], convergence is due to the use of a finite
domain of bounded structures. Our backward analysis would need to be modified to be
applicable to this and similar domains.

Finally, we note that finding a recurrent set is a sub-problem of proving non-
termination (in this paper, by proving non-termination we mean proving the existence
of at least one non-terminating execution). To prove non-termination, we would need to
show that a recurrent set is reachable from the program entry which we do not address
in this paper for practical reasons. In theory, our analysis may find a recurrent set in any
program or fragment (not necessarily strongly connected), and if the inferred set con-
tains an initial program state, this proves the existence of non-terminating behaviours.
In practice, we have so far obtained satisfactory results only with finding recurrent sets
of individual loops. There also exists work on showing feasibility of abstract counterex-
amples (including, for non-numeric abstract domains [9]), and techniques from that area
would also be applicable to show reachability of a recurrent set.

2 Background

We use 1 and 0 to mean logical truth and falsity respectively. We use Kleene’s 3-
valued logic [25] to represent truth values of state formulas in abstract states and sets
of concrete states. The logic uses a set of three values K = {0, 1/2, 1} meaning false,
maybe, and true respectively. K is arranged in partial information order vK , s.t. 0 and
1 are incomparable, 0 vK 1/2, and 1 vK 1/2. For k1, k2 ∈ K , the least upper bound tK
is s.t. k1 tK k2 = k1 if k1 = k2, and 1/2 otherwise. For a lattice L ordered by 4 and a
monotonic function F :L → L, we use lfp4F to denote the least fixed point of F and
gfp4 F to denote the greatest fixed point.

States, Statements, and Programs. Let M be the set of memory states. A memory
state may map program variables to their values, describe the shape of the heap, etc.
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A memory-state formula θ denotes a set of memory states JθK ⊆ M. In this paper, the
formulas will usually be conjunctions of linear inequalities over the program variables.
E.g., the formula x > 0 will denote the set of memory states where x is positive. We
say that a memory state m ∈ M satisfies θ if m ∈ JθK. For a memory-state formula θ and
a set of memory states M ⊆ M, the value of θ over M is defined as: eval(θ, M) = 1 if
M ⊆ JθK; eval(θ, M) = 0 if M , ∅ ∧ M ∩ JθK = ∅; eval(θ, M) = 1/2 otherwise. That
is, a formula evaluates to 1 in a set of memory states if all the memory states in the set
satisfy the formula; to 0 if the set is non-empty and no memory states in the set satisfy
the formula; and to 1/2 if some memory states satisfy the formula and some do not.

Let C be the set of atomic statements. For a statement C ∈ C, its input-output
relation is TM(C) ⊆ M ×M. A pair of memory states (m,m′) ∈ TM(C), iff it is possible
to produce m′ by executing C in m. We assume that C includes (but is not limited to):
(i) a passive statement skip with TM(skip) = {(m,m) | m ∈ M}; and
(ii) an assumption statement [θ] for every memory-state formula θ, with TM([θ]) =
{(m,m) | m ∈ JθK}. The main use of assumption statements is to represent branch
and loop conditions.

What other the statements are in C depends on the class of programs we’re working
with; e.g., for numeric programs, C may include assignments of the form x = expr.

We assume that for other atomic statements, their input-output relations are given.
We require that for every non-assumption statement C ∈ C, the input-output relation of
C is left-total, i.e., for every memory state m ∈ M, there exists a successor state m′ ∈ M,
s.t., (m,m′) ∈ TM(C). In this paper, we do not discuss the analysis of unsafe programs,
but if executing C in some m ∈ M may fail, we assume that there exists a distinguished
error memory state ε, s.t. (m, ε) ∈ TM(C). In this paper, we work with programs that
manipulate numeric variables, most often (but not necessarily) integer-valued. Thus,
given the set of program variables V, we can assumeM = (V→ Z) ∪ {ε}.

l1

l2

[0 ≤ x ≤ 100]

l3
x = x + 1

l4
x = x − 1

Fig. 1. Loop with non-
deterministic branching.

A program P is a graph (L, l`,E, c) where L is a
finite set of program locations that are vertices of the
graph; l` ∈ L is a distinguished initial location; E ⊆
L × L is a set of edges; and c :E → C labels edges with
atomic statements. A location without outgoing edges is
a final location. Intuitively, an execution of the program
terminates iff it reaches a final location. For a location
l ∈ L, the successors of l is the set succ(l) = {l ′ ∈
L | (l, l ′) ∈ E}. Note that for l, l ′ ∈ L, we allow at most
one edge from l to l ′. This simplifies the presentation,
but does not restrict the allowed class of programs.

An example of a program is shown in Fig. 1. It is a
loop where in every iteration, the execution makes a non-deterministic choice: whether
to increment or decrement the variable x (thus, V = {x}). The set of location L =
{l1, · · · , l4}, the initial location l` = l1. The program does not have a final location and
can be assumed to be a fragment of a larger program (as discussed later, our analysis
works with such fragments). Also note how we cannot have multiple edges from l2 to
l1, and we use locations l3 and l4 to work around that (for the edges displayed without a
label, we assume the label skip).
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Set S = L × M is the set of program states. We say that a program state s ∈ S
is final iff s = (l,m) for a final location l ∈ L and some memory state m ∈ M. For
a program P, the transition relation on program states TS(P) ⊆ S × S is s.t. a pair of
program states ((l,m), (l ′,m′)) ∈ TS(P) iff one of the following holds: (i) (l, l ′) ∈ E and
(m,m′) ∈ TM(c(l, l ′)); or (ii) l is final, l ′ = l, and m′ = m. That is, the transition relation
consists of pairs of program states (s, s′), s.t. it is possible to reach s′ by executing an
atomic statement from s or by staying in the same final state.

Traces and Executions. To use trace partitioning, we need to be able to reason not only
about memory states and locations, but also about traces. A path is a pair (p, i) ∈ LN×N,
where p = 〈l0, l1, l2, . . .〉 ∈ L

N is an infinite sequence of locations, and i ≥ 0 is a (current)
position. Intuitively, a path is a sequence of locations that is visited by a potential run
of the program, together with a point in the run where we currently are. We denote the
set of paths by Π. For a path π = (p, i) ∈ Π, p(0) and π(0) denote the first location in the
path; p( j ) and π( j ) denote the j+1-th location.

A trace is a pair (t, i) ∈ SN×N, where t = 〈s0, s1, s2, . . .〉 ∈ S
N is an infinite sequence

of program states, and i ≥ 0 is a (current) position. Intuitively, a trace is a sequence of
program states that is visited by a potential run of the program, together with a point
in the run where we currently are. We denote the set of traces by Σ. For a trace τ ∈ Σ,
t (0) and τ(0) denote the first state of the trace; t ( j ) and τ( j ) denote the j+1-th state. For
a location l ∈ L, the set of all traces at l is Σ |l = {(t, i) ∈ Σ | ∃m ∈ M. t (i) = (l,m)}.
The set of all traces at l and position i is Σ |l, i = {(t, i) ∈ Σ | ∃m ∈ M. t (i) = (l,m)}. For
example, Σ |l`,0 is the set of traces, s.t. they start at the initial program location l`, and
the current position is 0. For a trace τ ∈ Σ, its path p(τ) ∈ Π is produced by removing
information about the memory states. For τ = (〈(l0,m0), (l1,m1), (l2,m2), . . .〉, i) ∈ Σ,
p(τ) = (〈l0, l1, l2, . . .〉, i) ∈ Π. We say that a trace is terminating iff there exists j ≥ 0, a
final location l ∈ L, and a memory state m ∈ M, s.t., for every k ≥ j, τ(k ) = (l,m). We
say that a trace is non-terminating iff it is not terminating.

Given a program P, not every trace can be produced by it. A trace τ ∈ Σ is a semi-
execution of P iff for every j ≥ 0, (τ( j ), τ( j+1)) ∈ TS(P). A trace τ ∈ Σ is an execution,
if it is a semi-execution and τ(0) = (l`,m) for some memory state m ∈ M. Intuitively,
an execution, as its first component, has a sequence of program states that is produced
by starting in the initial program location in some memory state, and running the
program either infinitely (producing a non-terminating execution) or until it terminates
in a final location (producing a terminating one). For the program in Fig. 1, we can
produce a non-terminating execution by, e.g., alternating the increment and decrement
of x:

(
〈((l1, x 7→ 0), (l2, x 7→ 0), (l3, x 7→ 1), (l1, x 7→ 1), (l2, x 7→ 1), (l4, x 7→ 0))N〉, i

)
.

A trace (t, i) ∈ Σ is an execution prefix iff t (0) = (l`,m) for some memory state
m ∈ M, and for every j, s.t. 0 ≤ j < i, (t ( j ), t ( j+1)) ∈ TS(P). Intuitively, for an
execution prefix (t, i), the prefix of t up to position i is produced by starting in the
initial location in some memory state and making i steps through the program. A trace
(t, i) ∈ Σ is an execution postfix iff for every j ≥ i, (t ( j ), t ( j+1)) ∈ TS(P). We lift
the program transition relation to traces and paths. The transition relation on traces is
TΣ (P) = {((t, i), (t, i+1)) ∈ Σ×Σ | (t (i), t (i+1)) ∈ TS(P)}. The transition relation on paths
is TΠ (P) = {((p, i), (p, i+1)) ∈ Π × Π | (p(i), p(i+1)) ∈ E}.
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Non-termination analysis and set-of-states abstraction. For a set of traces S ⊆ Σ,
the closed subset LSM = {(t, i) ∈ S | ∀ j ≥ 0. (t, j) ∈ S}. That is, LSM is the largest subset
of S closed under shifting the position.

Given some set S0 and a transition relation T ⊆ S0 × S0, the post-condition and
pre-condition of a set S ⊆ S0 via T are the sets:

post(T, S) = {s′ ∈ S0 | ∃s ∈ S. (s, s′) ∈ T }, pre(T, S) = {s ∈ S0 | ∃s′ ∈ S. (s, s′) ∈ T }

For a program P, non-termination analysis of P is the greatest fixed point:

gfp⊆ λX .
(
(
⋃
{Σ |l for non-final l ∈ L}) ∩ pre(TΣ (P), X )

)
(1)

Lemma 1. For a program P the closed subset of its non-termination analysis gives the
set of all non-terminating semi-executions of the program.

Proof idea. Intuitively, non-termination analysis retains non-terminating execution post-
fixes. Taking closed subset keeps only the traces that also are execution prefixes: if (t, i)
is in the closed subset, then for every j, s.t., 0 ≤ j < i, (t, j) must be in the closed subset
and thus must be an execution postfix, i.e., (t, i) must be a semi-execution. ut

Note that usually, a pre-condition through the whole program is computed as a union
of pre-conditions through the program statements. This makes it hard to define a sound
computable non-termination analysis, since in most abstract domains it is hard to define
an under-approximate join operation.

For a set of traces S ⊆ Σ, the set-of-states abstraction αs (S) ∈ S collects current
program states of every trace: αs (S) = {s′ ∈ S | ∃(t, i) ∈ S. t (i) = s′}. The corresponding
concretization γs , for S′ ⊆ S produces the set of traces that have an element of S′ at
the current position: γs (S′) = {(t, i) ∈ Σ | t (i) ∈ S′}. For S′ ⊆ S, Lγs (S′)M = {(t, i) ∈
Σ | ∀ j ≥ 0. t ( j ) ∈ S′}. This is the set of traces that only visit program states from S′.

Existential recurrent set. For a program P, a set of program states S∃ ⊆ S is an
existential recurrent set if for every s ∈ S∃, s is not final and there exists s′ ∈ S∃, s.t.,
(s, s′) ∈ TS(P). Intuitively, this is a set of program states, from which the program may
run forever. Note that by this definition, an empty set is trivially existentially recurrent.
The authors of [13] use a similar (but stronger) notion of open recurrent set, requiring
that all the states in the open recurrent set are reachable. In this paper, by just recurrent
set we mean existential recurrent set.

Lemma 2. Set-of-states abstraction of non-termination analysis gives the largest exis-
tential recurrent set.

Proof idea. Intuitively a recurrent set S∃ is s.t. from every element of S∃ we can
start a non-terminating semi-execution that only visits elements of S∃. Non-termination
analysis produces the set of all non-terminating execution postfixes, and by applying
set-of-states abstraction to it, we produce the set of all program states from which we
can start a non-terminating semi-execution, i.e., the maximal recurrent set. ut

The problem of finding a recurrent set is a sub-problem of proving non-termination.
To prove non-termination (i.e., the existence of at least one non-terminating execution),
we would need to find a recurrent set and show that it is reachable from an initial state.
In this paper, though, we focus on finding a recurrent set only.
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Memory and path abstraction. From the set-of-states abstraction of an analysis, one
can produce a computable over-approximate analysis by performing further memory
abstraction, which is standard in abstract interpretation. We introduce memory abstract
domain Dm, with least element ⊥m, greatest element >m, partial order vm, and join tm.
Every element, or abstract memory state, a ∈ Dm represents a set of memory states
γm (a) ⊆ M. For the analysis of numeric programs, Dm can be a polyhedral domain
where an element is a conjunction of linear inequalities over the program variables.

We lift concretization to sets of abstract memory states: for A ⊆ Dm, γm (A) =⋃
{γm (a) | a ∈ A}. We introduce over-approximate versions of post, pre, and eval, s.t.

for a statement C ∈ C, an element a ∈ Dm, and a memory-state formula θ,

γm (postm (C, a)) ⊇ post(TM(C), γm (a)) evalm (θ, a) wK eval(θ, γ(a))
γm (prem (C, a)) ⊇ pre(TM(C), γm (a))

Normally, evalm is given for atomic formulas; for arbitrary formulas it is defined by
induction over the formula structure, using 3-valued logical operators, possibly over-
approximate w.r.t. vK . In this paper, wemake additional assumptions onDm.We assume
there exists meet operation, s.t., for a1, a2 ∈ Dm, a1 um a2 vm a1 and a1 um a2 vm a2.
This allows producing descending chains inDm and performing approximation of great-
est fixed points even with non-monotonic abstract transformers. If Dm admits infinite
descending chains, we assume there exists lower widening operation O

m
. Similarly, if

Dm admits infinite ascending chains, we assume there exists widening operation Om. To
produce a standard over-approximate analysis one transitions to the domain L → Dm,
where every element represents a set of program states partitioned with locations.

We are going to use trace partitioning and we take an additional step to introduce
what we call a path abstract domain Dp, with least element ⊥p, greatest element >p,
partial order vp, join tp and meet up. Every element, or abstract path, q ∈ Dp represents
a set of paths γp (q) ⊆ Π. We introduce over-approximate versions of post and pre, s.t.
for an edge e ∈ E and an element q ∈ Dp,

γp (postp (e, q)) ⊇ post(TΠ (P) |e, γp (q)) γp (prep (e, q)) ⊇ pre(TΠ (P) |e, γp (q))

where TΠ (P) |e = {((p, i), (p, i+1)) ∈ Π × Π | (p(i), p(i+1)) = e}, i.e., it restricts the
transition relation on paths to an edge e ∈ E. For our purposes, we also assume that Dp
is finite, and there exists abstraction function αp that, together with γp forms a Galois
connection betweenDp and P (Π). This allows to partition memory states with elements
of L ×Dp, similarly to how a standard analysis partitions memory states with locations.

Abstract domain of the analysis. Given a memory abstract domain Dm and path
abstract domain Dp with required properties, we can construct the abstract domain
D] ⊆ Dp ⇀ Dm (where ⇀ denotes a partial function). We require that every element
D ∈ D] is what we call reduced: for every q ∈ dom(D), q , ⊥p and D(q) , ⊥m;
and for every pair of abstract paths q1, q2 ∈ dom(D), q1 up q2 = ⊥p. Intuitively, D is a
collection of abstract memory states partitioned with disjoint abstract paths.
Idea of the construction. D] is ordered by v] point-wise, >] = {>p 7→ >m}, and ⊥] is
the empty partial function. For every partial function D′ :Dp ⇀ Dm, we can produce
a reduced element D ∈ D]: we remove “bottoms” and then repeatedly join the pairs
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from D′ (thinking of a function as of a set of pairs) that have non-disjoint abstract
paths. From this point, it is straightforward to construct join t] , abstract post-condition
post] (e, d), and abstract pre-condition pre] (e, d), e ∈ E and d ∈ D] . When taking meet
of D1, D2 ∈ D] , we meet the tuples from D1 and D2 pair-wise. As both D1 and D2 are
reduced, it follows that D1 u] D2 is reduced; and D1 u] D2 v] D1 and D1 u] D2 v] D2.
Widening and lower widening are defined point-wise.

Then, we transition from D] to Dl] = L → D] in which backward analysis is
performed. Such transition is standard in abstract interpretation (usually, it is from Dm
to L → Dm) and we do not describe it. We only note that in Dl] , the post-condition
postl] (P, · ) and pre-condition prel] (P, · ) are taken with respect to the whole program.
We prefer to think of an element Dl ∈ Dl] as of a collection of abstract program states
partitioned by location and abstract path.

3 Finding a Recurrent Set

In this section we describe the main analysis steps: a backward analysis for a candidate
recurrent set that is performed below the set of reachable states; followed by a forward
refinement step that produces a genuine recurrent set.

We start by performing a standard forward pre-analysis of the whole program P to
find the over-approximation of the set of reachable program states F ∈ Dl] . F is the
stable limit of the sequence of { f i }i≥0 where f0 = {l` 7→ >]; l , l` 7→ ⊥] }; for i ≥ 1,
f i = f i−1Ol] ( f i−1 tl] postl] (P, f i−1)); and Ol] is a widening operator.

3.1 Backward Analysis For a Candidate

Next, we perform approximate (possibly, over-approximate) backward analysis to find
candidate recurrent sets. We do it separately for every strongly connected sub-program
Ps that represents a loop of the original program P. More formally, we perform the
analysis for every strongly connected component [32] Ps = (Ls, ls`,Es, c |Es ) where
Ls ⊆ L; Es ⊆ (Ls × Ls ) ∩ E; |Ls | > 1 or (ls`, ls`) ∈ Es (i.e., the component represents
a loop in the program); c |Es is the restriction of c to the edges of Ps ; and ls` ∈ Ls is the
head of the strongly connected component which is usually selected as the first location
of the component encountered in P by a depth-first search. We can restrict the notion of
successors to a sub-program: for l ∈ Ls , succ(l) |Ps = {l

′ ∈ Ls | (l, l ′) ∈ Es }. Note that
since Ps is strongly connected, it does not have final locations.

For every strongly connected sub-program Ps , we find the candidate recurrent set
Ws ∈ Dl] as the stable limit of the sequence of elements {wi }i≥0 that approximates
non-termination analysis below F. Here, w0 = F |Ls (the restriction of F to the locations
of Ps); for i ≥ 1, wi = wi−1Ol] (wi−1 ul] prel] (Ps,wi−1)); and O

l] is a lower widening
operator. Note that we use over-approximate operations (join, backward transformers)
to compute Ws , and hence Ws may over-approximate non-termination analysis and
might not represent a genuine recurrent set. Although formally an element of Dl]
concretizes to a set of traces, we can think that Ws represents a candidate recurrent set
αs (γl] (Ws )) = {(l,m) ∈ S | ∃q ∈ Dp . m ∈ γm (Ws (l)(q))}. In the next step, we will
produce a refined element Rs vl] Ws representing a genuine recurrent set.
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In theory, a recurrent set does not have to be below F, but in practice, a combination
of backward and forward analyses is known to be more precise than just, e.g., backward
analysis [17], and we found that performing backward analysis below F (rather than
below>l]) better directs the search for a recurrent set. Intuitively, some information (e.g.,
conditions of assumption statements) is better propagated by forward analysis, and this
information may be important to find a genuine recurrent set. Another feature important
for precision is trace partitioning. We observe that for many imperative programs, non-
terminating executions take a specific path through the loop.Whenwe perform backward
analysis with trace partitioning, abstract memory states in Ws are partitioned by the path
through the loop that the program runwould take from them. If the path domain is precise
enough, s.t., (states, from which exist) non-terminating semi-executions get collected in
separate partitions, the analysis is more likely to find a genuine recurrent set.

3.2 Checking and Refining the Candidate

Approximate backward analysis for every strongly connected component Ps of the
original program, produces an elementWs ∈ Dl] , which represents a candidate recurrent
set. We use over-approximate operations (join, backward transformers) to compute Ws ,
and hence Ws may over-approximate non-termination analysis and might not represent
a genuine recurrent set. We refine Ws to a (possibly, bottom) element Rs vl] Ws

representing a genuine recurrent set of Ps and hence of the original program P. That
is, we produce such Rs that ∀s ∈ αs (γl] (Rs )). ∃s′ ∈ αs (γl] (Rs )). (s, s′) ∈ TS(Ps ). To
do so, we define a predicate CONT, s.t. for an abstract memory state a ∈ Dm, a set of
abstract memory states A ⊆ Dm, and an atomic statement C ∈ C, if CONT(a,C, A)
holds (we say that the run of the program can continue from a to A through C) then
∀m ∈ γm (a). ∃m′ ∈ γm (A). (m,m′) ∈ TM(C). We define CONT separately for different
kinds of atomic statements. In this paper, we consider numeric programs, which, apart
from passive and assumption statements, can use:
(i) a deterministic assignment x = expr, which assigns the value of an expression

expr to a program variable x;
(ii) a nondeterministic assignment, or forget operation, x = ∗, which assigns a non-

deterministically selected value to a program variable x.
For the memory abstract domain, let us introduce an additional coverage operation

v+m that generalizes abstract order. For an abstract memory state a ∈ Dm and a set
A ⊆ Dm, it should be that if a v+m A (we say that a is covered by A) then γm (a) ⊆
γm (A). For an arbitrary domain, coverage can be defined via Hoare order: a v+m A iff
∃a′ ∈ A. a vm a′. For a numeric domain, it is usually possible to define a more precise
coverage operation. For example, the Parma Polyhedra Library [6] defines a specialized
coverage operation for finite sets of convex polyhedra.

We define CONT as follows. For a ∈ Dm, A ⊆ Dm,
(i) For the passive statement skip, CONT(a, skip, A) ≡ a v+m A. Indeed, if a v+m A

then γm (a) ⊆ γm (A), and hence ∀m ∈ γm (a). ∃m′ = m ∈ γm (A). (m,m′) =
(m,m) ∈ TM(skip).

(ii) For an assumption statement [θ], CONT(a, [θ], A) ≡ evalm (θ, a) = 1 ∧ a v+m A.
Indeed, if evalm (θ, a) = 1, then γm (a) ⊆ JθK, and if additionally a v+m A then
∀m ∈ γm (a). ∃m′ = m ∈ γm (A). (m,m′) = (m,m) ∈ TM([θ]).
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(iii) For a nondeterministic assignment x = ∗, we use the fact that in many numeric
domains (including the polyhedral domain) the pre-condition of x = ∗ can be
computed precisely (via [24] cylindrification operation). That is, for a ∈ Dm,
γm (prem (x = ∗, a)) = {m ∈ M | ∃m′ ∈ γm (a). (m,m′) ∈ TM(x = ∗)}. In this case,
CONT(a, x = ∗, A) ≡ a v+m {prem (x = ∗, a′) | a′ ∈ A}.

(iv) Finally, for every other atomic statement C with left-total input-output relation
TM(C) (e.g., a deterministic assignment), CONT(a,C, A) ≡ postm (C, a) v+m A.
Indeed, in this case γm (A) ⊇ γm (postm (C, a)) ⊇ post(C, γm (a)). Since addition-
ally,TM(C) is left-total then for every m ∈ γm (a). ∃m′ ∈ γm (A). (m,m′) ∈ TM(C).

Another way to look at it is that (iv) represents a general case that allows handling
atomic statements with left-total input-output relations. Then, we specialize CONT
for non-deterministic statements and for statements with non-left-total input-output
relations. Case (iii) specializes CONT for non-deterministic assignments. It allows us to
detect a situation where there exists a specific non-deterministic choice (i.e., a specific
new value of a variable) that keeps the execution inside the recurrent set. Case (ii)
specializesCONT for assumption statements (with non-left-total input-output relations).
By extending the definition of CONT, we can extend our analysis to support more kinds
of atomic statements. Note that the predicate CONT is defined using operations that are
standard in program analysis.

Theorem 1. Let Rs ∈ Dl] be an element of Dl] and Ps be a sub-program. Let it be
that for every location l ∈ Ls , abstract path q ∈ Dp, and an abstract memory state
a ∈ Dm, s.t., Rs (l)(q) = a, there exists a successor location l ′ ∈ succ(l) |Ps , s.t.
CONT(a, c(l, l ′), {a′ | ∃q′ ∈ Dp . a′ = Rs (l ′)(q′)}). Then, Rs represents a recurrent set
of Ps and hence the whole program P.

Proof idea. The proof is a straightforward application of the definitions of CONT and
TS. Intuitively, if Rs ∈ Dl] satisfies the condition of the lemma, from every program
state in αs (γl] (Rs )) we can form a non-terminating semi-execution that only visits the
elements of αs (γl] (Rs )) – by executing the statements of Ps in a specific order. ut

Thus, in the refinement step, we start with an element Ws ∈ Dl] produced by the
backward analysis, and from every location l ∈ Ls , we repeatedly exclude the tuples
(q, a) ∈ Ws (l) that do not satisfy the condition of Theorem 1. Eventually, we arrive at an
element Rs vl] Ws that satisfies Theorem 1 and hence, represents a recurrent set. Note
that the refinement step that we implement in this paper is coarse. For some disjunct
(q, a) ∈ Ws (l), we either keep it unchanged or remove it as a whole. In particular,
an empty set is trivially recurrent, and it is still sound to produce Rs = ⊥l] . This is
acceptable, as the main purpose of the refinement step is to ensure soundness, and the
form of the recurrent set in our current implementation is inferred by the preceding
backward and forward analyses. Although, the analysis would benefit from the ability
to modify individual disjuncts during refinement (we leave this for future work).

Theorem 1 requires that for every location l ∈ Ls and abstract memory state a =
Rs (l)(q) (for some q ∈ Dp), there is at least one edge (l, l ′) ∈ Es , s.t., for every
program state s ∈ {(l,m) ∈ S | m ∈ γm (a)} there exists s′ ∈ {(l ′,m′) | ∃q ∈ Dp . m′ ∈
γm (Rs (l ′)(q))}, s.t. (s, s′) ∈ TS(Ps ). That is, for every abstract memory state in Rs , there
exists at least one edge, s.t. taking this edge from any corresponding concrete state keeps
the execution inside the recurrent set. This is viable in practice because of the choice of
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path domain Dp (which is described in the following section). Our path domain ensures
that at every branching point, backward analysis always partitions the memory states by
the branch that they are going to take at this branching point.

Finally, note that Theorem 1 can be used to find a recurrent set of the whole
program (not necessarily a strongly connected sub-program Ps) and this way, prove
non-termination. If γ] (Rs (l`)) , ∅, then there exists at least one non-terminating
program execution (a non-terminating semi-execution starting in the initial location).
Unfortunately, so far, we have not had practical success with this approach. Our path
domain Dp, while sufficient to capture non-terminating paths through loops (esp., non-
nested loops), is not precise enough to capture non-terminating paths through the whole
program. Thus, for practical reasons, we search for recurrent sets of individual loops and
assume that reachability analysis will be used to complete the non-termination proof.

3.3 Path Domain

For the path domain, in this paper, we use finite sequences of future branching choices. A
branching point is a location l ∈ L, s.t., there exists at least two edges from l. A branching
choice is an edge (l, l ′) ∈ E, s.t., l is a branching point. We denote the set of all branching
choices by Eb ⊆ E. For every non-bottom element q ∈ Dp, q is a finite sequence of
branching choices: q = 〈e0, e1, . . . , en〉 ∈ E∗b; top element >p is the empty sequence 〈〉;
and bottom is a distinguished element ⊥p < E∗b. E.g., for our running example in Fig. 1,
l2 is a branching point, and the branching choices are (l2, l3) and (l2, l4) For q1, q2 ∈ Dp,
q1 vp q2 if q1 = ⊥p or q2 is a prefix of q1. For q1, q2 ∈ Dp, join q1 tp q2 is q2 if q1 = ⊥p,
q1 if q2 = ⊥p, or the longest common prefix of q1 and q2 otherwise. For q1, q2 ∈ Dp,
meet q1up q2 = q1 if q1 vp q2, q2 if q2 vp q1, and⊥p otherwise. Additionally, we require
that every element q ∈ Dp is bounded, i.e., every branching choice e ∈ Eb appears in
q at most k times for a parameter k ≥ 1. For a sequence of branching choices q′ ∈ E∗

b

(or ∈ EN
b
), we can produce a bounded element bk (q′) ∈ Dp by keeping the longest

bounded prefix of the sequence. An element q = 〈e0, e1, . . . , en〉 ∈ E∗b represents the set
of paths γp (q) ⊆ Π, s.t. π = (〈l0, l1, . . .〉, i) ∈ γp (q) iff for j = 0..n, there exists a strictly
increasing sequence of indices {x j } : i ≤ x0 < . . . < xn , s.t., every π(x j ) is a branching
point, (π(x j ), π((x j )+1)) = e j , and for every index z, s.t. i ≤ z < xn , if z < {x j }, then π(z)
is not a branching point. Let us define a corresponding abstraction function. For a path
π = (〈l0, l1, . . .〉, i) ∈ Π and j ≥ 0 let {y j } be a strictly increasing sequence of indices
of branching points at or after position i: i ≤ y0 < y1 < . . ., every π(y j ) is a branching
point, and for every index z ≥ i, if z < {y j }, then π(z) is not a branching point. Then,
the abstraction of π is αp (π) = bk (〈(π(y0), π((y0)+1)), (π(y1), π((y1)+1)), . . .〉). For a set of
paths V , αp (V ) =

⊔
p{αp (π) | π ∈ V }. For an edge e ∈ E and q ∈ Dp, prep (e, q) = ⊥p

if q = ⊥p; bk (e · q) if q , ⊥p and e is a branching choice; and q otherwise. Here ·
denotes concatenation. Respectively, postp (e, q) = q′ if q = e · q′ for some q′ ∈ Dp; ⊥p
if q = e′ · q′ for some q′ ∈ Dp and e′ , e; >p if q = >p; and ⊥p if q = ⊥p.

Intuitively, an abstract path q ∈ Dp predicts a bounded number of branching choices
that an execution would make. For our running example in Fig. 1, if we take k = 1
then the abstraction of the infinite path 〈(l1, l2, l3)N〉 is 〈(l2, l3)〉. We observe that our
path domain works well for non-nested loops, and the bound k is the number of loop
iterations for which we keep the branching choices. In most our experiments, k = 1 or
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l1

l2

[0 ≤ x ≤ 100]

l3

y = ∗

x = x + y

Fig. 2. Loop that assigns a
non-deterministic value to a
variable in every iteration.

l1

l2

[x ≥ 0] x = x + y

Fig. 3. Loop that requires a
specific range of y for non-
termination.

1 if (a < b)
2 swap(a, b)
3 while (a , b) {
4 t = a − b;
5 a = b;
6 b = t;
7 }

Fig. 4. GCD algorithm with
an introduced bug.

2 was enough to find a recurrent set. Note that the forward transformer postp leaves >p
unchanged. Thus, our backward analysis does use trace partitioning, but the forward pre-
analysis does not (with the current path domain). The forward pre-analysis, is initialized
with f0 = {l` 7→ >]; l , l` 7→ ⊥] } where >] = {>p 7→ >m}, i.e., during the forward
pre-analysis, every location is mapped either to ⊥] or to {>p 7→ m} for some m ∈ Dm.

4 Examples of Handling Non-Determinism

In this section, we present numeric examples that demonstrate how different components
of the analysis (trace partitioning, CONT, lower widening) are important for different
kinds of non-terminating behaviors. In all examples, we assume that program variables
are unbounded integers, and the analysis uses the polyhedral domain [19]. In Examples
1-3, we focus on a single loop and ignore that it can be a part of a larger program: e.g.,
we omit the branch that exits a loop, although it would usually be present in a program.

Example 1 – Non-deterministic branches For the program in Fig 1, a non-terminating
execution in every iteration needs tomake the choice depending on the current value of x,
so that it does not go outside the range [0, 100]. This is captured by our path domain with
k = 1 (the bound on the occurrences of the same branching choice in the abstract path).
The first two steps (pre-analysis and backward analysis) yield the candidate recurrent
set Ws . We do not describe these steps in detail, but Ws (l1) = {〈(l2, l3)〉 7→ (0 ≤ x ≤
99); 〈(l2, l4)〉 7→ (1 ≤ x ≤ 100)}, Ws (l2) = Ws (l1), Ws (l3) = {〈(l2, l3)〉 7→ (1 ≤ x ≤
99); 〈(l2, l4)〉 7→ (1 ≤ x ≤ 100)}, and Ws (l4) = {〈(l2, l3)〉 7→ (0 ≤ x ≤ 99); 〈(l2, l4)〉 7→
(1 ≤ x ≤ 99)}. This can be interpreted as follows. If the execution is at location l1 and,
as the next branching choice, is going to increment x (by taking the edge (l2, l3)), then,
for the execution to not leave the loop, it must be that 0 ≤ x ≤ 99. Indeed, if x < 0,
the execution will not enter the loop, and if x > 99, the execution will exit the loop
after incrementing x. Similarly, if the execution is going to decrement x, it must be that
1 ≤ x ≤ 100. That is, if the execution is at location l1, and 0 ≤ x ≤ 100, there exists a
branching choice at location l2 that keeps x in range [0, 100]. This way we can construct
a non-terminating execution. Note that Ws represents a genuine recurrent set, and the
final (refinement) step of the analysis yields Rs = Ws .

Example 2 –Non-deterministic assignment in the loopFig. 2 shows a loop that in every
iteration, first assigns a non-deterministic value to y and then adds it to x. Intuitively, if at
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location l1 x is in range [0, 100], then for the edge (l2, l3), there is always a choice of y, s.t.
x+y is still in the range [0, 100]. This way, we can construct a non-terminating execution.
The way we specialize the predicate CONT to non-deterministic assignments allows us
to handle such cases. The first two steps (pre-analysis and backward analysis) yield the
candidate recurrent set Ws , s.t. Ws (l1) = {〈〉 7→ (0 ≤ x ≤ 100)}, Ws (l2) = Ws (l1) ,
and Ws (l3) = {〈〉 7→ (0 ≤ x ≤ 100 ∧ 0 ≤ x+ y ≤ 100)}. We show that Ws satisfies
Theorem 1 and thus represents a genuine recurrent set. Indeed. For location l1, the
successor location is l2, and (0 ≤ x ≤ 100) satisfies the memory-state formula of
the assumption statement that labels (l1, l2). That is, for every state at location l1 with
0 ≤ x ≤ 100, we will stay in the recurrent set after executing the assumption statement.
This corresponds to case (ii) of the predicate CONT. For location l2, the successor
location is l3 and c(l2, l3) is the non-deterministic assignment y = ∗. Note that for every
value of x it is possible to choose a value of y, s.t. 0 ≤ x+ y ≤ 100 holds. Or, more
formally, prem (y = ∗, (0 ≤ x ≤ 100 ∧ 0 ≤ x+ y ≤ 100)) = (0 ≤ x ≤ 100) which
corresponds to case (iii) of the predicate CONT. Finally, for location l3, the successor
location is l1 and c(l3, l1) is x = x+ y. Also, postm (x = x + y, (0 ≤ x ≤ 100 ∧ 0 ≤
x+y ≤ 100)) = (0 ≤ x−y ≤ 100 ∧ 0 ≤ x ≤ 100) v (0 ≤ x ≤ 100) which corresponds
to case (iv) of the predicate CONT. Therefore, Ws represents a genuine recurrent set,
and the final step of the analysis yields Rs = Ws .

Example 3 – Non-deterministic assignment before the loop Fig. 3 shows a loop that
in every iteration adds y to x. Both x and y are not initialized before the loop, and are
thus assumed to take non-deterministic values. If at location l1, x ≥ 0 and y ≥ 0, it is
possible to continue the execution forever. Let us see how the constraint y ≥ 0 can be
inferred with lower widening. For this program, the pre-analysis produces the invariant
F, s.t., F (l1) = {〈〉 7→ >}, and F (l2) = {〈〉 7→ x ≥ 0}. Then, consider a sequence
of approximants {wi }i≥0 where w0 = F and for i ≥ 1, wi = wi−1 ul] prel] (P,wi−1)
which corresponds to running the backward analysis without lower widening. Then,
we will observe that the i-th approximant at location l1 represents the condition that
ensures that the execution will make at least i iterations through the loop. For i ≥ 0,
let w′i = wi (l1)(〈〉). Then, w′0 = >, w

′
1 = x ≥ 0, w′2 = (x ≥ 0 ∧ x + y ≥ 0),

w′3 = (x ≥ 0 ∧ x+2y ≥ 0), w′4 = (x ≥ 0 ∧ x+3y ≥ 0), and so on. That is, for
i ≥ 1, w′i = (x ≥ 0 ∧ x + iy ≥ 0) (a polyhedron with a “rotating” constraint), and we
would like a lower widening technique that would produce an extrapolated polyhedron
(x ≥ 0∧ y ≥ 0) which is the limit of the chain {w′i }i≥0. Notice how this limit is below w′i
for every i ≥ 0. This explains why we use lower widening (and not, e.g., narrowing) to
ensure convergence of the backward analysis. Here, we use lower widening as proposed
by A. Miné [30]. Intuitively, it works by retaining stable generators (which can be
seen as dual to standard widening that retains stable constraints). Additionally, we use
widening delay of 2 and a technique of threshold rays (also described in [30]), adding
the coordinate vectors and their negations to the set of thresholds. Alternatively, instead
of using threshold rays, one could adapt to lower widening the technique of evolving
rays [7]. This allows the backward analysis to produce the extrapolated polyhedron
(x ≥ 0 ∧ y ≥ 0). Eventually, backward analysis produces the candidate Ws where
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Ws (l1) = {〈〉 7→ (x ≥ 0 ∧ y ≥ 0)} and Ws (l2) = Ws (l1). Ws represents a genuine
recurrent set, and the final (refinement) step of the analysis yields Rs = Ws .

Example 4 This example is a program “GCD” from the test set [3] of Invel [35]. The
program given in pseudocode in Fig. 4 is based on the basic algorithm that computes
the greatest common divisor of two numbers: a and b – but has an introduced bug
that produces non-terminating behaviors. For the loop in this program, our analysis
(with k = 2) is able to show that if at line 3, it is the case that (a > b ∧ a > 2b) or
(b > a∧2b > a), the execution will never terminate andwill alternate between these two
regions. This example demonstrates how the interaction between the components of the
analysis allows finding non-trivial non-terminating behaviors. In a program graph, the
condition a , bwill be represented by a pair of edges, labelled by assumption statements:
[a > b] and [a < b]. Thus, these assumption statements become branching choices at
line 3. Then, the path domain (with k at least 2) allows the analysis to distinguish the
executions that alternate between these two assumption statements for the first k loop
iterations. By doing numeric reasoning, one can check that there exist non-terminating
executions that alternate between the two assumption statements indefinitely.

The example also demonstrates a non-trivial refinement step. At line 3, backwards
analysis actually yields two additional disjuncts, one of those being (a > b ∧ 2b >
a ∧ 3b − a > 4). These are the states that take the branching choice [a > b] for at
least two first loop iterations. But from some of the concrete states in the disjunct, e.g.,
(a = 6, b = 4), the loop eventually terminates. As currently implemented, the refinement
step has to remove the whole disjunct from the final result.

Finally, note how for this example, recurrent set cannot be represented by a sin-
gle convex polyhedron (per program location). Our approach allows to keep multiple
polyhedra per location, corresponding to different abstract paths.

To summarize, the components of the analysis are responsible for handling differ-
ent features of non-terminating executions. Trace partitioning allows predicting paths
that non-terminating executions take; predicate CONT deals with non-deterministic
statements in a loop; lower widening infers the required values of variables that are
non-deterministically set outside of a loop.

5 Experiments

Our prototype implementation supports numeric programs (with some restrictions) and
uses the product of polyhedra and congruences (via Parma Polyhedra Library [6]) as the
memory domain. We applied our tool to the test set [3] of Invel [35], to non-terminating
programs from SV-COMP 2015 [4] termination category (manually converted to our

This paper AProVE Automizer HipTNT+ SAS15
Tot. OK M U X OK ? X OK X OK X OK ? X

Invel 53 46 5 2 - 51 - 2 - - - - 39(+1) 1 13(+12)
SVCOMP 44 32 - 9 3 30(+6) 4 10(+6) 37(+11) 7(+6) 35(+7) 9(+4) - - -

Table 1. Experimental results
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tool’s input language), and additionally, to a set of non-deterministic numeric programs
that we produced ourselves (all test programs are non-terminating, i.e., every program
has at least one non-terminating behavior). Table 1 summarizes the results for the Invel
and SV-COMP non-terminating programs and compares our tool to 3 existing tools:
AProVE [20], Automizer [22], and HipTNT+ [27], and additionally to the authors’
previous work on finding universal recurrent sets with forward analysis [8], column
“SAS15”. For Automizer and HipTNT+, we do not have the results for Invel programs,
and for [8], there are no results for SV-COMP benchmarks. For AProVE, we give results
for Invel programs as reported by [12] and for SV-COMP programs, as reported by the
Non-Termination competition 2015 [5] (the version of AProVE that participated in SV-
COMP did not include a non-termination prover for C programs). For our tool, column
“OK” is the number of programs for which our tool finds a recurrent set. In most cases
k = 1 or 2 was enough to find a recurrent set. In some cases, we need k = 4. The sets
were later checkedmanually for reachability. Most test programs consist of a single non-
terminating loop and a stem that gives initial values to program variables; and to check
reachability, we only needed to intersect the inferred recurrent set with the produced
set of initial states. Column“M” is the number of programs that originally fall outside
of the class that our tool can handle, but after we introduced small modifications (e.g.,
replaced a non-linear condition with an equivalent linear one), our tool finds a recurrent
set for them. Column “U” is the number of programs for which no recurrent set could
be found due to technical limitations of our tool that does not support arrays, pointers,
some instances of modular arithmetic, etc. Column “X” is the number of programs
for which no recurrent set could be found for other reasons. This is usually due to
overly aggressive lower widening, which could be improved in the future by introducing
relevant widening heuristics. Note that our tool always terminates, i.e., failure means
that it produced an empty recurrent set. For the other tools, the columns “OK” and “X”
give the number of programs for which the tools were able, and respectively failed to
prove non-termination. In brackets, we give the number of programs for which our tool
gives the opposite outcome. Column “?” gives the number of programs for which we
did not find reported results.

Table 1 should not be interpreted as a direct comparison of our tool or approach with
the other tools. On one hand, our results are not subsumed by other tools, and we were
able to find recurrent sets for some programs, where other tools failed to prove non-
termination. On the other hand, the tools prove different things about the programs. Our
tool finds recurrent sets of loops; AProVE and Automizer prove the existence of at least
one non-terminating execution; the analysis of [8] and HipTNT+ (to our knowledge)
prove that from some initial states, all executions are non-terminating. Also, the analysis
of [8] is not optimized for numeric programs: e.g., it uses interval domain, while the
analysis that we present uses the more expressive polyhedral domain.

6 Related Work

The idea of proving non-termination by looking at paths of a certain form appears in
multiple existing approaches. An early analysis by Gupta et al. [21] produces proofs
of non-termination from lasso-shaped symbolic executions using Farkas’ lemma. Au-
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tomizer [22, 23] decomposes the original program into a set of lasso-programs (a stem
and a loop with no branches) to separately infer termination or non-termination [28]
arguments for them. AProVE [20] implements a range of techniques. One of those [12],
from a set of paths through a loop, produces a formula that is unsatisfiable if there is a set
of states that cannot be escaped by following these paths. In a similar way, our approach
uses trace partitioning to identify a path through a loop that a non-terminating execution
takes. This does not have to be the same path segment repeated infinitely often, but may
be an alternation of different segments. We see a strength of our approach in that it is
parameterized by a path domain. That is, the partitioning scheme can be improved in
future work and/or specialized for different classes of programs.

Chen et al. [13] use a combination of forward and backward analysis, but in a
different way.With forward analysis, they identify terminating abstract traces; then using
backward analysis over a single trace, they restrict the program (by adding assumption
statements) to remove this trace. In contrast, our approach uses backward analysis to
produce a candidate recurrent set, by computing an approximation of its fixed point
characterization. Then, they show that the restricted program has at least one execution
(non-terminating by construction). This is similar to the final step of our analysis.

A number of approaches prove that from some input states, a program does not have
terminating behaviors (in contrast to proving the existence of at least one non-terminating
behavior). That is, they find a set of states fromwhich a program cannot escape. This can
be done using Farkas’ lemma [14], forward [8] or backward [34] abstract interpretation
based analysis, or by encoding the search as amax-SMT problem [26]. Le et al. propose a
specification logic and an inference algorithm [27] (implemented in HipTNT+) that can
capture the absence of terminating behaviors. Invel [35] uses a template and a refinement
scheme to infer invariants proving that final states of a program are unreachable.

A distinctive approach implemented in E-HSF [10] allows to specifying the seman-
tics of programs and expressing verified properties (including the existence of different
kinds of recurrent sets) in the form of ∀∃ quantified Horn clauses.

Finally, [29] presents a different formalization of trace partitioning (in the context
of standard forward analysis), and [18] – of trace semantics.

7 Conclusion and Future Work

We proposed an analysis that finds existential recurrent sets of the loops in imperative
programs. The analysis is based on the combination of forward and backward abstract
interpretation and an important technique that we use is trace partitioning. To our
knowledge, this is the first application of trace partitioning to backward analysis. The
implementation of our approach for numeric programs demonstrated results that are
comparable to those of state-of-the-art tools. As directions of future work we see: first,
to develop a more precise path domain. Having a domain that can represent, e.g., lasso-
shaped paths would allow better handling of nested loops and extending our technique
to proving non-termination (rather than finding recurrent sets). Second, to extend our
prototype to support additional memory domains (e.g., for shape analysis). Finally, the
analysis of numeric programs will benefit from a specialized numeric refinement step.
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