
Definable Model Classes in
Polynomial Coalgebraic Logic

Rob Goldblatt

Victoria University of Wellington

Workshop on Coalgebraic Logic, Oxford, August 2007

Coalgebraic Logic, Oxford ’07 1 / 37



Theme:

Lift ideas and results from

propositional modal logic

to
polynomial coalgebraic logic.

Issue:
how to handle infinite sets of “observables” ?
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T -Coalgebras

T : Set → Set is a functor on the category Set of sets and functions

Definition
A T -coalgebra (A,α) is given by a function of the form

A
α // TA

A is the state set

α is the transition structure.
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Morphism of T -Coalgebras

(A,α)
f

// (B, β)

given by a function f for which

A
f

//

α

��

B

β
��

TA
Tf

// TB

β ◦ f = Tf ◦ α
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Polynomial functors T : Set → Set

constructed from
the identity functor Id : A 7→ A and/or

constant functors D̄ : A 7→ D, by forming

products T1 × T2 : A 7→ T1A× T2A,

coproducts (disjoint unions) T1 + T2 : A 7→ T1A+ T2A,

exponential functors TD : A 7→ (TA)D

with constant exponent D.

Definition

Polynomial coalgebras A
α−→ TA have polynomial T .
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Syntax for polynomial T

Notation:

M : S

means M is a term of type S, with S a component functor of T .

Definition of Terms for T

Variables: v : S any S

Constants: c : D̄, if c ∈ D (observable elements)

State Parameter: s : Id (one only)

Transition: tr(M) : T , if M : Id ...over
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... continued

Products: 〈M1,M2〉 : S1 × S2, if Mj : Sj

πjM : Sj , if M : S1 × S2

Exponentials: λvM : SD, if v : D̄ and M : S

M(N) : S, if M : SD and N : D̄

Coproducts: ιjM : S1 + S2, if M : Sj

[case N of v1 in M1 or v2 in M2] : S if N : S1 +S2, vj : Sj , Mj : S
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Semantics of Terms

In a T -coalgebra (A,α),

the denotation/ interpretation of a term M : S with free variables
v1 : S1,. . . , vn : Sn, is a function

[[M ]]α : A× S1A× · · · × SnA→ SA.

Definition
ground term: has no free variables

[[M ]]α : A→ SA.

Example

[[ tr(s) ]]α is A
α−→ TA.
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Ground observable (GO) term:
a ground term of “observable” type D̄, some D.

Ground equation:

M1 ≈M2

with M1,M2 ground terms of same type.

Truth-sets of ground equations:

‖M1 ≈M2‖α

is the set
{x ∈ A : [[M1 ]]α(x) = [[M2 ]]α(x)}

of all states in coalgebra (A,α) at which the equation M1 ≈M2 is true.
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Ground formula:
built from ground equations by logical connectives ¬, ∧.

‖¬ϕ‖α = A− ‖ϕ‖α

‖ϕ1 ∧ ϕ2‖α = ‖ϕ1‖α ∩ ‖ϕ2‖α.

Truth/satisfaction relation:
α, x |= ϕ means x ∈ ‖ϕ‖α.
α |= ϕ means ‖ϕ‖α = A.

Ground observable (GO) formula:
built from equations between GO terms.
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GO formulas
polynomial coalgebras

=
equations

abstract algebras

The GO terms and formulas provide a natural language for

specifying properties of polynomial coalgebras.

characterizing morphisms in terms of term-value preservation.

characterizing the bisimilarity relation of observational
indistinguishability of states by satisfaction of the same formulas
(Hennessy-Milner property).
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Modally Definable Classes of Kripke Frames

Theorem
Let K be a class of Kripke frames that is closed under ultrapowers.
Then K is modally definable iff it is

closed under subframes, p-morphic images and disjoint unions;

and
its complement is closed under ultrafilter extensions
(i.e. it reflects ultrafilter extensions).

Note:
can weaken

K is closed under ultrapowers

to

K is closed under ultrafilter extensions, because . . .
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the ultrafilter extension ueF of frame F is a p-morphic image of a
suitably saturated ultrapower of F :

FI/U

Φ

����

F
==

=={{{{{{{{{{{{{{
// // ueF

Φ : fU 7→ {X ⊆ F : f ∈U X}
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Venema’s analogue for Kripke models

Theorem
A class of Kripke models is modally definable iff it is

closed under images of bisimulation relations and disjoint unions,

and

is invariant under ultrafilter extensions.

Note:
here can replace

invariance under ultrafilter extensions

by

invariance under ultrapowers.
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Observational Ultrapowers
Let U be an ultrafilter on a set I.

Given T -coalgebra A α−→ TA, we construct α+ : A+ → T (A+),
an “observational ultrapower” of α with respect to U .

The state set of α+ is a sub-quotient of the I-th power AI of A.

Key Requirements:
Every GO formula valid in α is valid in α+.
If every GO formula valid in α is valid also in coalgebra β, then β is
a bisimilarity image of α+, i.e. each state of β is bisimilar to a state
of α+.

For suitably chosen U , α+ is sufficiently “saturated” to make this work,
and leads to the following co-Birkhoff Theorem for polynomial
coalgebras.
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Theorem
Let T be polynomial with an observable component D̄ having |D| ≥ 2.

For any class K of T -coalgebras, the following are equivalent.

1 K is GO-definable,
i.e. is the class of all models of some set of GO formulas.

2 K is closed under coproducts (disjoint unions), images of
bisimulations, and observational ultrapowers.

3 K is closed under coproducts, domains and images of
T -morphisms, and observational ultrapowers.

Note:
can replace closure under observational ultrapowers here by
closure under certain (definable) ultrafilter extensions.
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Standard Ultrapowers:

AU is the quotient AI/=U , where

f =U g iff {i ∈ I : f(i) = g(i)} ∈ U.

f =U g means that f and g agree “almost everywhere”.

fU := the equivalence class of f .

AU = {fU : f ∈ AI}.

A natural embedding eA : A� AU allows us to assume A ⊆ AU .

Liftings:

Any map A1 × · · · ×An
θ−→ B has a U -lifting

AU
1 × · · · ×AU

n
θU

−→ BU .
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Problem:

A T -coalgebra
A

α−→ TA

has the U -lifting

AU αU

−−→ (TA)U ,

but a T -coalgebra based on AU should look like

AU → T (AU ).
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Solution:

Restrict αU to the subset A+ ⊆ AU of elements fU that are
“observable”.

Idea:
For a GO term M : D̄, the α-denotation

[[M ]]α : A→ D

has the U -lifting [[M ]]Uα : AU → DU .

Since D ⊆ DU , we ask does [[ M ]]Uα (fU) ∈ D ?
If YES for all M , put fU in A+.

Example
every member of A is observable, so A ⊆ A+.
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Defining the transition structure α+ : A+ → TA+:

an intricate analysis of the components involved in the inductive
formation of functor T .

A path

T
p
− S

from T to a component functor S is a finite list of symbols
expressing the way T is formed from S.

A path induces a partial function

pA : TA◦ // SA

for each set A.
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Definition

T
〈〉
− T is the empty path.

from Tj

p
− S form T1 × T2

πj .p
− S for j = 1, 2.

from Tj

p
− S form T1 + T2

εj .p
− S for j = 1, 2.

from T
p
− S form TD

evd.p
− S for all d ∈ D.
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A //
eA //

◦

pA◦α

��

A+
◦

(pA◦α)+

��

� � // AU
◦

(pA◦α)U

��

SA
SeA // SA+ (SA)U◦oooo

When p = the empty path T− T , get

A //
eA //

α

��

A+

α+

��

� � // AU

αU

��

TA
TeA // TA+ (TA)U◦oooo

defining α+.
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Łoś-type Theorem

α+, fU |= ϕ if, and only if, {i ∈ I : α, f(i) |= ϕ} ∈ U.

Proof method:
an analysis for each term M : S of the relationship between the
U -lifting

[[M ]]Uα : AU −→ (SA)U

of the α-denotation
[[M ]]α : A −→ SA

and its α+-denotation

[[M ]]α+ : A+ −→ SA+.

Corollary

α |= ϕ if, and only if, α+ |= ϕ.
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Observational Ultraproducts

Given T -coalgebras {(Ai, αi) : i ∈ I}, define a T -coalgebra

ΠUA
+
i

α+

−−→ T (ΠUA
+
i )

whose states are “observable” members of the ultraproduct ΠUAi

Łoś:
{i ∈ I : αi |= ϕ} ∈ U implies α+ |= ϕ,

and conversely if ΠUA
+
i = ΠUAi.

(Converse does hold for ultrapowers.)

NB: could have ΠUA
+
i = ∅
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Example
T = ω̄

(An, αn) is the ω̄-coalgebra

{n, n+ 1, . . . } ↪→ ω.

ΠUA
+
n = ∅ whenever U non-principal.
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Compactness Property:

Possible definitions

a set of formulas has a non-empty model whenever each of its
finite subsets does.

a set of formulas is satisfiable at some state whenever each of its
finite subsets is.

Both of these fail for
{tr(s) 6≈ n : n ∈ ω}

with T = ω̄.

Theorem
If every observational ultraproduct of nonempty T -coalgebras is
nonempty, then Compactness does hold for T .
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Ultrafilter Enlargements

Definitions
An ultrafilter F on the state set of (A,α) is observationally rich if
for each GO term M : D̄ there exists some c ∈ D such that

‖M ≈ c‖α = {x ∈ A : [[M ]]α(x) = c} ∈ F,

i.e. every GO term takes a constant value on an F -large set.

The ultrafilter enlargement of (A,α) is a coalgebra

A∗ α∗
−→ TA∗,

whose state set A∗ is the set of all rich ultrafilters on A.

The definition of α∗ involves path functions, similarly to α+.
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Example
Every principal ultrafilter on A is rich, giving an embedding

ηA : (A,α)� (A∗, α∗)

that is a coalgebraic morphism (contra the modal case!)

Truth Lemma
For each GO formula ϕ,

α∗, F |= ϕ if, and only if, ‖ϕ‖α ∈ F

i.e. ϕ is true at state F in A∗ iff true in an “F -large” set of states in A.

Corollary

α |= ϕ if, and only if, α∗ |= ϕ.
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(A∗, α∗) as a quotient of some (A+, α+)

ΦU : A+ → A∗ acts by fU 7→ {X ⊆ A : f ∈U X}.

ΦU is a coalgebraic morphism (A+, α+) → (A∗, α∗).

ΦU is surjective if AU enlarges A:

every collection of subsets of A with the finite intersection
property has non-empty intersection in AU .
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Definable Ultrafilter Enlargements

Def α = {‖ϕ‖α : ϕ is GO}
is the Boolean algebra of definable subsets of A.

The definable enlargement Aδ αδ

−→ TAδ of (A,α) has

Aδ = the set of all rich ultrafilters in Def α

αδ, F |= ϕ if, and only if, ϕα ∈ F .

α |= ϕ if, and only if, αδ |= ϕ.

There is an epimorphism α∗ � αδ.
αδ is isomorphic to the bisimilarity quotient of α∗.
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Infinitary Proof Theory

Path formulas
Halting formulas:

for any path T
p
− S there is a formula p↓ with

α, x |= p↓ iff α(x) ∈ Dom pA

Observation formulas:
for any path T

p
− D̄ and c ∈ D there is a formula (p)c with

α, x |= (p)c iff α(x) ∈ Dom pA and pA(α(x)) = c.

Modalities:
for any path T

p
− Id and formula ϕ there is a formula [p]ϕ with

α, x |= [p]ϕ iff α(x) ∈ Dom pA implies α, pA(α(x)) |= ϕ.
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Deducibility Relation Γ `T ϕ

defined syntactically using axioms and infinitary rules, e.g.

¬(p)c for all c ∈ D
¬(p↓)

ψ → [q]¬(p)c for all c ∈ D
ψ → [q]¬(p↓)

Γ is T -consistent if Γ 0T ⊥.

Γ is T -maximal if it is consistent, negation complete, and closed
under certain infinitary rules.

Example
For any α, x,

{ϕ : α, x |= ϕ} is T -maximal.

Completeness (i.e. “consistent implies satisfiable”) depends on
some cardinality constraint, as with ω-logic.
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Lindenbaum Functors

Definition
T is Lindenbaum if every T -consistent set of formulas can be extended
to a T -maximal set.

Lemma
T is Lindenbaum if any of the following hold:

1 T has no constant component D̄, or

2 Every constant component D̄ has D finite, or

3 Any exponential component SD of T has countable exponent D.
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Example
Let T = ω̄R.

There is a set Σ of formulas such that

Σ is T -consistent.

Σ is not satisfiable at any state of any T -coalgebra.

– hence Completeness fails.

every countable subset of Σ is satisfiable.

Theorem
If T is Lindenbaum, then every T -consistent set of formulas is
satisfiable in a T -coalgebra.
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Canonical T -coalgebra

AT
αT−−→ T (AT )

AT is the set of all T -maximal sets.

Truth Lemma: αT , x |= ϕ iff ϕ ∈ x.

If T is Lindenbaum, then every T -consistent set is satisfiable.

(AT , αT ) is a final coalgebra.

x 7−→ {ϕ : α, x |= ϕ}

is the unique morphism from any (A,α) to (AT , αT ).
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Questions

Can this theory be extended to finitary Kripke polynomial functors,
involving Pω ?

is there a universal property characterising observational
ultraproducts ?
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