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Theme:

Lift ideas and results from

@ propositional modal logic

to
@ polynomial coalgebraic logic.
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Theme:

Lift ideas and results from

@ propositional modal logic
to
@ polynomial coalgebraic logic.

Issue:
how to handle infinite sets of “observables” ? J
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T-Coalgebras

T : Set — Set is a functor on the category Set of sets and functions

Definition
A T-coalgebra (A, «) is given by a function of the form

A—25TA

@ A is the state set

@ « is the transition structure.
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Morphism of T-Coalgebras

(4,0) =L (B, 8)

given by a function f for which

A—1p

| L, L

TA——TB

Bof=Tfoa
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Polynomial functors T : Set — Set
constructed from
@ the identity functor Id: A+— A and/or
@ constant functors D : A+ D, by forming
@ products T) x Ty : A Th1A x ThA,
@ coproducts (disjoint unions) 77 +T»: A— Th1 A+ T5A,

@ exponential functors 77 : A+ (TA)P
with constant exponent D.
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Polynomial functors T : Set — Set
constructed from
@ the identity functor Id: A+— A and/or
@ constant functors D : A+ D, by forming
@ products T) x Ty : A Th1A x ThA,
@ coproducts (disjoint unions) 77 +T»: A— Th1 A+ T5A,

@ exponential functors 77 : A+ (TA)P
with constant exponent D.

Definition
Polynomial coalgebras A = TA have polynomial 7.
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Syntax for polynomial T

Notation:
M:S

means M is a term of type S, with .S a component functor of T'.
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Syntax for polynomial T

Notation:
M:S

means M is a term of type S, with S a component functor of T

Definition of Terms for T'

@ Variables: wv:S any S
@ Constants: c¢: D, if c € D (observable elements)

@ State Parameter: s:1Id (one only)

@ Transition: tr(M): T, if M :1d ...over
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... continued
@ Products: (Ml,M2> 3 Sl X SQ, if Mj 3 Sj
WjM:Sj, ifM:Sl><52
@ Exponentials: MM :SP, ifv:DandM:S
M(N):S, ifM:SPand N:D
@ Coproducts: ;M : 81+ Sy, itM:S;
[caseNofv1 in My or vg in MQ] : S if N:Sl+SQ,Uj : Sj,Mj : S
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Semantics of Terms

In a T-coalgebra (A, o),

the denotation/ interpretation of a term M : S with free variables
v1 : S1,..., Up 1 Sy, is a function

[IM]o:Ax S1Ax - xS, A— SA.
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Semantics of Terms
In a T-coalgebra (A, o),

the denotation/ interpretation of a term M : S with free variables
v1 : S1,..., Up 1 Sy, is a function

[IM]o:Ax S1Ax - xS, A— SA.

Definition
ground term: has no free variables

[M]o:A— SA.

Example
[tr(s)]a is A TA.
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Ground observable (GO) term:
a ground term of “observable” type D, some D. J
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Ground observable (GO) term:
a ground term of “observable” type D, some D.

Ground equation:

Mleg

with My, M> ground terms of same type.
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Ground observable (GO) term:
a ground term of “observable” type D, some D.

Ground equation:
Ml ~ M2

with My, M> ground terms of same type.

Truth-sets of ground equations:
My ~ M|

is the set
{zeA:[M]a(r) =[M]a()}
of all states in coalgebra (A, «) at which the equation M; ~ M is true.
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Ground formula:
built from ground equations by logical connectives —, A.

=l = A = {lel|

o1 Aol = lloall* N flep2l|*
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Ground formula:
built from ground equations by logical connectives —, A.

=l = A = {lel|

o1 Aol = lloall* N flep2l|*

Truth/satisfaction relation:
@ a,xf¢ means z € |p]“
@ alEy means |¢|*=A.
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Ground formula:
built from ground equations by logical connectives —, A.

=l = A = {lel|
o1 Aol = lloall* N flep2l|*

Truth/satisfaction relation:
@ a,xf¢ means z € |p]“
@ alEy means |¢|*=A.

Ground observable (GO) formula:
built from equations between GO terms.
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GO formulas _ equations
polynomial coalgebras  abstract algebras

The GO terms and formulas provide a natural language for

@ specifying properties of polynomial coalgebras.
@ characterizing morphisms in terms of term-value preservation.

@ characterizing the bisimilarity relation of observational
indistinguishability of states by satisfaction of the same formulas
(Hennessy-Milner property).
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Modally Definable Classes of Kripke Frames
Theorem

Let K be a class of Kripke frames that is closed under ultrapowers.
Then K is modally definable iff it is

@ closed under subframes, p-morphic images and disjoint unions;
and

@ jts complement is closed under ultrafilter extensions
(i.e. it reflects ultrafilter extensions).
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Modally Definable Classes of Kripke Frames
Theorem

Let K be a class of Kripke frames that is closed under ultrapowers.
Then K is modally definable iff it is

@ closed under subframes, p-morphic images and disjoint unions;
and

@ jts complement is closed under ultrafilter extensions
(i.e. it reflects ultrafilter extensions).

Note:
can weaken

@ K is closed under ultrapowers
to

@ K is closed under ultrafilter extensions,

because ...
v
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the ultrafilter extension ueF of frame F is a p-morphic image of a
suitably saturated ultrapower of F:

Fju

F ———ueF

o: Y {XCF:fey X}

Coalgebraic Logic, Oxford '07
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Venema'’s analogue for Kripke models

Theorem
A class of Kripke models is modally definable iff it is

@ closed under images of bisimulation relations and disjoint unions,

and

@ /s invariant under ultrafilter extensions.
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Venema'’s analogue for Kripke models

Theorem
A class of Kripke models is modally definable iff it is

@ closed under images of bisimulation relations and disjoint unions,
and

@ /s invariant under ultrafilter extensions.

Note:
here can replace

@ invariance under ultrafilter extensions
by

@ invariance under ultrapowers.
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Observational Ultrapowers
Let U be an ultrafilter on a set 1.

Given T-coalgebra A < T A, we construct o™ : AT — T(A"),
an “observational ultrapower” of a with respect to U.

The state set of ot is a sub-quotient of the I-th power A’ of A.
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Observational Ultrapowers
Let U be an ultrafilter on a set 1.

Given T-coalgebra A < T A, we construct o™ : AT — T(A"),
an “observational ultrapower” of a with respect to U.

The state set of ot is a sub-quotient of the I-th power A’ of A.

Key Requirements:
@ Every GO formula valid in « is valid in a.

@ If every GO formula valid in « is valid also in coalgebra 3, then g is
a bisimilarity image of a*, i.e. each state of 3 is bisimilar to a state

of a™. )
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Observational Ultrapowers
Let U be an ultrafilter on a set 1.

Given T-coalgebra A < T A, we construct o™ : AT — T(A"),
an “observational ultrapower” of a with respect to U.

The state set of ot is a sub-quotient of the I-th power A’ of A.

Key Requirements:
@ Every GO formula valid in « is valid in a.

@ If every GO formula valid in « is valid also in coalgebra 3, then g is
a bisimilarity image of o, i.e. each state of 3 is bisimilar to a state
of at.

v

For suitably chosen U, ot is sufficiently “saturated” to make this work,
and leads to the following co-Birkhoff Theorem for polynomial
coalgebras.

Coalgebraic Logic, Oxford ‘07 16/37



Observational Ultrapowers
Let U be an ultrafilter on a set 1.

Given T-coalgebra A < T A, we construct o™ : AT — T(A"),
an “observational ultrapower” of a with respect to U.

The state set of ot is a sub-quotient of the I-th power A’ of A.

Key Requirements:
@ Every GO formula valid in « is valid in a.

@ If every GO formula valid in « is valid also in coalgebra 3, then g is
a bisimilarity image of o, i.e. each state of 3 is bisimilar to a state
of at.

v

For suitably chosen U, ot is sufficiently “saturated” to make this work,
and leads to the following co-Birkhoff Theorem for polynomial
coalgebras.

Coalgebraic Logic, Oxford ‘07 16/37



Theorem
Let T be polynomial with an observable component D having |D| > 2.
For any class K of T-coalgebras, the following are equivalent.
Q@ K is GO-definable,
i.e. is the class of all models of some set of GO formulas.

© K is closed under coproducts (disjoint unions), images of
bisimulations, and observational ultrapowers.

@ K is closed under coproducts, domains and images of
T-morphisms, and observational ultrapowers.
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Theorem
Let T be polynomial with an observable component D having |D| > 2.
For any class K of T-coalgebras, the following are equivalent.
Q@ K is GO-definable,
i.e. is the class of all models of some set of GO formulas.

© K is closed under coproducts (disjoint unions), images of
bisimulations, and observational ultrapowers.

@ K is closed under coproducts, domains and images of
T-morphisms, and observational ultrapowers.

Note:

can replace closure under observational ultrapowers here by
closure under certain (definable) ultrafilter extensions.
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Standard Ultrapowers:
@ AV is the quotient A’ /=(;, where
f=vgift{iel: f(i)=g(i)} €U.
f =uv g means that f and g agree “almost everywhere”.
@ fU .=the equivalence class of f.
@ AU={fU:feAl}

@ A natural embedding e4 : A — AU allows us to assume A C AY.

v
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Standard Ultrapowers:
@ AV is the quotient A’ /=(;, where
f=vgift{iel: f(i)=g(i)} €U.
f =uv g means that f and g agree “almost everywhere”.
e fU .= the equivalence class of f.

@ AU={fU:feAl}

@ A natural embedding e4 : A — AU allows us to assume A C AY.

v

Liftings:
Any map Ay X --- x Ay, Y Bhasa U-lifting

N

AV x ... x AY BY.
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Problem:

A T-coalgebra
ASTA
has the U-lifting
AU 22 Ty,
but a T-coalgebra based on AV should look like

AY - 1(AY).

Coalgebraic Logic, Oxford ‘07 19/37




Solution:

Restrict oV to the subset A C AV of elements fU that are
“observable”.
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Solution:

Restrict o to the subset AT C AY of elements fV that are
“observable”.

Idea:
For a GO term M : D, the a-denotation

[M]o:A— D

has the U-lifting [M]Y: AV — DUY.
Since D C DY, we ask does [M [Y(fY) e D ?
If YES for all M, put fY in A*.
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Solution:

Restrict o to the subset AT C AY of elements fV that are
“observable”.

Idea:
For a GO term M : D, the a-denotation

[M]o:A— D

has the U-lifting [M]Y: AV — DUY.
Since D C DY, we ask does [M [Y(fY) e D ?
If YES for all M, put fY in A*.

Example
every member of A is observable, so A C A™.
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Defining the transition structure o™ : AT — T A™:

@ an intricate analysis of the components involved in the inductive
formation of functor 7.

@ A path
728

from T to a component functor S is a finite list of symbols
expressing the way T is formed from S.

@ A path induces a partial function

pa: TA——SA

for each set A.
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Definition
O .
@ T—~T s the empty path.
@ from Tj—ieS form Tj x ngjjjs forj =1,2.

£i.p
@ from Tj—zi»S form T, +T2—JwS forj =1,2.

o from T—-S form TP “%¥S foralld € D.
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At gHC . AU

[}

jele (paoa)™ (paca)¥

SA &) SJZ_'_ o — o(SA)U
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A AHC r A7
)
paoa (paca)t I(pAoa)U
SA &) SIZ—F o — o(SA)U

When p = the empty path T—~T, get

A €A R A+( 7 AU
TA &) TZJ'- Whoconoommcnned o} (TA)U

defining a™.
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Los-type Theorem

at, fUE e if,andonlyif, {ie€l:a,f(i)=p}eU. J
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Los-type Theorem
at, fUE e if,andonlyif, {ie€l:a,f(i)=p}eU. )

Proof method:
an analysis for each term M : S of the relationship between the
U-lifting
[M]Y: AV - (SA)Y
of the a-denotation
[M]o:A— SA

and its a"-denotation

[M]g+ : AT — SAT.
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Los-type Theorem
at, fUE e if,andonlyif, {ie€l:a,f(i)=p}eU. )

Proof method:
an analysis for each term M : S of the relationship between the
U-lifting

[M]Y: AV - (SA)Y

of the a-denotation
[M]o:A— SA

and its a"-denotation

[M]g+ : AT — SAT.

Corollary

ako ifandonlyif, ot = .
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Observational Ultraproducts

Given T-coalgebras {(4;,«;) : i € I'}, define a T-coalgebra
My AF <5 T(Iy AF)

whose states are “observable” members of the ultraproduct 117 A4;
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Observational Ultraproducts

Given T-coalgebras {(4;,«;) : i € I'}, define a T-coalgebra
My AF <5 T(Iy AF)

whose states are “observable” members of the ultraproduct 117 A4;

Los:
{iel:aiE=p} €U implies at o,
and conversely if Ty A =TIy A;.

(Converse does hold for ultrapowers.)
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Observational Ultraproducts

Given T-coalgebras {(4;,«;) : i € I'}, define a T-coalgebra
My AF <5 T(Iy AF)

whose states are “observable” members of the ultraproduct 117 A4;

Los:
{iel:aiE=p} €U implies at o,
and conversely if Ty A =TIy A;.

(Converse does hold for ultrapowers.)

NB: could have Tl A =10 ]

Coalgebraic Logic, Oxford ‘07 25/37




Example
eT =0

@ (A,,ay) is the w-coalgebra

{n,n+1,...} = w.

@ IIyAr =0 whenever U non-principal.
n
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Compactness Property:

Possible definitions

@ a set of formulas has a non-empty model whenever each of its
finite subsets does.

@ a set of formulas is satisfiable at some state whenever each of its
finite subsets is.
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Compactness Property:

Possible definitions

@ a set of formulas has a non-empty model whenever each of its
finite subsets does.

@ a set of formulas is satisfiable at some state whenever each of its
finite subsets is.

Both of these fail for
{tr(s) % n:n €w}
with T = @.
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Compactness Property:

Possible definitions

@ a set of formulas has a non-empty model whenever each of its
finite subsets does.

@ a set of formulas is satisfiable at some state whenever each of its
finite subsets is.

Both of these fail for
{tr(s) % n:n €w}
with T = @.

Theorem

If every observational ultraproduct of nonempty T'-coalgebras is
nonempty, then Compactness does hold for T.
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Ultrafilter Enlargements

Definitions

@ An ultrafilter F' on the state set of (A, «) is observationally rich if
for each GO term M : D there exists some ¢ € D such that

IM~c|*={zx€A:[M]a(z)=c} €F,
i.e. every GO term takes a constant value on an F'-large set.
@ The ultrafilter enlargement of (A, «) is a coalgebra
A* 2 A

whose state set A* is the set of all rich ultrafiliers on A.

The definition of o* involves path functions, similarly to a™.
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Example
Every principal ultrafilter on A is rich, giving an embedding

na: (A,a) — (A% %)

that is a coalgebraic morphism  (contra the modal case!)
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Example
Every principal ultrafilter on A is rich, giving an embedding

na: (A @) — (A% %)

that is a coalgebraic morphism  (contra the modal case!)

Truth Lemma
For each GO formula ¢,

o, F =¢ if,andonlyif, [¢||*eF

i.e. ¢ is true at state F' in A* iff true in an “F-large” set of states in A.

v

Corollary

a k= ifandonlyif, o = .
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(A*, a*) as a quotient of some (A1, a™)

@ Oy : AT — A* actsby fU—{XCA:fey X}
@ d is a coalgebraic morphism (A1, a™) — (A%, a*).
@ &y is surjective if AV enlarges A:

every collection of subsets of A with the finite intersection
property has non-empty intersection in AU

Coalgebraic Logic, Oxford ‘07 30/37



Definable Ultrafilter Enlargements

® Def® = {|l¢[* : v is GO}
is the Boolean algebra of definable subsets of A.

@ The definable enlargement A° 2 TAb of (A, a) has

A% = the set of all rich ultrafilters

@ o', F =y if,andonlyif, o€ F.
@ akEy ifandonlyif, o .

@ There is an epimorphism o* — «°.
o’ is isomorphic to the bisimilarity quotient of o*.
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Infinitary Proof Theory

Path formulas
@ Halting formulas:
for any path T-2-S there is a formula pl with

a,z =pl iff  a(x) € Dompy
@ Observation forzr)nulas:
for any path T—~D and c € D there is a formula (p)c with
a,z = (p)e  iff  a(x) € Dompy and pa(a(z)) = c.
@ Modalities: »
for any path T—~Id and formula ¢ there is a formula [p]y with

a,z = [ple  iff  a(x) € Dompy implies a, pa(a(z)) = ¢.
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Deducibility Relation IC'Er g
@ defined syntactically using axioms and infinitary rules, e.g.

—|(p)c forall ce D P — [q]ﬁ(p)c forall ¢cc D
~(pl) ¥ — [g]=(pl)

@ I'is T-consistentif T'Fg L.

@ I'is T-maximal if it is consistent, negation complete, and closed
under certain infinitary rules.
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Deducibility Relation Chr o
@ defined syntactically using axioms and infinitary rules, e.g.

—|(p)c forall ce D P — [q]ﬁ(p)c forall ¢e D
~(pl) ¥ — [g]=(pl)

@ I'is T-consistentif T'Fg L.

@ I'is T-maximal if it is consistent, negation complete, and closed
under certain infinitary rules.

Example
For any «a, z,

{¢:a,x = ¢} is T-maximal.
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Deducibility Relation Chr o
@ defined syntactically using axioms and infinitary rules, e.g.

—|(p)c forall ce D P — [q]ﬁ(p)c forall ¢e D
~(pl) ¥ — [g]=(pl)

@ I'is T-consistent if T'¥Fr L.

@ I'is T-maximal if it is consistent, negation complete, and closed
under certain infinitary rules.

Example
For any «a, z,

{¢:a,z = ¢} isT-maximal.

@ Completeness (i.e. “consistent implies satisfiable”) depends on
some cardinality constraint, as with w-logic.
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Lindenbaum Functors

Definition
T is Lindenbaum if every T-consistent set of formulas can be extended
to a T-maximal set.

Lemma
T is Lindenbaum if any of the following hold:

@ T has no constant component D, or
@ Every constant component D has D finite, or

© Any exponential component SP of T has countable exponent D.

V.
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Example
Let T = oR.
There is a set ¥ of formulas such that

@ Y is T-consistent.

@ X is not satisfiable at any state of any T-coalgebra.

— hence Completeness fails.

@ every countable subset of X is satisfiable.
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Example
Let T = oR.
There is a set ¥ of formulas such that

@ Y is T-consistent.

@ X is not satisfiable at any state of any T-coalgebra.

— hence Completeness fails.

@ every countable subset of ¥ is satisfiable.

Theorem

If T is Lindenbaum, then every T-consistent set of formulas is
satisfiable in a T-coalgebra.
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Canonical T-coalgebra

Ap =5 T(Ar)

@ Ar is the set of all T-maximal sets.
@ Truth Lemma: ar,zfE¢ Iiff peux.

@ If T"is Lindenbaum, then every T-consistent set is satisfiable.
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Canonical T-coalgebra

Ap =5 T(Ar)

@ Ar is the set of all T-maximal sets.
@ Truth Lemma: ar,zfE¢ Iiff peux.

@ If T"is Lindenbaum, then every T-consistent set is satisfiable.

(Ar, ar) is a final coalgebra.

z— {p: a2 )
is the unique morphism from any (A, «) to (Ar, ar).
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Questions

@ Can this theory be extended to finitary Kripke polynomial functors,
involving P, ?

@ is there a universal property characterising observational
ultraproducts ?
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