Copower functors

H. Peter Gumm

Philipps-Universität Marburg

Oxford, August 10-11, 2007

Copower Functors

Functor properties

Relevant properties

- standard
- separating
- connected
- bounded
 - finitary

Preservation properties

- weak pullbacks
 - preimages
 - weak kernel pairs
 - wide pullbacks
 - intersections
 - finite ones can be assumed

General program

Functor properties \(\leftarrow\) Coalgebraic structure theory

Functors preserve ...

- P
- weak (wide) pullbacks
- intersections
- not bounded
- F
- weak pullbacks
- finite intersections
- $X^2 X + 1$
 - intersections
 - not preimages
 - not kernel pauirs

- $(-)^3_2$ and \mathbb{P}_k , k > 2
 - preimages
 - not kernel pairs
- $\mathbb{Z}[-]$ (bags with credit)
 - kernel pairs
 - not preimages

Fuzzy sets and bags

- Purpose
 - Provide parametrized class of functors
 - tune parameters for desired properties
 - start with standard examples

•
$$\mathbb{P}(-)=2^-$$
, subfunctor: $\mathbb{P}_{\omega}(-)=2^-_{\omega}$

- 2 is ...
 - ullet ... a complete semilattice ${\cal L}$
 - ullet ... a commutative monoid ${\mathcal M}$
- Generalizing yields two types of functors

•
$$\mathcal{L}^X := \{ \sigma : X \to \mathcal{L} \}$$

•
$$\mathcal{M}_{\omega}^{X} := \{ \sigma : X \to \mathcal{M} \mid \sigma(x) = 0_{a.e.} \}$$

\mathcal{L} - fuzzy sets

 \mathcal{L} a complete \bigvee -semilattice, define $\mathcal{L}^X := \{\sigma : X \to \mathcal{L}\}$

- For $f: X \to Y$
 - $\mathcal{L}^f(\sigma) = \lambda y . \bigvee \{ \sigma(x) \mid f(x) = y \}$
- $\mathcal{L}^{(-)}$ is a *Set*-functor
- ullet \mathcal{L} -coalgebras are \mathcal{L} valued relations
- ullet preserves
 - preimages
 - intersections
- ullet ${\cal L}$ weakly preserves kernel pairs \Longleftrightarrow

$$x \wedge \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \wedge y_i)$$

${\mathcal M}$ -bags

 \mathcal{M} commutative monoid, $\mathcal{M}_{\omega}^{X} := \{ \sigma : X \to \mathcal{M} \mid \sigma(x) = 0_{a.e.} \}$

- For $f: X \to Y$
 - $\mathcal{M}^f_{\omega}(\sigma) = \lambda y$. $\sum \{\sigma(y) \mid f(y) = x\}$
- ullet finite bags, multiplicities from ${\cal M}$
 - N: standard bags
 - Z bags "with credit"

$$\begin{array}{c|cc} x & y & a_1 \\ z & u & a_2 \\ \hline b_1 & b_2 & = \end{array}$$

• \mathcal{M} -coalgebras: \mathcal{M} -valued relations

Theorem (HPG, T.Schröder)

- \mathcal{M}^f_{ω} preserves preimages $\iff \mathcal{M}$ is positive.
- \mathcal{M}^f_{ω} weakly pres. kernel pairs $\iff \mathcal{M}$ is refinable.

Common generalization

- M commutative monoid
 - image finiteness essential,
 - commutativity, unit element

$$\mathcal{M}^f_{\omega}(\sigma)(y) := \sum_{f(x)=y} \sigma(x)$$

- L complete semilattice
 - idempotency essential
 - zero element

$$\mathcal{L}^f(\sigma)(y) := \bigvee_{f(x)=y} \sigma(x)$$

Observe

$$\mathcal{M}_{\omega}^{X} \cong \coprod_{\mathbf{x} \in X} \mathcal{M}$$

$$\mathcal{L}^X \cong \prod_{\mathbf{x} \in X} \mathcal{L} \cong \coprod_{\mathbf{x} \in X} \mathcal{L}$$

The copower functor

Given

- ullet category ${\mathfrak C}$ and ${\mathcal A}\in{\mathfrak C}$
- ullet copowers of ${\mathcal A}$ exist in ${\mathfrak C}$
- ullet $U: \mathfrak{C} o \mathcal{S}et$ any (forgetful) functor

$$\mathcal{A}_{\mathfrak{C}}[X] := U(\coprod_{x \in X}^{\mathfrak{C}} \mathcal{A})$$

For any map $f: X \to Y$ let

$$\mathcal{A}_{\mathfrak{C}}[X] \xrightarrow{\mathcal{A}_{\mathfrak{C}}[f]} \mathcal{A}_{\mathfrak{C}}[Y]$$

$$e_{x} \xrightarrow{e_{f(x)}}$$

Theorem

 $\mathcal{A}_{\mathfrak{C}}[-]$ is a Set-endofunctor.

Free product functor

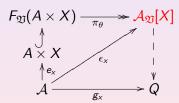
 ${\mathfrak V}$ variety of algebras, ${\mathcal A}\in {\mathfrak V}$ ${\mathcal A}_{\mathfrak V}[X]pprox$ free product

•
$$\mathcal{M}_{\mathfrak{Mc}}[X] = \mathcal{M}_{\omega}^X$$

•
$$\mathcal{L}_{\mathfrak{S}}[X] = \mathcal{L}^X$$

Which properties of \mathcal{A} and \mathfrak{V} guarantee . . .

- ... weak pullback preservation
 - ... image preservation
 - ... weak kernel preservation



- \mathfrak{Sl} : Complete semilattices $\iff x \land \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \land y_i)$
- ullet \mathfrak{Mc} : Commutative monoids \iff positive and refinable
- \mathfrak{M} : Monoids \iff positive and *equidivisible*
- \mathfrak{Sg} : Semigroups \iff equidivisible.

Equidivisibility: Given $a \cdot b = c \cdot d$, there exists k such that

$$a \cdot k \cdot d$$
 or $c \cdot k \cdot b$

Product refinement

Refinable

$$\mathcal{A} \times \mathcal{B} \cong \mathcal{C} \times \mathcal{D} \iff \begin{array}{c|ccc} \mathcal{U}_0 & \times & \mathcal{U}_1 & \mathcal{A} \\ \times & \times & \times \\ \hline \mathcal{V}_0 & \times & \mathcal{V}_1 & \mathcal{B} \\ \hline \mathcal{C} & \times & \mathcal{D} & \cong \end{array}$$

Product refinement

Equidivisible

$$\mathcal{A} \times \mathcal{B} \cong \mathcal{C} \times \mathcal{D} \iff \begin{array}{c|cccc} \mathcal{A} & & \mathcal{A} & & \mathcal{C} & \times & \mathcal{K} & \mathcal{A} \\ \times & \times & & \times & \\ \hline \mathcal{K} & \times & \mathcal{D} & \mathcal{B} & \\ \hline \mathcal{C} & \times & \mathcal{D} & \cong & \end{array} \quad \text{or} \quad \begin{array}{c|cccc} \mathcal{C} & \times & \mathcal{K} & \mathcal{A} \\ & \times & \times & \times \\ & & \mathcal{B} & \mathcal{B} \\ \hline \mathcal{C} & \times & \mathcal{D} & \cong & \end{array}$$

Theorem

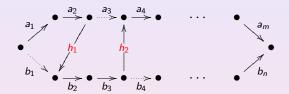
- Equidivisible semigroups are refinable.
- 2 Any two product decompositions have a common refinement

A category with one object

- Semigroup S: one-object-category
 - ullet Elements of ${\cal S}$ are morphisms
 - Composition is multiplication
- Equidivisibility is categorically:
 - diagonal property

Refinement

Given
$$a_1 \cdot a_2 \cdot \ldots \cdot a_m = p = b_1 \cdot b_2 \cdot \ldots \cdot b_n$$
,



Theorem

Any two product decompositions have a common refinement.

$$p = \underbrace{a_1 \cdot a_2 \cdot h_1}_{b_1} \cdot b_2 \cdot b_3 \cdot \underbrace{h_2 \cdot a_4 \cdot \dots}_{b_4} \cdot \dots$$

What is special about copower functors?

F faithful:
$$Y^X > FY^{FX}$$

Theorem

Every faithful Set-functor F has a representation $F(-) \cong \mathcal{A}_{\mathfrak{C}}[-]$ with $\mathcal{A} \in \mathfrak{C}$ for some (non-full) subcategory \mathfrak{C} of Set.

Coalgebraic logic

Formulae

$$\phi$$
 :: **true** $|\neg \phi| \bigwedge_{i \in I} \phi_i$
 $|$... modalities ...

- semantics: $\llbracket \phi \rrbracket : A \to 2$
- $x \models \phi : \iff \llbracket \phi \rrbracket(x) = 1$
- $x \approx y : \iff \forall \phi. x \models \phi \iff y \models \phi$
- f definable : $\iff \exists \phi. f = \llbracket \phi \rrbracket$
- ... U-definable $\iff \exists \phi. f_{|U} = \llbracket \phi \rrbracket_{|U}$

Coalgebraic logic

Formulae

$$\phi$$
 :: **true** $|\neg \phi| \phi_1 \land \phi_2$ $|$... *modalities* ...

- semantics: $\llbracket \phi \rrbracket : A \to 2$
- $x \models \phi : \iff \llbracket \phi \rrbracket(x) = 1$
- $x \approx y : \iff \forall \phi. x \models \phi \iff y \models \phi$
- f definable : $\iff \exists \phi. f = \llbracket \phi \rrbracket$
- ... U-definable $\iff \exists \phi. f_{|U} = \llbracket \phi \rrbracket_{|U}$

$$U \hookrightarrow A \stackrel{r}{\longrightarrow} 2$$

- **1** \wedge :: f is definable \iff f respects \approx .
- **2** \wedge :: f is U-definable for each $U \subseteq_{fin} A \iff f$ respects \approx .

Pattinson-Schröder Logic

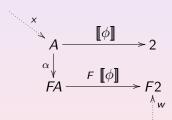
Formulae

$$\phi \quad :: \quad \mathbf{true} \, | \, \neg \phi \, | \, \bigwedge_{i \in I} \phi_i$$

$$| \quad [w] \phi \quad \text{for each } w \in F(2)$$

Semantics

•
$$x \models [w]\phi : \iff F[\phi](\alpha(x)) = w$$

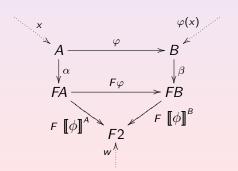


Stability: $\nabla \subseteq \approx$

 $\bullet \models$ is homomorphism stable

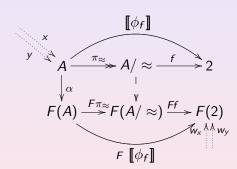
$$\varphi: \mathcal{A} \to \mathcal{B} \implies (\forall x \in A.x \models \phi \iff \varphi(x) \models \phi)$$

Proof by formula induction



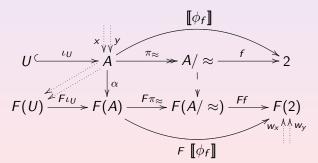
Completeness: $\approx \subseteq \nabla$

- Assume: F separating
- define coalgebra on A/\approx so that π_{\approx} is a homomorphism
- $x \models [w_x]\phi_f$ but $y \models [w_y]\phi_f$



Finitary conjunctions/disjunctions

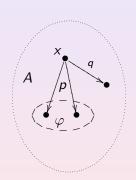
- If *F* is *finitary*, then finite conjunctions suffice:
 - $\exists U \subseteq_{fin} X$ with $\alpha(x), \beta(x) \in F(U)$
 - $f \circ \pi_{\approx}$ definable relative to U
 - $x \models [w_x]\phi_f$ and $y \models [w_y]\phi_f$



Modal logic for Copower functors

- ullet \mathcal{M} a commutative monoid
- $\mathcal{M}[X] = X$ -bags, multiplicities from \mathcal{M}
 - $\mathcal{M}[X]$ separates points $\sqrt{}$
 - M[X] finitary √

$$\phi$$
 :: $true \mid \neg \phi \mid \phi_1 \land \phi_2$
 $\mid [p, q]\phi$, where $p, q \in \mathcal{M}$

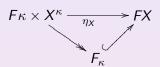


•
$$x \models [p, q]\phi \iff$$

• $p = \sum \{m \mid x \xrightarrow{m} y \models \phi\}$
• $q = \sum \{m \mid x \xrightarrow{m} y \models \neg \phi\}$

Separating Functors

- F arbitrary functor, $\kappa \in Card$
 - ullet ... before we started with X^{κ}
 - ullet ... approximated F by F_{κ} 's
- now start with κ^X ...
 - represent F(X) by all κ -patterns
 - F separating \iff injective



$$FX \longrightarrow F\kappa^{\kappa^X}$$

Fact

F is κ -separating \iff *F* is a subfunctor of some $A^{\kappa^{X}}$

Intuition useful for Functors

- Functors are generalized containers
 - *F*(1) : shapes
 - F(2): 0-1-patterns
 - *F*(3): ...
 - *F*(*X*): ...
- Shapes are "independent"

•
$$F = \sum_{i \in I} F_i$$

• where
$$|F_i(1)| = 1$$
.

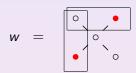
Which functors are determined by their κ -patterns ?

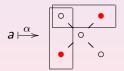
Intuition for $A, a \models [p]\phi$

- Let $w \in F(2)$
- Assume $\alpha(a) = u \in F(A)$
 - replace all places x in u by :

•
$$\llbracket \phi \rrbracket(x) = \begin{cases} \bullet & \text{if } x \models \phi \\ \circ & \text{if } x \not\models \phi \end{cases}$$

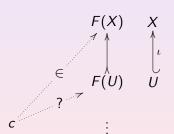
•
$$A, a \models [w]\phi : \iff F \llbracket \phi \rrbracket \alpha(a) = w$$





Recovering elements

- Define "support" of $c \in F(X)$
 - $||c|| := \bigcap \{U \subseteq X \mid c \in F(U)\}$
 - ok, if F preserves intersection
 - e.g. for finite containers
- Complications
 - $U \subseteq X \Rightarrow F(U) \subseteq F(X)$
 - possibly $c \notin F(||c||)$
- Always works:
 - $\mu(c) = \{U \mid c \in F\iota[F(U)]\}$ where $\iota : U \subseteq X$
 - $\mu(c)$ is a filter on X



Membership

Transformation $\mu : F \xrightarrow{\cdot} \mathbb{F}$

- not necessary natural
- but subcartesian
 - largest subcartesian transformation

Theorem

 μ is natural \iff F preserves preimages

$$F(X) \xrightarrow{\mu_X} \mathbb{F}(X)$$

$$\uparrow \qquad \uparrow$$

$$F(U) \xrightarrow{\mu_U} \mathbb{F}(U)$$

Conclusion

- Opower functor useful for custom made examples
 - Generalize powerset functor and finite-bag-functor
 - Two parameters to play with
 - ullet algebra ${\mathcal A}$, category ${\mathfrak C}$
- Natural logics, easy to describe
 - $a \models [p,q]\phi$
- § Functors, in general, are generalized containers
 - Shapes = F(1), independent
 - 0-1-patterns = F(2) = modalities
 - *Element* filter: $\mu : F(X) \to \mathbb{F}(X)$
 - preserve preimages iff cannot lose elements.

Thanks

$$T^h$$
@_{n×}