Coalgebraic Logics: A Computer Science Perspective

Dirk Pattinson, Imperial College London

Part I: Coalgebraic Logics: Motivation and Some Results

A Computer Science View

Coalgebraic Logics: Describe *computational phenomena* with *modal logics*

- State Transition Systems
- Probabilistic Effects
- Games
- Ontologies ...

- \rightarrow Hennessy-Milner Logic
- \rightarrow Probabilistic Modal Logic
- \rightarrow Coalition Logic
- \rightarrow Description Logic . . .

Logical Aspects

- completeness
- complexity
- cut elimination
- interpolation ...

Computer Science Aspects

- *Genericity:* development of uniform proofs/algorithms/tools?
- Modularity: synthesis of complex systems from simple building blocks

A Cook's Tour Through Modal Semantics

Unifying Feature: Coalgebraic Semantics

All examples are instances of **Coalgebras**

 $(C, \gamma: C \to TC)$

where $T : Set \rightarrow Set$ is an endofunctor, the *signature functor*.

(Dually, *T*-algebras are pairs $(A, \alpha : TA \rightarrow A)$)

Intuition.

- *coalgebras* are generalised transition systems
- *morphisms* of coalgebras are generalised *p*-morphisms

Computer Science Concerns

- Genericity: Prove things once and for all, parametric in T
- *Modularity:* Construct complex functors from simple ingredients

Given: $T : Set \rightarrow Set$

Question: What's the "right" logic for T-coalgebras?

- should generalise well-known cases, e.g. K, probabilistic/graded modal logic, coalition logic
- theory should be *parametric* in T

 \rightsquigarrow uniform theorems that apply to a large class of logics

Semantically: What's a modal operator, or: what is $\llbracket \Box \phi \rrbracket$?

Moss' Coalgebraic Logic I

Kripke Frames: $C \rightarrow \mathcal{P}(C)$

Concrete Syntax $\frac{1}{\perp \in L} \quad \frac{\phi, \psi \in L}{\phi \to \psi \in L} \quad \frac{\Phi \in \mathcal{P}(L)}{\nabla \Phi \in L} \qquad \frac{\psi, \psi \in L}{\perp \in L} \quad \frac{\phi, \psi \in L}{\phi \to \psi \in L} \quad \frac{\Phi \in TL}{\nabla \Phi \in L}$

Modal Semantics

$$c \models \nabla \Phi \iff (\gamma(c), \Phi) \in \mathcal{P}(\models)$$

Abstract Syntax:

$$L \cong F(L) = 1 + L^2 + \mathcal{P}(L)$$

Algebraic Semantics

T-coalgebras: $C \to T(C)$

Concrete Syntax

Modal Semantics $c \models \nabla \Phi \iff (\gamma(c), \Phi) \in T(\models)$

Abstract Syntax: $L \cong F(L) = 1 + L^2 + T(L)$

Algebraic Semantics

 $\nabla \Phi = \Box \bigvee \Phi \land \Diamond \Phi$ Need: *F*-algebra structure $F(\mathcal{P}(C)) \to \mathcal{P}(C)$

Algebraic Semantics of Coalgebraic Logic:

where
$$\hat{\gamma} : \underbrace{T(\mathcal{P}C) \xrightarrow{\delta} \mathcal{P}(TC)} \xrightarrow{\gamma^{-1}} \mathcal{P}(C)$$

distributive law

Representation Theorem: $\sum_{n} A_n \times X^n \twoheadrightarrow TX$, e.g. $X \xrightarrow{M} TX$

gives algebraic semantics of Unary Modalities:

$$\underbrace{\mathcal{P}(C) \xrightarrow{M} T(\mathcal{P}C) \xrightarrow{\delta} \mathcal{P}(TC)} \xrightarrow{\gamma^{-1}} \mathcal{P}(C)$$

unary modality

Coalgebraic Semantics of Modal Logics

Structures for T coalgebras determine the semantics of modal operators: they

assign a nbhd frame translation

or, equivalently, a predicate lifting

 $\llbracket M \rrbracket : TC \to \mathcal{PP}(C) \qquad \llbracket M \rrbracket : \mathcal{P}(C) \to \mathcal{P}(TC)$

to every modal operator M of the language, parametric in C.

Together with a T-coalgebra (C, γ) this gives a

neighbourhood frame

boolean algebra with operator

$$C \xrightarrow{\gamma} TC \xrightarrow{\llbracket M \rrbracket} \mathcal{P}\mathcal{P}(C) \qquad \qquad \mathcal{P}(C) \xrightarrow{\llbracket M \rrbracket} \mathcal{P}(TC) \xrightarrow{\gamma^{-1}} \mathcal{P}(C)$$

Induced Coalgebraic Semantics $[\![\phi]\!]\subseteq C$ of a modal formula

from a modal perspective equivalent algebraic viewpoint

$$c \in \llbracket M \phi \rrbracket$$
 iff $\llbracket \phi \rrbracket \in \llbracket M \rrbracket \circ \gamma(\llbracket \phi \rrbracket)$ $c \in \llbracket M \phi \rrbracket \iff \gamma(c) \in \llbracket M \rrbracket(\llbracket \phi \rrbracket)$

Examples

Neighbourhood Frames, i.e. coalgebras $C \to \mathcal{PP}(C)$

$$\llbracket \Box \rrbracket = \mathrm{id} : \underbrace{\mathcal{PP}(C)}_{\mathsf{TC}} \to \mathcal{PP}(C)$$

(identical nbhd frame translation)

TC

Kripke Frames, ie. coalgebras $C \to \mathcal{P}(C)$

viewed as neighbourhood frames via boolean algebras with operators

$$\llbracket \Box \rrbracket : \overrightarrow{\mathcal{P}(C)} \to \mathcal{P}\mathcal{P}(C) \qquad \llbracket \Box \rrbracket : \mathcal{P}(C) \to \overrightarrow{\mathcal{P}\mathcal{P}(C)} \\ c \quad \mapsto \{c' : c' \supseteq c\} \qquad \qquad c \quad \mapsto \{c' : c' \subseteq c\}$$

Probabilistic Transition Systems , i.e. coalgebras $C \rightarrow \mathcal{D}C$

$$\llbracket L_p \rrbracket : \mathcal{P}(C) \to \mathcal{P} \overbrace{\mathcal{D}(C)}^{TC} \quad \text{(algebraic perspective)} \\ c \quad \mapsto \{\mu : C \to [0, 1] : \mu(c) \ge p\}$$

Genericity I: Expressivity

Easy, but important: Coalgebraic Logics are bisimulation invariant.

Hennessy-Milner Property:

Bisimulation coincides with logical equivalence over *image finite* transition systems.

- what is *image finite* for *T*-coalgebras?
- additional condition(s) on the logic (e.g. exclude empty set of operators)

Theorem (P, 2001)

If T is ω -accessible and the modal structure is separating, i.e. for predicate liftings

$$TC \ni t \mapsto \{ \llbracket M \rrbracket(c) : c \subseteq C, M \text{ modal op} \}$$

is injective, then the induced logic has the Hennessy-Milner property.

Theorem (Schroeder, 2005)

Admitting polyadic modalities, the structure that comprises *all* predicate liftings is separating.

Genericity II: Completeness

Deduction for Coalgebraic Logics: propositional logic plus a set \mathcal{R} of

one-step rules ϕ/ψ : ϕ propositional, ψ clause over $Ma, a \in V$

Intuition. Rules axiomatise those nbhd frames that come from coalgebras

One Step Derivability of χ (propositional over $\{Mx : x \subseteq X\}$) over a set X

- $TX \models \chi$ defined inductively by $\llbracket Mx \rrbracket = \llbracket M \rrbracket(x)$
- $\mathcal{R}X \vdash \chi \text{ iff } \{\psi\sigma : X \models \phi\sigma, \phi/\psi \in \mathcal{R}\} \vdash_{\mathsf{PL}} \chi$

 \mathcal{R} is one-step sound (complete) if $TX \models \chi$ whenever (only if) $\mathcal{R}X \vdash \chi$

Theorem (P, 2003, Schroeder 2006)

Soundness and weak completeness are implied by their one-step counterparts.

Theorem (Schroeder 2006)

The set of axioms that is one-step sound is one-step complete.

Shallow Model Construction for T-coalgebras: inductively strip off modalities

Crucial Requirement is **Resolution Closure** of \mathcal{R} :

derivable consequences are derivable using a *single* rule.

Theorem. (Schroeder/P, 2006)

If \mathcal{R} is resolution closed and rule matching is in NP, then satisfiability is in PSPACE.

Example. K, KD, Coalition Logic, GML, PML, Majority Logic are in PSPACE.

Construction of Resolution Closed Sets

Example: K axiomatised by rules

$$\frac{a}{\Box a} \qquad \frac{a \wedge b \to c}{\Box a \wedge \Box b \to \Box c}$$

Rule Resolution:

$a \wedge b \rightarrow c$	$c \wedge d \to e$
$\Box a \land \Box b \to \Box c$	$\overline{\Box c \land \Box d \to \Box e}$

Resolving the conclusions at \boldsymbol{c}

$$\frac{(a \wedge b \to c) \wedge (c \wedge d \to e)}{\Box a \wedge \Box b \wedge \Box d \to \Box e}$$

Eliminating *c* from the premise:

$$\frac{a \wedge b \wedge d \to e}{\Box a \wedge \Box b \wedge \Box d \to \Box e}$$

(This converges to a cut-free sequent-calculus ...)

Modularity

Example. Combining Probabilities and Non-Determinism

Coalgebraic Interpretation

$$C \to \mathcal{P}(A \times \mathcal{D}(C))$$
 $C \to \mathcal{P}(A \times C) + \mathcal{D}(C)$

Semantics of Combination. Functor Composition – ingredients represent features. Logic Combinations. Mimic Functor Composition Simple Segala Systems: $C \to \mathcal{P}(A \times \mathcal{D}(C))$

 $\mathcal{L}_n \ni \phi ::= \top \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \Box_a \psi \quad \text{(nondeterministic formulas; } \psi \in \mathcal{L}_u, a \in A \text{)}$ $\mathcal{L}_u \ni \psi ::= \top \mid \psi_1 \land \psi_2 \mid \neg \psi \mid L_p \phi \quad \text{(probabilistic formulas; } \phi \in \mathcal{L}_n, p \in [0, 1] \cap \mathbb{Q} \text{)}.$

Alternating Systems: $C \to \mathcal{P}(A \times C) + \mathcal{D}(C)$

 $\mathcal{L}_{o} \ni \rho ::= \top | \rho_{1} \land \rho_{2} | \neg \rho | \phi + \psi \quad \text{(alternating formulas; } \phi \in \mathcal{L}_{u}, \psi \in \mathcal{L}_{n} \text{)}$ $\mathcal{L}_{u} \ni \phi ::= \top | \phi_{1} \land \phi_{2} | \neg \phi | L_{p}\rho \quad \text{(probabilistic formulas; } \rho \in \mathcal{L}_{o}, p \in [0, 1] \cap \mathbb{Q} \text{)}$ $\mathcal{L}_{n} \ni \psi ::= \top | \psi_{1} \land \psi_{2} | \neg \psi_{2} | \Box_{a}\rho \quad \text{(nondeterministic formulas; } \rho \in \mathcal{L}_{o}, a \in A \text{)}$

Semantics by Example: given $\gamma: C \to \mathcal{P}(A \times C) + \mathcal{D}(C)$

- $(\mathcal{L}_o) \quad \llbracket \phi + \psi \rrbracket = \gamma^{-1}(\llbracket \phi \rrbracket + \llbracket \psi \rrbracket) \subseteq C$
- $(\mathcal{L}_u) \quad \llbracket L_p \rho \rrbracket = \llbracket L_p \rrbracket (\llbracket \rho \rrbracket) \subseteq \mathcal{D}C$
- (\mathcal{L}_n) $\llbracket \Box_a \rho \rrbracket = \llbracket \Box_a \rrbracket (\llbracket \rho \rrbracket) \subseteq \mathcal{P}(A \times C)$

Modularity I: Expressivity

Features: Basic Building Blocks comprising

- an endofunctor $F: \operatorname{Set}^n \to \operatorname{Set}$
- typed modal operators $M: i_1, \ldots, i_k$
- predicate liftings $\llbracket M \rrbracket : \mathcal{P}(X_1) \times \cdots \times \mathcal{P}(X_k) \to \mathcal{P}F(X_1, \dots, X_k)$

Example 1: Uncertainty

- $\bullet \ \mathcal{D}:\mathsf{Set}\to\mathsf{Set}$
- $L_p: 1 \ (p \in [0,1] \cap \mathbb{Q})$
- $\llbracket L_p \rrbracket$ as before

Example 2: Binary Choice

- $\coprod : \mathsf{Set}^2 \to \mathsf{Set}$
- + : 1, 2
- $\llbracket + \rrbracket : (x, y) \mapsto x + y$

Theorem (Cirstea, 2000)

The logic associated with any combination of features that are ω -accessible and separating has the Hennessy-Milner property.

Modularity II: Completeness and Complexity

Deduction for combined logics: Extend features with *typed* one-step rules

Example 1: Uncertainty

$$\frac{\sum_{1 \le i \le n} r_i a_i \ge k : 1}{\bigvee_{1 \le i \le n} \operatorname{sgn}(r_i) L_{p_i} a_i} \quad \text{(plus side conditions)}$$

Example 2: Binary Choice

$$\frac{\left(\bigwedge_{i=1}^{m} \alpha_{i} \to \bigvee_{j=1}^{n} \beta_{j}\right) : 1 \quad \left(\bigwedge_{i=1}^{m} \gamma_{i} \to \bigvee_{j=1}^{n} \delta_{j}\right) : 2}{\bigwedge_{i=1}^{m} (\alpha_{i} + \gamma_{i}) \to \bigvee_{j=1}^{n} (\beta_{j} + \delta_{j})} \quad (m, n \ge 0)$$

Deduction for Combined Logics: type correct application of deduction rules

Theorem. (Cirstea/P, 2003)

One-step completeness of all features implies weak completeness of combinations.

Theorem. (Schroeder/P, 2007)

Satisfiability for combined logics is in PSPACE provided rule matching for all features is in NP.

Part II: Extensions and Open Problems

Referee: This is nice, but can you also do S4?

Referee: This is nice, but can you also do S4?

DP: Not yet – $\Box p \rightarrow \Box \Box p$ is not rank 1!

Referee: This is nice, but can you also do S4?

DP: Not yet – $\Box p \rightarrow \Box \Box p$ is not rank 1!

Complexity of Coalgebraic Logics

Referee: This is nice, but can you also decide S4?

Referee: This is nice, but can you also do S4?

DP: Not yet – $\Box p \rightarrow \Box \Box p$ is not rank 1!

Complexity of Coalgebraic Logics

Referee: This is nice, but can you also decide S4?

DP: Not yet – $\Box p \rightarrow \Box \Box p$ is not rank 1!

Referee: This is nice, but can you also do S4?

DP: Not yet – $\Box p \rightarrow \Box \Box p$ is not rank 1!

Complexity of Coalgebraic Logics

Referee: This is nice, but can you also decide S4?

DP: Not yet – $\Box p \rightarrow \Box \Box p$ is not rank 1!

So maybe it's time to go beyond rank 1 ...

Frame Conditions

Recall: Coalgebraic Logics can always be axiomatised by rank-1 axioms.

Our Setting : Rank-1 axioms \mathcal{A} + Frame Conditions Φ , i.e.

- \mathcal{A} is rank-1, sound and complete w.r.t. *alll T*-coalgebras
- Φ is a set of additional axioms (not neccessarily rank 1), e.g. T or 4.

Kripke Frame Analogy. $\mathcal{A} = K$ and e.g. $\Phi = 4$

Semantical Consequence and Deduction

- $T\Phi \models \phi$ iff $C \models \phi$ whenever $C \models \Phi$, for all T-coalgebras C
- $\mathcal{A}\Phi \vdash \phi$ iff ϕ is derivable from $\mathcal{A} \cup \Phi$

Question. For which ϕ do we have completeness, i.e. $T\Phi \models \phi \implies \mathcal{A}\Phi \vdash \phi$?

Frame Completeness. $T\Phi \models \phi \implies \mathcal{A}\Phi \vdash \phi$ holds, for example, if

- if Φ is a collection of *positive* formulas
- if Φ is any collection of rank 0/1 formulas (e.g. T)
- $\bullet \ \ \text{if} \ \Phi=4 \ \text{or} \ \Phi=T,4$

Open Questions.

- semantical characterisation of admissible frame conditions?
- syntactical characterisation? Sahlquist completeness theorem?

Proof Theory

Observation I. Rule Resolution *seems* to lead to sequent calculus presentations, but:

Observation II. General Rule Premises are of the form

$$\bigwedge_{J\subseteq I} \left(\bigwedge_{j\in J} a_j \to \bigvee_{j\notin J} b_j\right)$$

Open Questions

- can we systematically derive sequent calculi?
- are they cut-free?
- and have interpolation and/or subformula properties?

Decidability and Complexity

Decidability via finite models: by-product of completeness via fmp

Challenge Question: Complexity

In a setting *without* frame conditions

Semantically

- coalgebraic shallow models
- based on extended rulesets

Syntactically

- cut-free sequent calculus
- induced by extended rulesets

Ruleset extension is algorithmic: resolution closure

Open Questions

- is resolution closure meaningful outside rank-1, and when? (yes, e.g. for S4)
- does either the syntactical or the semantic method extend?

Application Pull. Reasoning about ongoing behaviour: safety and liveness

Language Extension: flat fixpoint formulas

 $M^*\phi \equiv \nu x.\phi \wedge Mx$ and $M_*\phi \equiv \mu x.\phi \vee Mx$

(many possible variations)

New (Fixpoint) Axioms, e.g.

 $\mathsf{F} \equiv M^*p \to p \land MM^*p \qquad (p \land M^*(p \to Mp)) \to M^*p$

Trivial Theorem:

 $\mathcal{A}\mathsf{S}\vdash\phi\implies T\models\phi\text{ if }\mathcal{A}\text{ is sound w.r.t. all }T\text{-coalgebras}$

Hard Problem: Completeness.

Even Harder Problem: Complexity

Any Answers?