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Part I: Coalgebraic Logics: Motivation and Some Results



A Computer Science View

Coalgebraic Logics: Describe computational phenomena with modal logics

• State Transition Systems

• Probabilistic Effects

• Games

• Ontologies . . .

→ Hennessy-Milner Logic

→ Probabilistic Modal Logic

→ Coalition Logic

→ Description Logic . . .

Logical Aspects

• completeness

• complexity

• cut elimination

• interpolation . . .

Computer Science Aspects

• Genericity: development of uniform

proofs/algorithms/tools?

• Modularity: synthesis of complex

systems from simple building blocks

August 9, 2007 1



A Cook’s Tour Through Modal Semantics

Kripke Models. p

~p

p

C → P(C) × P(A)

Multigraphs.
4

2
p

~p

p

C → B(C) × P(A)

B(X) = {f : X → N | supp(f) finite}

Probabilistic Systems.
p

p

~p

0.8

0.2

C → D(C) × P(A)

D(X) = {µ : X → [0, 1] |
∑

x∈X µ(x) = 1}
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Unifying Feature: Coalgebraic Semantics

All examples are instances of Coalgebras

(C, γ : C → TC)

where T : Set → Set is an endofunctor, the signature functor .

(Dually, T -algebras are pairs (A,α : TA→ A))

Intuition.

• coalgebras are generalised transition systems

• morphisms of coalgebras are generalised p-morphisms

Computer Science Concerns

• Genericity: Prove things once and for all, parametric in T

• Modularity: Construct complex functors from simple ingredients
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Coalgebraic Semantics of Modal Logics

Given: T : Set → Set

Question: What’s the “right” logic for T -coalgebras?

• should generalise well-known cases, e.g. K, probabilistic/graded modal logic,

coalition logic

• theory should be parametric in T

; uniform theorems that apply to a large class of logics

Semantically: What’s a modal operator, or: what is J2φK?
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Moss’ Coalgebraic Logic I

Kripke Frames: C → P(C)

Concrete Syntax

⊥ ∈ L

φ, ψ ∈ L

φ→ ψ ∈ L

Φ ∈ P(L)

∇Φ ∈ L

Modal Semantics

c |= ∇Φ ⇐⇒ (γ(c),Φ) ∈ P(|=)

Abstract Syntax:

L ∼= F (L) = 1 + L2 + P(L)

Algebraic Semantics

F (L)

i

F (P(C))

γ̂

L
J·K

P(C)

T -coalgebras: C → T (C)

Concrete Syntax

⊥ ∈ L

φ, ψ ∈ L

φ→ ψ ∈ L

Φ ∈ TL

∇Φ ∈ L

Modal Semantics

c |= ∇Φ ⇐⇒ (γ(c),Φ) ∈ T (|=)

Abstract Syntax:

L ∼= F (L) = 1 + L2 + T (L)

Algebraic Semantics

F (L)

i

F (P(C))

γ̂

L
J·K

P(C)

∇Φ = 2
∨

Φ ∧ 3Φ Need: F -algebra structure F (P(C)) → P(C)
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Moss’ Coalgebraic Logic II

Algebraic Semantics of Coalgebraic Logic:

1 + L2 + TL

i

1 + (PC)2 + T (PC)

[⊥,→,γ̂]

L
J·K

P(C)

where γ̂ : T (PC)
δ

−→ P(TC)
︸ ︷︷ ︸

distributive law

γ−1

−→ P(C)

Representation Theorem:
∑

nAn ×Xn
։ TX , e.g. X

M
−→ TX

gives algebraic semantics of Unary Modalities:

P(C)
M
−→ T (PC)

δ
−→ P(TC)

︸ ︷︷ ︸

unary modality

γ−1

−→ P(C)
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Coalgebraic Semantics of Modal Logics

Structures for T coalgebras determine the semantics of modal operators: they

assign a nbhd frame translation

JMK : TC → PP(C)

or, equivalently, a predicate lifting

JMK : P(C) → P(TC)

to every modal operatorM of the language, parametric in C .

Together with a T -coalgebra (C, γ) this gives a

neighbourhood frame

C
γ

TC
JMK

PP(C)

boolean algebra with operator

P(C)
JMK

P(TC)
γ−1

P(C)

Induced Coalgebraic Semantics JφK ⊆ C of a modal formula

from a modal perspective

c ∈ JMφK iff JφK ∈ JMK ◦ γ(JφK)

equivalent algebraic viewpoint

c ∈ JMφK ⇐⇒ γ(c) ∈ JMK(JφK)
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Examples

Neighbourhood Frames, i.e. coalgebrasC → PP(C)

J2K = id : PP(C)
︸ ︷︷ ︸

TC

→ PP(C)

(identical nbhd frame translation)

Kripke Frames, ie. coalgebrasC → P(C)

viewed as neighbourhood frames

J2K :

TC
︷ ︸︸ ︷

P(C)→PP(C)

c 7→ {c′ : c′ ⊇ c}

via boolean algebras with operators

J2K :P(C)→P

TC
︷ ︸︸ ︷

P(C)

c 7→ {c′ : c′ ⊆ c}

Probabilistic Transition Systems , i.e. coalgebrasC → DC

JLpK :P(C)→P

TC
︷ ︸︸ ︷

D(C) (algebraic perspective)

c 7→ {µ : C → [0, 1] : µ(c) ≥ p}
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Genericity I: Expressivity

Easy, but important: Coalgebraic Logics are bisimulation invariant.

Hennessy-Milner Property:

Bisimulation coincides with logical equivalence over image finite transition systems.

• what is image finite for T -coalgebras?

• additional condition(s) on the logic (e.g. exclude empty set of operators)

Theorem (P, 2001)

If T is ω-accessible and the modal structure is separating, i.e. for predicate liftings

TC ∋ t 7→ {JMK(c) : c ⊆ C,M modal op}

is injective, then the induced logic has the Hennessy-Milner property.

Theorem (Schroeder, 2005)

Admitting polyadic modalities, the structure that comprises all predicate liftings is

separating.
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Genericity II: Completeness

Deduction for Coalgebraic Logics: propositional logic plus a set R of

one-step rules φ/ψ: φ propositional, ψ clause over Ma, a ∈ V

Intuition. Rules axiomatise those nbhd frames that come from coalgebras

One Step Derivability of χ (propositional over {Mx : x ⊆ X}) over a set X

• TX |= χ defined inductively by JMxK = JMK(x)

• RX ⊢ χ iff {ψσ : X |= φσ, φ/ψ ∈ R} ⊢PL χ

R is one-step sound (complete) if TX |= χ whenever (only if) RX ⊢ χ

Theorem (P, 2003, Schroeder 2006)

Soundness and weak completeness are implied by their one-step counterparts.

Theorem (Schroeder 2006)

The set of axioms that is one-step sound is one-step complete.
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Genericity III: Complexity

Shallow Model Construction for T -coalgebras: inductively strip off modalities

∀φ/ψ ∈ R.ψσ → χ =⇒ ¬φσ satisfiable

⇑

¬χ satisfiable

Countermodel of φσ’s

⇓

Countermodel of χ

Crucial Requirement is Resolution Closure of R:

derivable consequences are derivable using a single rule.

Theorem. (Schroeder/P, 2006)

If R is resolution closed and rule matching is in NP, then satisfiability is in PSPACE.

Example. K, KD, Coalition Logic, GML, PML, Majority Logic are in PSPACE.
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Construction of Resolution Closed Sets

Example: K axiomatised by rules

a

2a

a ∧ b→ c

2a ∧ 2b→ 2c

Rule Resolution:

a ∧ b→ c

2a ∧ 2b→ 2c

c ∧ d→ e

2c ∧ 2d→ 2e

Resolving the conclusions at c

(a ∧ b→ c) ∧ (c ∧ d→ e)

2a ∧ 2b ∧ 2d→ 2e

Eliminating c from the premise:

a ∧ b ∧ d→ e

2a ∧ 2b ∧ 2d→ 2e

(This converges to a cut-free sequent-calculus . . . )
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Modularity

Example. Combining Probabilities and Non-Determinism

•
a

a
b

◦
0.2

0.8

◦
1

◦
0.5

0.5

• • • • •

Simple Segala Systems

•
0.40.6

◦
a

b

•
0.2

0.8

• ◦ • ◦

Alternating Systems

Coalgebraic Interpretation

C → P(A×D(C)) C → P(A× C) + D(C)

Semantics of Combination. Functor Composition – ingredients represent features.

Logic Combinations. Mimic Functor Composition
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Logics for Combined Systems

Simple Segala Systems: C → P(A×D(C))

Ln ∋ φ ::= ⊤ | φ1 ∧ φ2 | ¬φ | 2aψ (nondeterministic formulas; ψ ∈ Lu, a ∈ A)

Lu ∋ ψ ::= ⊤ | ψ1 ∧ ψ2 | ¬ψ | Lpφ (probabilistic formulas; φ ∈ Ln, p ∈ [0, 1] ∩ Q).

Alternating Systems: C → P(A× C) + D(C)

Lo ∋ ρ ::= ⊤ | ρ1 ∧ ρ2 | ¬ρ | φ+ ψ (alternating formulas; φ ∈ Lu, ψ ∈ Ln)

Lu ∋ φ ::= ⊤ | φ1 ∧ φ2 | ¬φ | Lpρ (probabilistic formulas; ρ ∈ Lo, p ∈ [0, 1] ∩ Q)

Ln ∋ ψ ::= ⊤ | ψ1 ∧ ψ2 | ¬ψ2 | 2aρ (nondeterministic formulas; ρ ∈ Lo, a ∈ A)

Semantics by Example: given γ : C → P(A× C) + D(C)

• (Lo) Jφ+ ψK = γ−1(JφK + JψK) ⊆ C

• (Lu) JLpρK = JLpK(JρK) ⊆ DC

• (Ln) J2aρK = J2aK(JρK) ⊆ P(A× C)
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Modularity I: Expressivity

Features: Basic Building Blocks comprising

• an endofunctor F : Set
n → Set

• typed modal operatorsM : i1, . . . , ik

• predicate liftings JMK : P(X1) × · · · × P(Xk) → PF (X1, . . . , Xk)

Example 1: Uncertainty

• D : Set → Set

• Lp : 1 (p ∈ [0, 1] ∩ Q)

• JLpK as before

Example 2: Binary Choice

•
∐

: Set
2 → Set

• + : 1, 2

• J+K : (x, y) 7→ x+ y

Theorem (Cirstea, 2000)

The logic associated with any combination of features that are ω-accessible and

separating has the Hennessy-Milner property.
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Modularity II: Completeness and Complexity

Deduction for combined logics: Extend features with typed one-step rules

Example 1: Uncertainty
∑

1≤i≤n riai ≥ k : 1
∨

1≤i≤n sgn(ri)Lpi
ai

(plus side conditions)

Example 2: Binary Choice

(
∧m

i=1 αi →
∨n

j=1 βj) : 1 (
∧m

i=1 γi →
∨n

j=1 δj) : 2
∧m

i=1(αi + γi) →
∨n

j=1(βj + δj)
(m,n ≥ 0)

Deduction for Combined Logics: type correct application of deduction rules

Theorem. (Cirstea/P, 2003)

One-step completeness of all features implies weak completeness of combinations.

Theorem. (Schroeder/P, 2007)

Satisfiability for combined logics is in PSPACE provided rule matching for all

features is in NP.
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Part II: Extensions and Open Problems
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Frequently Asked Questions

Coalgebraic Completeness Theorem

Referee: This is nice, but can you also do S4?
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Frequently Asked Questions

Coalgebraic Completeness Theorem

Referee: This is nice, but can you also do S4?

DP: Not yet – 2p→ 22p is not rank 1!

Complexity of Coalgebraic Logics

Referee: This is nice, but can you also decide S4?

DP: Not yet – 2p→ 22p is not rank 1!

So maybe it’s time to go beyond rank 1 . . .
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Frame Conditions

Recall: Coalgebraic Logics can always be axiomatised by rank-1 axioms.

Our Setting : Rank-1 axioms A + Frame Conditions Φ, i.e.

• A is rank-1, sound and complete w.r.t. alll T -coalgebras

• Φ is a set of additional axioms (not neccessarily rank 1), e.g. T or 4.

Kripke Frame Analogy. A = K and e.g. Φ = 4

Semantical Consequence and Deduction

• TΦ |= φ iff C |= φ wheneverC |= Φ, for all T -coalgebrasC

• AΦ ⊢ φ iff φ is derivable from A ∪ Φ

Question. For which φ do we have completeness, i.e. TΦ |= φ =⇒ AΦ ⊢ φ?
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Partial Answers and Open Questions

Frame Completeness. TΦ |= φ =⇒ AΦ ⊢ φ holds, for example, if

• if Φ is a collection of positive formulas

• if Φ is any collection of rank 0/1 formulas (e.g. T )

• if Φ = 4 or Φ = T, 4

Open Questions.

• semantical characterisation of admissible frame conditions?

• syntactical characterisation? Sahlquist completeness theorem?
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Proof Theory

Observation I. Rule Resolution seems to lead to sequent calculus presentations,

but:

Observation II. General Rule Premises are of the form

∧

J⊆I

(
∧

j∈J

aj →
∨

j /∈J

bj)

Open Questions

• can we systematically derive sequent calculi?

• are they cut-free?

• and have interpolation and/or subformula properties?
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Decidability and Complexity

Decidability via finite models: by-product of completeness via fmp

Challenge Question: Complexity

In a setting without frame conditions . . .

Semantically

• coalgebraic shallow models

• based on extended rulesets

Syntactically

• cut-free sequent calculus

• induced by extended rulesets

Ruleset extension is algorithmic: resolution closure

Open Questions

• is resolution closure meaningful outside rank-1, and when? (yes, e.g. for S4)

• does either the syntactical or the semantic method extend?
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Fixpoint Formulas

Application Pull. Reasoning about ongoing behaviour: safety and liveness

Language Extension: flat fixpoint formulas

M∗φ ≡ νx.φ ∧Mx and M∗φ ≡ µx.φ ∨Mx

(many possible variations)

New (Fixpoint) Axioms, e.g.

F ≡M∗p→ p ∧MM∗p (p ∧M∗(p→Mp)) →M∗p

Trivial Theorem:

AS ⊢ φ =⇒ T |= φ if A is sound w.r.t. all T -coalgebras

Hard Problem: Completeness.

Even Harder Problem: Complexity
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Any Answers?
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