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The Cover Modality V

» Define the language ML of standard modal logic by

pu=p || L] T|eVe | oAp | Op | Dy

» Given set ® of formulas, define
Ve :=0\/®A /0P

(here O® := {Op | p € DY)
» History: (predicate logic), Fine, Moss, Abramsky, Walukiewicz

» Define the language MLy by

pu=p || L]T|peVe | oAp | VD

Introduction
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S,sIFVo iff for all t € R[s| thereisa ¢ € ® with St I ¢
and for all ¢ € @ thereis a t € R[s] with St IF ¢

Call a relation Z full on two sets A and B if YVa € Adb. € BZab and
Vb € Bda. € AZab.

Theorem (Moss)
S, s IF V@ iff the satisfaction relation I+ is full on R[s| and &

iff there is a Z C I which is full on R[s] and ®
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Theorem For any sets ®, &’ of formulas,

VoAV = \/ Vi{ieA|(e¢) e Z},
Z e Ppad’

where ® > &’ is the set of full relations between ® and ®’,
Proof of ‘=": Suppose S,s|F V& A VD',
Define Z C ® x &' as

Z :={(p,0) |S,tIF oA for some t € R[s]}.

Claim 1: Z is full on ® and &’.
Claim 2: S;slF V{p A ¢’ | (p,¢") € Z}.

A modal distributive law
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» Fix (finite) set X of proposition letters

» Define local description connective ®: given set P C X, put

OPF = /\ p A /\ —p
peP peX\ P
» Conversely, for every q € X, have

q = \/@P

qe P

Proposition ML is effectively equi-expressive with the language given by

@:::®P|\/<I>\/\<I>\VCI>
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Modal Distributive Normal Forms

» Define the language CML™ by

© = \/<I> | Ped
Theorem The languages ML and CML™ are effectively equi-expressive.
Proof via modal distributive law for e:

V& (= 1) f P4 P!
(Ped)A (P ed') =

Vicoma Lol N | (p,¢) € Z} if P=F
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Game semantics for ML

Position Player | Legitimate moves
(p1V p2,8) 3 {(p1,8), (p2,8)}
(1 A 2, 5) v {(¢1,5), (p2,5)}
(G, 5) 3 | {(p, 1) [ t € Rs]}
(B¢, s) v | {(wt) |t € Rls]}
(L, s) = %)

(T, s) \Y %)

(p,8),5 € V(p) vV | g

(p,s),s ¢ V(p) 3 | @
(—p,s),sg€Vip)| V |&

(—p,s),s € V(p) = &
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Position Player | Legitimate moves
(1 V 2, 8) 3 {(p1,9), (p2,5)}
(1 A 2, 5) v {(p1,5), (p2,5)}
(VO, s) = {Z C S x Fmas | Z € & R[s]}
ZC S x Fmas Y {(s,0) | (s,p) € Z}
(L, s) = &

(T, s) Y &

(p,s),s € V(p) Y &

(p,s),s & V(p) 3 |9

(—p,s),sgVip)| V | &

(—p,s),s € V(p) = &
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» Semantics:
S, s Ik 3p.p iff S, s" IF ¢ for some S', 5" <, S, s,

where <=, denotes bisimilarity wrt X \ {p}-formulas.

» Example: gp(@p NO—p)=OT.
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Bisimulation Quantifiers & Uniform interpolation

Proposition Let ¢, ¢ be modal formulas, p not occurring in ¢. Then
* =y
o= iff Ip.p =9

Corollary (‘Uniform Interpolation’)
Let ¢, ¥ be formulas with

o =1,
Assume Var(p) \ Var(y)) = {p1,...,pn}

Then )
o = Ip1- D E .
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Uniform interpolation of ML

Theorem Modal logic has uniform interpolation.

Proof sketch

~

3 is definable in CML™, and hence in ML:
° élp(gp Vo)) = §Ip.g0 V élp.zp

e Ip.VP® =V

e Ip.OP = O(P\ {p}) VoO(PU{p})

e Ip.(Ped) = Pedp.d VvV (PU{p})edp.®

Uniform interpolation 18
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Automata Theory

» automata: finite devices classifying potentially infinite objects

» strong connections with (fixpoint/second order) logic
Slogan: formulas are automata

» rich history: Buchi, Rabin, Walukiewicz, . . .

» applications in model checking

Automata can be classified according to
» objects on which they operate (words/trees/graphs, . . .)
» transition structure: deterministic/nondeterministic/alternating

» acceptance condition: Biichi/Muller/parity/. . .

Coalgebra Automata 20
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A Fundamental Result

» Key result in Rabin’s decidability proof for SnS:

e not the Complementation Lemma, but . ..
e the simulation of alternating tree automata by nondeterministic ones

» Logically, this corresponds to the elimination of conjunctions

For the modal p-calculus,
» Janin & Walukiewicz introduced modal p-automata . . .
» ... and proved a corresponding simulation result . . .

» ... which lies as the heart of all results on the modal p-calculus.

Coalgebra Automata 21
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Automata & Fixpoint Logics

Theorem (Arnold & Niwinski)
Elimination of conjunction is preserved under adding fixpoint operators!

Hence, by the modal distributive law, conjunctions can be eliminated from
the modal p-calculus.

Corollary (Janin & Walukiewicz)
uML and uCML™ (based on \/, e) are effectively equi-expressive.

Automata 22
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(joint work with Luigi Santocanale)
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Axiomatizing Fixpoint Logics

(joint work with Luigi Santocanale)

» A connective f(p1,...,pn) is a flat fixpoint connective if its semantics is
given by the least fixpoint of a modal formula ~v(z,p1,...,pn):

'j(pla R 7pn) = :ux'/)/(x)pla R 7pn)

» Examples: (x)p = uz.pV Oz, pUq = px.qV (p A Ox).
» Given set I" of modal formulas, MLy is extension of ML with {f, | v € I'}.
» Example: CTL.

Theorem
Sound and complete axiom systems for ML, uniform and effective in I'.
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(joint work with Alessandra Palmigiano)
» (Equi-expressiveness with ML trivially provides axiomatization)
» Aim: Axiomatize V ‘in its own terms’
» Observation: axiomatization of V is independent to that of negation
» Change setting to positive modal logic: (= —-free residu of classical ML)

» Our approach is algebraic.

Axiomatizing V 25
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Algebraic approach

» Positive modal algebra: structure A = (A, A, Vv, T, 1, <, 0) with

o A:= (A ,N,V, T, 1) adistributive lattice, and

e [, < unary operations on A satisfying:

Sla V)
O(a A D)
Oa A <b
O(a V b)

» Modal algebra: A = (A, A, Vv, T, 1L,—,<,0) with

VAIVANI

Sa Vv Ob
COa A Ob
S(a A b)
Oa Vv <b

Sl =1
OT =T

o (A, N,V, T, 1,—) a Boolean algebra

e [0 and < satisfy, in addition to the axioms above:

—<a = Oa.

Axiomatizing V
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Axioms for V

Positive modal V-algebra: A = (A, A,V, T, 1, V) with
» (A, A,V, T, L) adistributive lattice, and V satisfying

» V1. If <is full on o and 3, then Va < V3,
V2a. VaAnVE < \{V{aAb| (a,b) € Z} | Z € ax S},
V2b. T <VoVV{T}
V3a. If L € o, then Va < 1,
V3b. VaU{aVvb} < V(aU{a}) V V(aU{b}) V V(aU{a,b}).

Modal V-algebra: A = (A, A, Vv, T, 1L, =, V) with
» (A,A,V, T, L, ) a Boolean algebra, and V satisfying V1 — V3 and:
» V4. -Va =V{A\-a, T}V V2V V{V{-a}|aca}l.

Axiomatizing V
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Results

» Given a PMA A = (A, AV, T, L,<$,0), define Va := 0OV a A A<,
and put AY = (A, AV, T, L, V).

» Conversely, given a PMAy (B, A,V, T, 1,V)), define $a := Via, T}
and Oa := V@ V V{a}, and put B® := (B, A,V, T, L,<,0).

» Extend to maps: fV := f and f© := f whenever applicable.
Theorem The functors (-)Y and (-)©

e give a categorical isomorphism between the categories PMA and PMAy,
e and similarly for the categories MA and MAy.
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Results

» Given a PMA A = (A A, Vv, T, 1,<,0), define Va := 0OV a A A <Ca,
and put AY := (A, AV, T, L, V).

» Conversely, given a PMAy (B, A,V, T, 1,V)), define $a := Via, T}
and Oa := V@ V V{a}, and put B® := (B, A,V, T, L, <,0).

» Extend to maps: VY := f and f© := f whenever applicable.

Theorem The functors (-)Y and (-)©
e give a categorical isomorphism between the categories PMA and PMAy,
e and similarly for the categories MA and MAy.

Corollary V1 — V4 form a complete axiomatization of V.

Corollary Description of topological Vietoris construction in terms of V.

Axiomatizing V 28
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Carioca Axioms for V
(joint work with Marta Bilkova & Alessandra Palmigiano)

A set B € pp(S) is a full redistribution of a set A € pp(9) if

e | JB=A
e SNa#forall e Bandallae A

The set of redistributions of A is denoted as FRDB(A).
V-Axioms:
If < is full on @ and 3, then Va < V3. (V1)

/\{va\aeA}g\/{V{/\mﬂeB} | BeFRDB(A)} (V2)

V{Va|aec A} <\/{VB|€is fullon 3 and A}. (V3)

Axiomatizing V 29
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Almost all of this has been generalized to the level of coalgebras

(for weak pullback-preserving set functors)
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Kripke Structures as Coalgebras

» Represent RC S x Sasmapog: S — o(S5):
or(s) :={t €S| Rst}.

» Kripke frame (S, R) ~ coalgebra (S, oR)
» Kripke model = Kripke frame + assignment (valuation)
» A valuation is a map V : X — ©(5)

» represent this as a map oy : S — p(X):
ov(s):={peX|seVp)}

» Combine oy and og into map oy r: S — p(X) x p(9):
> Kripke model (S, R, V) ~ coalgebra (S,ov r)
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Coalgebra

» Coalgebra is
a general mathematical theory for evolving state-based systems

» It provides a natural framework for notions like

e behavior
e bisimulation/behavioral equivalence
e invariants

» A coalgebra is a structure S = (S,0 : S — FS),
where F is the type of the coalgebra.

» Sufficiently general to model notions like:
input, output, non-determinism, interaction, probability, . . .

» Type of Kripke models is Kx, with KxS = p(X) x ¢(5)
Type of Kripke frames is K, with KS = ©(5)
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Venema Co-Oxford 2007

Examples

» (-streams: FS=C xS

» finite words: FS =C x (SW{]})

» finite trees: FS=C x ((S x S)w{l})

» deterministic automata: FS = {0,1} x S¢
> labeled transition systems: FS = (pS)4

» (non-wellfounded) sets: FS = pS

» topologies: FS = pp(S)
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Coalgebra and Modal Logic

» Coalgebras are a natural generalization of Kripke structures

>

Modal Logic®  Equational Logic

Coalgebra Algebra

* with fixpoint operators
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Relation Lifting

» KS := p(9)
» Kripke frame is pair (S,0 : S — KS)
» Lift Z C S xS to K(Z) CKS x KS":

K(Z) == {(T,T) |Vt € T3 € T'.Ztt' and V' € T'3t € T.Ztt'}

» Zis full on T and T" iff (T, 1) € K(Z).
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Relation Lifting

» KS := p(9)
» Kripke frame is pair (S,0 : S — KS)
» Lift Z C S xS to K(Z) CKS x KS":

K(Z) := {(T,T") |Vt € T3t e T".Ztt' and V' € T'Ft € T.Ztt'}

» Z is full on T and T" iff (T,T") € K(Z).

Proposition
o'(s") € K(Z) for all (s,s') € Z.

» 7 is a bisimulation iff (o(s),
> S, s |- Vo iff (0(s),®) € K(IF).

Coalgebra 36
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Moss’ Coalgebraic Logic

» Moss: generalize this to (almost) arbitrary functor

> Define the language CML_ by
pu= L[| T ]oVe | pAe | Vi

where a € F(Fma)
» Semantics: S, s IF V a iff (6(s),a) € F(IF).

» The ‘nabla for Kripke models’ is: e!

Coalgebra
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Axioms for V¢

(joint work with Clemens Kupke & Alexander Kurz)

» Consider A\,\/ : p(Fma) — Fma, then F A\ : Fo(Fma) — FFma
» = € FpS is a redistribution of A € pFS if a(Feg)Z, for all a € A.

Axioms:

From aF(<)f derive Va < V§3. (V1)

/\{VFOz e A} = \/{VF(F /\)(E) | 2 a redistribution of A} (V2)

V{Va|ae A} <\/{V5|5F(c)A}. (V3)

Completeness is on its way
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