A Dynamic Distributive Law

Yde Venema Universiteit van Amsterdam staff.science.uva.nl/~yde

August 10, 2007 Coalgebraic Logic Workshop Oxford

(Largely based on joint work with Marta Bilkova, Clemens Kupke, Alexander Kurz, Alessandra Palmigiano, Luigi Santocanale)

Overview

- ► Introduction: reorganizing modal logic
- ► A modal distributive law
- ► A game-theoretical perspective
- Uniform interpolation
- ► Automata
- Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

Overview

- Introduction: reorganizing modal logic
- ► A modal distributive law
- ► A game-theoretical perspective
- Uniform interpolation
- ► Automata
- \blacktriangleright Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

► Define the language ML of standard modal logic by

$$\varphi \, ::= \, p \, \mid \, \neg p \, \mid \, \bot \, \mid \, \top \, \mid \, \varphi \vee \varphi \, \mid \, \varphi \wedge \varphi \, \mid \, \Diamond \varphi \, \mid \, \Box \varphi$$

► Define the language ML of standard modal logic by

$$\varphi \, ::= \, p \, \mid \, \neg p \, \mid \, \bot \, \mid \, \top \, \mid \, \varphi \lor \varphi \, \mid \, \varphi \land \varphi \, \mid \, \Diamond \varphi \, \mid \, \Box \varphi$$

• Given set Φ of formulas, define

 $\nabla \Phi := \Box \bigvee \Phi \land \bigwedge \Diamond \Phi$

 $(\mathsf{here} \, \Diamond \Phi := \{ \Diamond \varphi \mid \varphi \in \Phi \})$

► Define the language ML of standard modal logic by

$$\varphi \, ::= \, p \, \mid \, \neg p \, \mid \, \bot \, \mid \, \top \, \mid \, \varphi \lor \varphi \, \mid \, \varphi \land \varphi \, \mid \, \Diamond \varphi \, \mid \, \Box \varphi$$

• Given set Φ of formulas, define

 $\nabla \Phi := \Box \bigvee \Phi \land \bigwedge \Diamond \Phi$

 $(\mathsf{here} \, \Diamond \Phi := \{ \Diamond \varphi \mid \varphi \in \Phi \})$

► History: (predicate logic), Fine, Moss, Abramsky, Walukiewicz

► Define the language ML of standard modal logic by

$$\varphi ::= p \mid \neg p \mid \perp \mid \top \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi$$

• Given set Φ of formulas, define

$$\nabla \Phi := \Box \bigvee \Phi \land \bigwedge \Diamond \Phi$$

(here $\Diamond \Phi := \{ \Diamond \varphi \mid \varphi \in \Phi \}$)

- ► History: (predicate logic), Fine, Moss, Abramsky, Walukiewicz
- \blacktriangleright Define the language ML_{∇} by

$$\varphi \, ::= \, p \, \mid \, \neg p \, \mid \, \bot \, \mid \, \top \, \mid \, \varphi \lor \varphi \, \mid \, \varphi \land \varphi \, \mid \, \nabla \Phi$$

Fix a Kripke model $\mathbb{S} = \langle S, R, V \rangle$.

$$\begin{split} \mathbb{S}, s \Vdash \nabla \Phi \quad \text{iff} & \quad \text{for all } t \in R[s] \text{ there is a } \varphi \in \Phi \text{ with } \mathbb{S}, t \Vdash \varphi \\ & \quad \text{and for all } \varphi \in \Phi \text{ there is a } t \in R[s] \text{ with } \mathbb{S}, t \Vdash \varphi \end{split}$$

Fix a Kripke model $\mathbb{S} = \langle S, R, V \rangle$.

$$\begin{split} \mathbb{S}, s \Vdash \nabla \Phi & \text{iff} & \text{for all } t \in R[s] \text{ there is a } \varphi \in \Phi \text{ with } \mathbb{S}, t \Vdash \varphi \\ & \text{and for all } \varphi \in \Phi \text{ there is a } t \in R[s] \text{ with } \mathbb{S}, t \Vdash \varphi \end{split}$$

Call a relation Z full on two sets A and B if $\forall a \in A \exists b \in BZab$ and $\forall b \in B \exists a \in AZab$.

Fix a Kripke model $\mathbb{S} = \langle S, R, V \rangle$.

$$\begin{split} \mathbb{S}, s \Vdash \nabla \Phi & \text{iff} & \text{for all } t \in R[s] \text{ there is a } \varphi \in \Phi \text{ with } \mathbb{S}, t \Vdash \varphi \\ & \text{and for all } \varphi \in \Phi \text{ there is a } t \in R[s] \text{ with } \mathbb{S}, t \Vdash \varphi \end{split}$$

Call a relation Z full on two sets A and B if $\forall a \in A \exists b \in BZab$ and $\forall b \in B \exists a \in AZab$.

Theorem (Moss)

 $\mathbb{S}, s \Vdash \nabla \Phi$ iff the satisfaction relation \Vdash is full on R[s] and Φ

Introduction

Fix a Kripke model $\mathbb{S} = \langle S, R, V \rangle$.

$$\begin{split} \mathbb{S}, s \Vdash \nabla \Phi & \text{iff} & \text{for all } t \in R[s] \text{ there is a } \varphi \in \Phi \text{ with } \mathbb{S}, t \Vdash \varphi \\ & \text{and for all } \varphi \in \Phi \text{ there is a } t \in R[s] \text{ with } \mathbb{S}, t \Vdash \varphi \end{split}$$

Call a relation Z full on two sets A and B if $\forall a \in A \exists b. \in BZab$ and $\forall b \in B \exists a. \in AZab$.

Theorem (Moss)

 $\mathbb{S}, s \Vdash \nabla \Phi$ iff the satisfaction relation \Vdash is full on R[s] and Φ

iff there is a $Z \subseteq \Vdash$ which is full on R[s] and Φ

Introduction

Reorganizing Modal Logic

Conversely, express \Box and \diamondsuit in terms of ∇

$$\begin{aligned} & \diamondsuit \varphi & \equiv & \nabla \{\varphi, \top \} \\ & \Box \varphi & \equiv & \nabla \varnothing \lor \nabla \{\varphi\}. \end{aligned}$$

Reorganizing Modal Logic

Conversely, express \Box and \diamondsuit in terms of ∇

 $\begin{aligned} & \diamond \varphi & \equiv & \nabla \{\varphi, \top \} \\ & \Box \varphi & \equiv & \nabla \varnothing \lor \nabla \{\varphi\}. \end{aligned}$

Theorem The languages ML and ML_{∇} are effectively equi-expressive.

Overview

- ► Introduction: reorganizing modal logic
- ► A modal distributive law
- ► A game-theoretical perspective
- ► Uniform interpolation
- ► Automata
- Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

Theorem For any sets Φ, Φ' of formulas,

$$\nabla \Phi \wedge \nabla \Phi' \equiv \bigvee_{Z \in \Phi \bowtie \Phi'} \nabla \{\varphi \wedge \varphi' \mid (\varphi, \varphi') \in Z \},$$

where $\Phi \bowtie \Phi'$ is the set of full relations between Φ and Φ' .

Theorem For any sets Φ, Φ' of formulas,

$$\nabla \Phi \wedge \nabla \Phi' \equiv \bigvee_{Z \in \Phi \bowtie \Phi'} \nabla \{\varphi \wedge \varphi' \mid (\varphi, \varphi') \in Z\},$$

where $\Phi \bowtie \Phi'$ is the set of full relations between Φ and Φ' .

Proof of ' \Rightarrow **':** Suppose $\mathbb{S}, s \Vdash \nabla \Phi \land \nabla \Phi'$.

Theorem For any sets Φ, Φ' of formulas,

$$\nabla \Phi \wedge \nabla \Phi' \equiv \bigvee_{Z \in \Phi \bowtie \Phi'} \nabla \{ \varphi \wedge \varphi' \mid (\varphi, \varphi') \in Z \},$$

where $\Phi \bowtie \Phi'$ is the set of full relations between Φ and Φ' .

Proof of ' \Rightarrow **':** Suppose $\mathbb{S}, s \Vdash \nabla \Phi \land \nabla \Phi'$.

Define $Z\subseteq\Phi\times\Phi'$ as

 $Z := \{ (\varphi, \varphi') \mid \mathbb{S}, t \Vdash \varphi \land \varphi' \text{ for some } t \in R[s] \}.$

Theorem For any sets Φ, Φ' of formulas,

$$\nabla \Phi \wedge \nabla \Phi' \equiv \bigvee_{Z \in \Phi \bowtie \Phi'} \nabla \{ \varphi \wedge \varphi' \mid (\varphi, \varphi') \in Z \},$$

where $\Phi \bowtie \Phi'$ is the set of full relations between Φ and Φ' .

Proof of ' \Rightarrow **':** Suppose $\mathbb{S}, s \Vdash \nabla \Phi \land \nabla \Phi'$.

Define $Z\subseteq\Phi\times\Phi'$ as

$$Z := \{ (\varphi, \varphi') \mid \mathbb{S}, t \Vdash \varphi \land \varphi' \text{ for some } t \in R[s] \}.$$

Claim 1: Z is full on Φ and Φ' .

A modal distributive law

Theorem For any sets Φ, Φ' of formulas,

$$\nabla \Phi \wedge \nabla \Phi' \equiv \bigvee_{Z \in \Phi \bowtie \Phi'} \nabla \{ \varphi \wedge \varphi' \mid (\varphi, \varphi') \in Z \},$$

where $\Phi \bowtie \Phi'$ is the set of full relations between Φ and Φ' .

Proof of ' \Rightarrow ': Suppose $\mathbb{S}, s \Vdash \nabla \Phi \land \nabla \Phi'$.

Define $Z\subseteq\Phi\times\Phi'$ as

$$Z := \{ (\varphi, \varphi') \mid \mathbb{S}, t \Vdash \varphi \land \varphi' \text{ for some } t \in R[s] \}.$$

Claim 1: Z is full on Φ and Φ' .

Claim 2: $\mathbb{S}, s \Vdash \nabla \{ \varphi \land \varphi' \mid (\varphi, \varphi') \in Z \}.$

► Fix (finite) set X of proposition letters

- ► Fix (finite) set X of proposition letters
- ▶ Define local description connective \odot : given set $P \subseteq X$, put

$$\odot P := \bigwedge_{p \in P} p \land \bigwedge_{p \in \mathsf{X} \backslash P} \neg p$$

► Fix (finite) set X of proposition letters

(

▶ Define local description connective \odot : given set $P \subseteq X$, put

$$\mathbf{O}P := \bigwedge_{p \in P} p \land \bigwedge_{p \in \mathsf{X} \backslash P} \neg p$$

• Conversely, for every $q \in X$, have

$$q \equiv \bigvee_{q \in P} \odot P$$

- ► Fix (finite) set X of proposition letters
- ▶ Define local description connective \odot : given set $P \subseteq X$, put

$$\odot P := \bigwedge_{p \in P} p \land \bigwedge_{p \in \mathsf{X} \backslash P} \neg p$$

• Conversely, for every $q \in X$, have

$$q \equiv \bigvee_{q \in P} \odot P$$

Proposition ML is effectively equi-expressive with the language given by

$$\varphi ::= \odot P \mid \bigvee \Phi \mid \bigwedge \Phi \mid \nabla \Phi$$

Define distributed conjunction •:

 $P \bullet \Phi := \odot P \wedge \nabla \Phi$

Define distributed conjunction •:

 $P \bullet \Phi := \odot P \wedge \nabla \Phi$

Define the language CML by

$$\varphi \ ::= \ \bigvee \Phi \ \mid \ \bigwedge \Phi \ \mid \ P \bullet \Phi$$

Define distributed conjunction •:

 $P \bullet \Phi := \odot P \land \nabla \Phi$

Define the language CML by

$$\varphi ::= \bigvee \Phi \mid \bigwedge \Phi \mid P \bullet \Phi$$

Conversely, express

$$\odot P \equiv P \bullet \varnothing \lor P \bullet \{\top\} \qquad \nabla \Phi \equiv \bigvee_{P \subseteq X} P \bullet \Phi$$

Define distributed conjunction •:

$$P \bullet \Phi := \odot P \land \nabla \Phi$$

Define the language CML by

$$\varphi \, ::= \, \bigvee \Phi \, \mid \, \bigwedge \Phi \, \mid \, P \bullet \Phi$$

Conversely, express

$$\odot P \equiv P \bullet \varnothing \lor P \bullet \{\top\} \qquad \nabla \Phi \equiv \bigvee_{P \subseteq X} P \bullet \Phi$$

Proposition The languages ML and CML are effectively equi-expressive.

A modal distributive law

Modal Distributive Normal Forms

Modal Distributive Normal Forms

► Define the language CML⁻ by

$$\varphi ::= \bigvee \Phi \mid P \bullet \Phi$$

Theorem The languages ML and CML⁻ are effectively equi-expressive.

Modal Distributive Normal Forms

► Define the language CML⁻ by

$$\varphi ::= \bigvee \Phi \mid P \bullet \Phi$$

Theorem The languages ML and CML⁻ are effectively equi-expressive.

Proof via modal distributive law for •:

$$(P \bullet \Phi) \land (P' \bullet \Phi') \equiv \begin{cases} \bigvee \varnothing \ (= \bot) & \text{if } P \neq P' \\ \bigvee_{Z \in \Phi \bowtie \Phi'} P \bullet \{\varphi \land \varphi' \mid (\varphi, \varphi') \in Z\} & \text{if } P = P' \end{cases}$$

Overview

- ► Introduction: reorganizing modal logic
- ► A modal distributive law
- A game-theoretical perspective
- Uniform interpolation
- ► Automata
- Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

Game semantics for ML

Position	Player	Legitimate moves
$(\varphi_1 \lor \varphi_2, s)$		$\{(\varphi_1, s), (\varphi_2, s)\}$
$(\varphi_1 \land \varphi_2, s)$	\forall	$\{(\varphi_1, s), (\varphi_2, s)\}$
$(\diamondsuit \varphi, s)$	Ξ	$\{(\varphi, t) \mid t \in R[s]\}$
$(\Box \varphi, s)$	\forall	$\{(\varphi, t) \mid t \in R[s]\}$
(\perp, s)	Ξ	Ø
(\top, s)	\forall	Ø
$(p,s), s \in V(p)$	\forall	Ø
$(p,s), s \not\in V(p)$	Ξ	Ø
$(\neg p, s), s \notin V(p)$	\forall	Ø
$(\neg p, s), s \in V(p)$		Ø

Game semantics for ML_∇

Position	Player	Legitimate moves
$(\varphi_1 \lor \varphi_2, s)$		$\{(\varphi_1, s), (\varphi_2, s)\}$
$(\varphi_1 \land \varphi_2, s)$	\forall	$\{(\varphi_1, s), (\varphi_2, s)\}$
$(abla \Phi,s)$	Ξ	$\{Z \subseteq S \times Fmas \mid Z \in \Phi \bowtie R[s]\}$
$Z \subseteq S imes Fmas$	\forall	$\{(s,\varphi) \mid (s,\varphi) \in Z\}$
(\perp, s)	Ξ	Ø
(\top, s)	\forall	Ø
$(p,s), s \in V(p)$	\forall	Ø
$(p,s), s \not\in V(p)$	Ξ	Ø
$(\neg p, s), s \notin V(p)$	\forall	Ø
$(\neg p, s), s \in V(p)$		Ø

Strategic normal forms

'static' distributive law:

$$\varphi \wedge (\psi_1 \lor \psi_2) \equiv (\varphi \land \psi_1) \lor (\varphi \land \psi_2)$$

$$\forall \exists \forall \exists \forall$$

Strategic normal forms

'static' distributive law:

$$\varphi \wedge (\psi_1 \lor \psi_2) \equiv (\varphi \land \psi_1) \lor (\varphi \land \psi_2)$$

$$\forall \exists \qquad \exists \forall$$

modal distributive law:

$$\begin{array}{ll} \nabla \Phi \wedge \nabla \Phi' & \equiv & \bigvee_{Z \in \Phi \bowtie \Phi'} \nabla \{ \varphi \wedge \varphi' \mid (\varphi, \varphi') \in Z \} \\ & & \forall \exists \forall \forall & \exists \exists \forall \forall \end{array}$$

Overview

- ► Introduction: reorganizing modal logic
- ► A modal distributive law
- ► A game-theoretical perspective
- Uniform interpolation
- ► Automata
- Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

Bisimulation Quantifiers

Bisimulation Quantifiers

- ► Fix set X of proposition letters
- ► Syntax: if φ is a formula, then so is $\tilde{\exists} p. \varphi$
- ► Semantics:

 $\mathbb{S}, s \Vdash \exists p. \varphi \text{ iff } \mathbb{S}', s' \Vdash \varphi \text{ for some } \mathbb{S}', s' \rightleftharpoons_p \mathbb{S}, s,$

where \leq_p denotes bisimilarity wrt $X \setminus \{p\}$ -formulas.

Bisimulation Quantifiers

- ► Fix set X of proposition letters
- ► Syntax: if φ is a formula, then so is $\tilde{\exists} p. \varphi$
- ► Semantics:

 $\mathbb{S}, s \Vdash \exists p. \varphi \text{ iff } \mathbb{S}', s' \Vdash \varphi \text{ for some } \mathbb{S}', s' \rightleftharpoons_p \mathbb{S}, s,$

where \leq_p denotes bisimilarity wrt $X \setminus \{p\}$ -formulas.

• Example:
$$\tilde{\exists} p(\Diamond p \land \Diamond \neg p) \equiv \Diamond \top$$
.

Bisimulation Quantifiers & Uniform interpolation

 $\mathop{\rm Proposition}_{\sim}$ Let $\varphi,\,\psi$ be modal formulas, p not occurring in $\psi.$ Then

- $\varphi \models \tilde{\exists} p. \varphi_{\tilde{}}$
- $\varphi \models \psi$ iff $\tilde{\exists} p. \varphi \models \psi$

Bisimulation Quantifiers & Uniform interpolation

Proposition Let φ , ψ be modal formulas, p not occurring in ψ . Then

- $\varphi \models \exists p.\varphi$
- $\varphi \models \psi$ iff $\tilde{\exists} p. \varphi \models \psi$

Corollary ('Uniform Interpolation') Let φ , χ be formulas with

$$\begin{split} \varphi &\models \psi. \\ \text{Assume Var}(\varphi) \setminus \text{Var}(\psi) = \{p_1, \dots, p_n\}. \\ \text{Then} \\ \varphi &\models \tilde{\exists} p_1 \cdots p_n. \varphi \models \psi. \end{split}$$

Theorem Modal logic has uniform interpolation.

Proof sketch

Theorem Modal logic has uniform interpolation.

Proof sketch

Theorem Modal logic has uniform interpolation.

Proof sketch

•
$$\tilde{\exists} p(\varphi \lor \psi) \equiv \tilde{\exists} p.\varphi \lor \tilde{\exists} p.\psi$$

Theorem Modal logic has uniform interpolation.

Proof sketch

- $\tilde{\exists} p(\varphi \lor \psi) \equiv \tilde{\exists} p.\varphi \lor \tilde{\exists} p.\psi$
- $\tilde{\exists} p. \nabla \Phi \equiv \nabla \tilde{\exists} p. \Phi$

Theorem Modal logic has uniform interpolation.

Proof sketch

- $\tilde{\exists} p(\varphi \lor \psi) \equiv \tilde{\exists} p.\varphi \lor \tilde{\exists} p.\psi$
- $\tilde{\exists} p. \nabla \Phi \equiv \nabla \tilde{\exists} p. \Phi$
- $\tilde{\exists} p.\odot P \equiv \odot(P \setminus \{p\}) \lor \odot(P \cup \{p\})$

Theorem Modal logic has uniform interpolation.

Proof sketch

- $\tilde{\exists} p(\varphi \lor \psi) \equiv \tilde{\exists} p.\varphi \lor \tilde{\exists} p.\psi$
- $\tilde{\exists} p. \nabla \Phi \equiv \nabla \tilde{\exists} p. \Phi$
- $\tilde{\exists} p.\odot P \equiv \odot(P \setminus \{p\}) \lor \odot(P \cup \{p\})$
- $\tilde{\exists} p.(P \bullet \Phi) \equiv P \bullet \tilde{\exists} p.\Phi \lor (P \cup \{p\}) \bullet \tilde{\exists} p.\Phi$

Overview

- ► Introduction: reorganizing modal logic
- ► A modal distributive law
- ► A game-theoretical perspective
- Uniform interpolation
- ► Automata
- \blacktriangleright Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

Automata Theory

- ► automata: finite devices classifying potentially infinite objects
- strong connections with (fixpoint/second order) logic
 Slogan: formulas are automata
- ► rich history: Büchi, Rabin, Walukiewicz, . . .
- ► applications in model checking

Automata Theory

- ► automata: finite devices classifying potentially infinite objects
- strong connections with (fixpoint/second order) logic
 Slogan: formulas are automata
- ► rich history: Büchi, Rabin, Walukiewicz, . . .
- ► applications in model checking

Automata can be classified according to

Automata Theory

- ► automata: finite devices classifying potentially infinite objects
- strong connections with (fixpoint/second order) logic
 Slogan: formulas are automata
- ► rich history: Büchi, Rabin, Walukiewicz, . . .
- ► applications in model checking

Automata can be classified according to

- ▶ objects on which they operate (words/trees/graphs, . . .)
- transition structure: deterministic/nondeterministic/alternating
- ► acceptance condition: Büchi/Muller/parity/...

- ► Key result in Rabin's decidability proof for SnS:
 - not the Complementation Lemma, but . . .

- ► Key result in Rabin's decidability proof for SnS:
 - not the Complementation Lemma, but . . .
 - the simulation of alternating tree automata by nondeterministic ones

- ► Key result in Rabin's decidability proof for SnS:
 - not the Complementation Lemma, but . . .
 - the simulation of alternating tree automata by nondeterministic ones
- Logically, this corresponds to the elimination of conjunctions

- ► Key result in Rabin's decidability proof for SnS:
 - not the Complementation Lemma, but . . .
 - the simulation of alternating tree automata by nondeterministic ones
- Logically, this corresponds to the elimination of conjunctions

For the modal $\mu\text{-calculus},$

- ► Key result in Rabin's decidability proof for SnS:
 - not the Complementation Lemma, but . . .
 - the simulation of alternating tree automata by nondeterministic ones
- Logically, this corresponds to the elimination of conjunctions

For the modal $\mu\text{-calculus,}$

► Janin & Walukiewicz introduced modal μ -automata . . .

- ► Key result in Rabin's decidability proof for SnS:
 - not the Complementation Lemma, but . . .
 - the simulation of alternating tree automata by nondeterministic ones
- Logically, this corresponds to the elimination of conjunctions

For the modal $\mu\text{-calculus,}$

- ► Janin & Walukiewicz introduced modal μ -automata . . .
- ▶ . . . and proved a corresponding simulation result . . .

- ► Key result in Rabin's decidability proof for SnS:
 - not the Complementation Lemma, but . . .
 - the simulation of alternating tree automata by nondeterministic ones
- Logically, this corresponds to the elimination of conjunctions

For the modal $\mu\text{-calculus,}$

- ► Janin & Walukiewicz introduced modal μ -automata . . .
- ▶ . . . and proved a corresponding simulation result . . .
- ▶ . . . which lies as the heart of all results on the modal μ -calculus.

Automata & Fixpoint Logics

Theorem (Arnold & Niwiński)

Automata & Fixpoint Logics

Theorem (Arnold & Niwiński)

Elimination of conjunction is preserved under adding fixpoint operators!

Automata & Fixpoint Logics

Theorem (Arnold & Niwiński)

Elimination of conjunction is preserved under adding fixpoint operators!

Hence, by the modal distributive law, conjunctions can be eliminated from the modal $\mu\text{-calculus}.$

Corollary (Janin & Walukiewicz) μ ML and μ CML⁻ (based on \bigvee , •) are effectively equi-expressive.

Axiomatizing Fixpoint Logics

(joint work with Luigi Santocanale)

► A connective #(p₁,..., p_n) is a flat fixpoint connective if its semantics is given by the least fixpoint of a modal formula γ(x, p₁,..., p_n):

$$\sharp(p_1,\ldots,p_n) \equiv \mu x.\gamma(x,p_1,\ldots,p_n)$$

• Examples: $\langle * \rangle p \equiv \mu x. p \lor \Diamond x$, $pUq \equiv \mu x. q \lor (p \land \Diamond x)$.

Axiomatizing Fixpoint Logics

(joint work with Luigi Santocanale)

► A connective #(p₁,..., p_n) is a flat fixpoint connective if its semantics is given by the least fixpoint of a modal formula γ(x, p₁,..., p_n):

$$\sharp(p_1,\ldots,p_n) \equiv \mu x.\gamma(x,p_1,\ldots,p_n)$$

- Examples: $\langle * \rangle p \equiv \mu x. p \lor \Diamond x$, $pUq \equiv \mu x. q \lor (p \land \Diamond x)$.
- Given set Γ of modal formulas, ML_{Γ} is extension of ML with $\{\sharp_{\gamma} \mid \gamma \in \Gamma\}$.
- ► Example: CTL.

Axiomatizing Fixpoint Logics

(joint work with Luigi Santocanale)

► A connective #(p₁,..., p_n) is a flat fixpoint connective if its semantics is given by the least fixpoint of a modal formula γ(x, p₁,..., p_n):

 $\sharp(p_1,\ldots,p_n) \equiv \mu x.\gamma(x,p_1,\ldots,p_n)$

- Examples: $\langle * \rangle p \equiv \mu x. p \lor \Diamond x$, $pUq \equiv \mu x. q \lor (p \land \Diamond x)$.
- Given set Γ of modal formulas, ML_{Γ} is extension of ML with $\{\sharp_{\gamma} \mid \gamma \in \Gamma\}$.
- ► Example: CTL.

Theorem

Sound and complete axiom systems for ML_{Γ} , uniform and effective in Γ .

Automata

Overview

- ► Introduction: reorganizing modal logic
- ► A modal distributive law
- ► A game-theoretical perspective
- Uniform interpolation
- ► Automata
- Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

(joint work with Alessandra Palmigiano)

► (Equi-expressiveness with ML trivially provides axiomatization)

- (Equi-expressiveness with ML trivially provides axiomatization)
- Aim: Axiomatize ∇ 'in its own terms'

- ► (Equi-expressiveness with ML trivially provides axiomatization)
- Aim: Axiomatize ∇ 'in its own terms'
- Observation: axiomatization of ∇ is independent to that of negation
- ► Change setting to positive modal logic: (= ¬-free residu of classical ML)

- ► (Equi-expressiveness with ML trivially provides axiomatization)
- Aim: Axiomatize ∇ 'in its own terms'
- Observation: axiomatization of ∇ is independent to that of negation
- ► Change setting to positive modal logic: (= ¬-free residu of classical ML)
- ► Our approach is algebraic.

Algebraic approach

- Positive modal algebra: structure $A = \langle A, \wedge, \vee, \top, \bot, \diamond, \Box \rangle$ with
 - $A:=\langle A,\wedge,\vee,\top,\bot\rangle$ a distributive lattice, and
 - \Box, \diamondsuit unary operations on A satisfying: $\diamondsuit(a \lor b) = \diamondsuit a \lor \diamondsuit b \qquad \diamondsuit \bot = \bot$ $\Box(a \land b) = \Box a \land \Box b \qquad \Box \top = \top$ $\Box a \land \diamondsuit b \leq \diamondsuit(a \land b)$ $\Box(a \lor b) \leq \Box a \lor \diamondsuit b$
- Modal algebra: $A = \langle A, \wedge, \vee, \top, \bot, \neg, \diamond, \Box \rangle$ with
 - $\langle A, \wedge, \lor, \top, \bot, \neg \rangle$ a Boolean algebra
 - \Box and \diamondsuit satisfy, in addition to the axioms above: $\neg \diamondsuit a = \Box \neg a$.

Axioms for ∇

Positive modal ∇ -algebra: $A = \langle A, \wedge, \vee, \top, \bot, \nabla \rangle$ with

- $\langle A, \wedge, \lor, \top, \bot \rangle$ a distributive lattice, and ∇ satisfying
- ▶ $\nabla 1$. If \leq is full on α and β , then $\nabla \alpha \leq \nabla \beta$, $\nabla 2a$. $\nabla \alpha \wedge \nabla \beta \leq \bigvee \{\nabla \{a \wedge b \mid (a, b) \in Z\} \mid Z \in \alpha \bowtie \beta\},$ $\nabla 2b$. $\top \leq \nabla \emptyset \lor \nabla \{\top\},$ $\nabla 3a$. If $\bot \in \alpha$, then $\nabla \alpha \leq \bot,$ $\nabla 3b$. $\nabla \alpha \cup \{a \lor b\} \leq \nabla (\alpha \cup \{a\}) \lor \nabla (\alpha \cup \{b\}) \lor \nabla (\alpha \cup \{a, b\}).$

Modal ∇ -algebra: $A = \langle A, \wedge, \vee, \top, \bot, \neg, \nabla \rangle$ with

- $\langle A, \wedge, \vee, \top, \bot, \neg \rangle$ a Boolean algebra, and ∇ satisfying $\nabla 1 \nabla 3$ and:
- $\blacktriangleright \nabla 4. \ \neg \nabla \alpha = \nabla \{ \bigwedge \neg \alpha, \top \} \lor \nabla \varnothing \lor \bigvee \{ \nabla \{ \neg a \} \mid a \in \alpha \}.$

Results

- Given a PMA $A = \langle A, \wedge, \vee, \top, \bot, \diamond, \Box \rangle$, define $\nabla \alpha := \Box \bigvee \alpha \land \bigwedge \diamond \alpha$, and put $A^{\nabla} := \langle A, \wedge, \vee, \top, \bot, \nabla \rangle$.
- Conversely, given a $\mathsf{PMA}_{\nabla} \langle B, \wedge, \vee, \top, \bot, \nabla \rangle$, define $\Diamond a := \nabla \{a, \top\}$ and $\Box a := \nabla \varnothing \lor \nabla \{a\}$, and put $B^{\diamondsuit} := \langle B, \wedge, \vee, \top, \bot, \diamondsuit, \Box \rangle$.
- Extend to maps: $f^{\nabla} := f$ and $f^{\diamond} := f$ whenever applicable.

Theorem The functors $(\cdot)^{\nabla}$ and $(\cdot)^{\diamondsuit}$

- \bullet give a categorical isomorphism between the categories PMA and $\mathsf{PMA}_{\nabla},$
- and similarly for the categories MA and MA_{∇} .

Results

- Given a PMA $A = \langle A, \wedge, \vee, \top, \bot, \diamond, \Box \rangle$, define $\nabla \alpha := \Box \bigvee \alpha \land \bigwedge \diamond \alpha$, and put $A^{\nabla} := \langle A, \wedge, \vee, \top, \bot, \nabla \rangle$.
- Conversely, given a $\mathsf{PMA}_{\nabla} \langle B, \wedge, \vee, \top, \bot, \nabla \rangle$, define $\Diamond a := \nabla \{a, \top\}$ and $\Box a := \nabla \varnothing \lor \nabla \{a\}$, and put $B^{\diamondsuit} := \langle B, \wedge, \vee, \top, \bot, \diamondsuit, \Box \rangle$.
- Extend to maps: $f^{\nabla} := f$ and $f^{\diamond} := f$ whenever applicable.

Theorem The functors $(\cdot)^{\nabla}$ and $(\cdot)^{\diamondsuit}$

- \bullet give a categorical isomorphism between the categories PMA and $\mathsf{PMA}_{\nabla},$
- and similarly for the categories MA and MA_{∇} .

Corollary $\nabla 1 - \nabla 4$ form a complete axiomatization of ∇ .

Results

- Given a PMA $A = \langle A, \wedge, \vee, \top, \bot, \diamond, \Box \rangle$, define $\nabla \alpha := \Box \bigvee \alpha \land \bigwedge \diamond \alpha$, and put $A^{\nabla} := \langle A, \wedge, \vee, \top, \bot, \nabla \rangle$.
- Conversely, given a $\mathsf{PMA}_{\nabla} \langle B, \wedge, \vee, \top, \bot, \nabla \rangle$, define $\Diamond a := \nabla \{a, \top\}$ and $\Box a := \nabla \varnothing \lor \nabla \{a\}$, and put $B^{\diamond} := \langle B, \wedge, \vee, \top, \bot, \diamond, \Box \rangle$.
- Extend to maps: $f^{\nabla} := f$ and $f^{\diamond} := f$ whenever applicable.

Theorem The functors $(\cdot)^{\nabla}$ and $(\cdot)^{\diamond}$

- \bullet give a categorical isomorphism between the categories PMA and $\mathsf{PMA}_{\nabla},$
- \bullet and similarly for the categories MA and $MA_{\nabla}.$

Corollary $\nabla 1 - \nabla 4$ form a complete axiomatization of ∇ .

Corollary Description of topological Vietoris construction in terms of ∇ .

Carioca Axioms for ∇

(joint work with Marta Bilkova & Alessandra Palmigiano)

A set $B \in \wp \wp(S)$ is a full redistribution of a set $A \in \wp \wp(S)$ if

- $\bigcup B = \bigcup A$
- $\bullet \ \beta \cap \alpha \neq \varnothing \ \text{for all} \ \beta \in B \ \text{and all} \ \alpha \in A$

The set of redistributions of A is denoted as FRDB(A).

∇ -Axioms:

If
$$\leq$$
 is full on α and β , then $\nabla \alpha \leq \nabla \beta$. $(\nabla 1)$

$$\bigwedge \left\{ \nabla \alpha \mid \alpha \in A \right\} \le \bigvee \left\{ \nabla \{ \bigwedge \beta \mid \beta \in B \} \mid B \in FRDB(A) \right\} \quad (\nabla 2)$$

 $\nabla\{\bigvee \alpha \mid \alpha \in A\} \le \bigvee\{\nabla\beta \mid \in \text{ is full on } \beta \text{ and } A\}. \tag{\nabla3}$

Overview

- ► Introduction: reorganizing modal logic
- ► A modal distributive law
- ► A game-theoretical perspective
- Uniform interpolation
- ► Automata
- \blacktriangleright Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

Almost all of this has been generalized to the level of coalgebras

(for weak pullback-preserving set functors)

Almost all of this has been generalized to the level of coalgebras

(for weak pullback-preserving set functors)

(partly joint work with Clemens Kupke & Alexander Kurz)

• Represent $R \subseteq S \times S$ as map $\sigma_R : S \to \wp(S)$:

 $\sigma_{\mathbf{R}}(s) := \{t \in S \mid Rst\}.$

• Kripke frame $\langle S, R \rangle \sim \text{coalgebra } \langle S, \sigma_R \rangle$

• Represent $R \subseteq S \times S$ as map $\sigma_R : S \to \wp(S)$:

 $\sigma_{\mathbf{R}}(s) := \{t \in S \mid Rst\}.$

- Kripke frame $\langle S, R \rangle \sim \text{coalgebra } \langle S, \sigma_R \rangle$
- ► Kripke model = Kripke frame + assignment (valuation)
- A valuation is a map $V : \mathsf{X} \to \wp(S)$

• Represent $R \subseteq S \times S$ as map $\sigma_R : S \to \wp(S)$:

$$\sigma_{\mathbf{R}}(s) := \{ t \in S \mid Rst \}.$$

- Kripke frame $\langle S, R \rangle \sim \text{coalgebra } \langle S, \sigma_R \rangle$
- ► Kripke model = Kripke frame + assignment (valuation)
- A valuation is a map $V : \mathsf{X} \to \wp(S)$
- represent this as a map $\sigma_V : S \to \wp(\mathsf{X})$:

$$\sigma_V(s) := \{ p \in \mathsf{X} \mid s \in V(p) \}.$$

► Represent $R \subseteq S \times S$ as map $\sigma_R : S \to \wp(S)$: $\sigma_R(s) := \{t \in S \mid Rst\}.$

- Kripke frame $\langle S, R \rangle \sim \text{coalgebra } \langle S, \sigma_R \rangle$
- ► Kripke model = Kripke frame + assignment (valuation)
- A valuation is a map $V : \mathsf{X} \to \wp(S)$
- represent this as a map $\sigma_V : S \to \wp(\mathsf{X})$:

$$\pmb{\sigma_V}(s) := \{ p \in \mathsf{X} \mid s \in V(p) \}.$$

- Combine σ_V and σ_R into map $\sigma_{V,R}: S \to \wp(\mathsf{X}) \times \wp(S)$:
- Kripke model $\langle S, R, V \rangle \sim \text{coalgebra } \langle S, \sigma_{V,R} \rangle$

► Coalgebra is

► Coalgebra is

- ► It provides a natural framework for notions like
 - behavior

► Coalgebra is

- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence

► Coalgebra is

- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants

► Coalgebra is

- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
- A coalgebra is a structure $\mathbb{S} = \langle S, \sigma : S \to FS \rangle$, where F is the type of the coalgebra.

► Coalgebra is

- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
- A coalgebra is a structure $\mathbb{S} = \langle S, \sigma : S \to FS \rangle$, where F is the type of the coalgebra.
- Sufficiently general to model notions like: input, output, non-determinism, interaction, probability, . . .

► Coalgebra is

- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
- A coalgebra is a structure $\mathbb{S} = \langle S, \sigma : S \to FS \rangle$, where F is the type of the coalgebra.
- Sufficiently general to model notions like: input, output, non-determinism, interaction, probability, . . .
- ► Type of Kripke models is K_X, with K_XS = ℘(X) × ℘(S) Type of Kripke frames is K, with KS = ℘(S)

Examples

- C-streams: $FS = C \times S$
- ► finite words: $FS = C \times (S \uplus \{\downarrow\})$
- ► finite trees: $FS = C \times ((S \times S) \uplus \{\downarrow\})$
- deterministic automata: $FS = \{0, 1\} \times S^C$
- ► labeled transition systems: $FS = (\wp S)^A$
- (non-wellfounded) sets: $FS = \wp S$
- ► topologies: $FS = \wp \wp(S)$

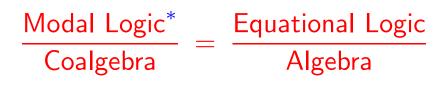
Coalgebra and Modal Logic

Coalgebra and Modal Logic

Coalgebras are a natural generalization of Kripke structures

Coalgebra and Modal Logic

Coalgebras are a natural generalization of Kripke structures



Coalgebra and Modal Logic

Coalgebras are a natural generalization of Kripke structures

* with fixpoint operators

Relation Lifting

- $\blacktriangleright \mathsf{K}S := \wp(S)$
- Kripke frame is pair $\langle S, \sigma : S \to \mathsf{K}S \rangle$
- Lift $Z \subseteq S \times S'$ to $\overline{\mathsf{K}}(Z) \subseteq \mathsf{K}S \times \mathsf{K}S'$:

 $\overline{\mathsf{K}}(Z) := \{ (T,T') \mid \forall t \in T \exists t' \in T'.Ztt' \text{ and } \forall t' \in T' \exists t \in T.Ztt' \}$

► Z is full on T and T' iff $(T,T') \in \overline{\mathsf{K}}(Z)$.

Relation Lifting

- $\blacktriangleright \mathsf{K}S := \wp(S)$
- Kripke frame is pair $\langle S, \sigma : S \to \mathsf{K}S \rangle$
- Lift $Z \subseteq S \times S'$ to $\overline{\mathsf{K}}(Z) \subseteq \mathsf{K}S \times \mathsf{K}S'$:

 $\overline{\mathsf{K}}(Z) := \{ (T, T') \mid \forall t \in T \exists t' \in T'.Ztt' \text{ and } \forall t' \in T' \exists t \in T.Ztt' \}$

► Z is full on T and T' iff $(T,T') \in \overline{\mathsf{K}}(Z)$.

Proposition

► Z is a bisimulation iff $(\sigma(s), \sigma'(s')) \in \overline{\mathsf{K}}(Z)$ for all $(s, s') \in Z$.

Relation Lifting

 $\blacktriangleright \mathsf{K}S := \wp(S)$

- Kripke frame is pair $\langle S, \sigma : S \to \mathsf{K}S \rangle$
- Lift $Z \subseteq S \times S'$ to $\overline{\mathsf{K}}(Z) \subseteq \mathsf{K}S \times \mathsf{K}S'$:

 $\overline{\mathsf{K}}(Z) := \{ (T,T') \mid \forall t \in T \exists t' \in T'.Ztt' \text{ and } \forall t' \in T' \exists t \in T.Ztt' \}$

► Z is full on T and T' iff $(T,T') \in \overline{\mathsf{K}}(Z)$.

Proposition

- ► Z is a bisimulation iff $(\sigma(s), \sigma'(s')) \in \overline{\mathsf{K}}(Z)$ for all $(s, s') \in Z$.
- ▶ $\mathbb{S}, s \Vdash \nabla \Phi \text{ iff } (\sigma(s), \Phi) \in \overline{\mathsf{K}}(\Vdash).$

► Moss: generalize this to (almost) arbitrary functor

- ► Moss: generalize this to (almost) arbitrary functor
- ► Define the language CML_F by

$$\varphi \, ::= \, \bot \, \mid \, \top \, \mid \, \varphi \lor \varphi \, \mid \, \varphi \land \varphi \, \mid \, \nabla_{\mathsf{F}} \alpha$$

where $\alpha \in \mathsf{F}(Fma)$

- ► Moss: generalize this to (almost) arbitrary functor
- ► Define the language CML_F by

$$\varphi \ ::= \ \bot \ \mid \ \top \ \mid \ \varphi \lor \varphi \ \mid \ \varphi \land \varphi \ \mid \ \nabla_{\mathsf{F}} \alpha$$

where $\alpha \in \mathsf{F}(Fma)$

▶ Semantics: $\mathbb{S}, s \Vdash \nabla_{\mathsf{F}} \alpha$ iff $(\sigma(s), \alpha) \in \overline{\mathsf{F}}(\Vdash)$.

- ► Moss: generalize this to (almost) arbitrary functor
- ► Define the language CML_F by

$$\varphi \, ::= \, \bot \, \mid \, \top \, \mid \, \varphi \lor \varphi \, \mid \, \varphi \land \varphi \, \mid \, \nabla_{\mathsf{F}} \alpha$$

where $\alpha \in \mathsf{F}(Fma)$

- ► Semantics: $\mathbb{S}, s \Vdash \nabla_{\mathsf{F}} \alpha$ iff $(\sigma(s), \alpha) \in \overline{\mathsf{F}}(\Vdash)$.
- ► The 'nabla for Kripke models' is: •!

The coalgebraic distributive law

• Consider $\bigwedge : \wp(Fma) \to Fma$, then $\mathsf{F} \bigwedge : \mathsf{F}\wp(Fma) \to \mathsf{F}Fma$

The coalgebraic distributive law

- Consider $\bigwedge : \wp(Fma) \to Fma$, then $\mathsf{F} \bigwedge : \mathsf{F} \wp(Fma) \to \mathsf{F} Fma$
- $\Xi \in F \wp S$ is a redistribution of $A \in \wp FS$ if $\alpha(\overline{F} \in S)\Xi$, for all $\alpha \in A$.

 $\bigwedge \{ \nabla_{\mathsf{F}} \alpha \mid \alpha \in A \} \ \equiv \ \bigvee \{ \nabla_{\mathsf{F}} (\mathsf{F} \bigwedge) (\Xi) \mid \Xi \text{ a redistribution of } A \}$

Axioms for ∇_{F}

(joint work with Clemens Kupke & Alexander Kurz)

Axioms for ∇_{F}

(joint work with Clemens Kupke & Alexander Kurz)

- Consider $\bigwedge, \bigvee : \wp(Fma) \to Fma$, then $\mathsf{F} \bigwedge : \mathsf{F}\wp(Fma) \to \mathsf{F}Fma$
- $\Xi \in F \wp S$ is a redistribution of $A \in \wp FS$ if $\alpha(\overline{F} \in S)\Xi$, for all $\alpha \in A$.

Axioms:

From
$$\alpha \overline{\mathsf{F}}(\leq)\beta$$
 derive $\nabla \alpha \leq \nabla \beta$. ($\nabla 1$)

 $\bigwedge \{ \nabla_{\mathsf{F}} \alpha \mid \alpha \in A \} = \bigvee \{ \nabla_{\mathsf{F}} (\mathsf{F} \bigwedge) (\Xi) \mid \Xi \text{ a redistribution of } A \} \quad (\nabla 2)$

$$\nabla\{\bigvee \alpha \mid \alpha \in A\} \le \bigvee\{\nabla\beta \mid \beta\overline{\mathsf{F}}(\in)A\}.$$
 (\nabla3)

Axioms for ∇_{F}

(joint work with Clemens Kupke & Alexander Kurz)

- Consider $\bigwedge, \bigvee : \wp(Fma) \to Fma$, then $\mathsf{F} \bigwedge : \mathsf{F} \wp(Fma) \to \mathsf{F} Fma$
- $\Xi \in F \wp S$ is a redistribution of $A \in \wp FS$ if $\alpha(\overline{F} \in S)\Xi$, for all $\alpha \in A$. Axioms:

From
$$\alpha \overline{\mathsf{F}}(\leq)\beta$$
 derive $\nabla \alpha \leq \nabla \beta$. ($\nabla 1$)

$$\bigwedge \{ \nabla_{\mathsf{F}} \alpha \mid \alpha \in A \} = \bigvee \{ \nabla_{\mathsf{F}} (\mathsf{F} \bigwedge) (\Xi) \mid \Xi \text{ a redistribution of } A \} \quad (\nabla 2)$$

$$\nabla\{\bigvee\alpha \mid \alpha \in A\} \le \bigvee\{\nabla\beta \mid \beta\overline{\mathsf{F}}(\in)A\}. \tag{\nabla3}$$

Completeness is on its way

Axiomatizing ∇

Overview

- ► Introduction: reorganizing modal logic
- ► A modal distributive law
- ► A game-theoretical perspective
- Uniform interpolation
- ► Automata
- Axiomatizing ∇
- ► A coalgebraic generalization
- Concluding remarks

The modal distributive law is a fundamental principle,

The modal distributive law is a fundamental principle,

The modal distributive law is a fundamental principle,

with many applications/manifestations:

► logic

The modal distributive law is a fundamental principle,

- ► logic
- ► game theory

The modal distributive law is a fundamental principle,

- ► logic
- ► game theory
- ► automata theory

The modal distributive law is a fundamental principle,

- ► logic
- ► game theory
- ► automata theory
- ► coalgebra

The modal distributive law is a fundamental principle,

- ► logic
- ► game theory
- ► automata theory
- ► coalgebra
- ▶ . . .

► proof theory

- ► proof theory
- completeness for fixpoint logics

- ► proof theory
- completeness for fixpoint logics
- \blacktriangleright algebraic aspects of ∇

- ► proof theory
- completeness for fixpoint logics
- \blacktriangleright algebraic aspects of ∇
- ► logics for coalgebra

- ► proof theory
- completeness for fixpoint logics
- \blacktriangleright algebraic aspects of ∇
- ► logics for coalgebra
- ► role of negation

- ► proof theory
- completeness for fixpoint logics
- \blacktriangleright algebraic aspects of ∇
- ► logics for coalgebra
- ► role of negation
- ► constructive content