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Reorganizing Modal Logic

Conversely, express 2 and 3 in terms of ∇

3ϕ ≡ ∇{ϕ,⊤}

2ϕ ≡ ∇∅ ∨∇{ϕ}.
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◮ Define the language CML− by

ϕ ::=
∨

Φ | P • Φ

Theorem The languages ML and CML− are effectively equi-expressive.

Proof via modal distributive law for •:

(P •Φ)∧(P ′•Φ′) ≡







∨

∅ (= ⊥) if P 6= P ′

∨

Z∈Φ⊲⊳Φ′ P • {ϕ ∧ ϕ′ | (ϕ,ϕ′) ∈ Z} if P = P ′
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Game semantics for ML

Position Player Legitimate moves
(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(3ϕ, s) ∃ {(ϕ, t) | t ∈ R[s]}
(2ϕ, s) ∀ {(ϕ, t) | t ∈ R[s]}
(⊥, s) ∃ ∅

(⊤, s) ∀ ∅

(p, s), s ∈ V (p) ∀ ∅

(p, s), s 6∈ V (p) ∃ ∅

(¬p, s), s 6∈ V (p) ∀ ∅

(¬p, s), s ∈ V (p) ∃ ∅
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◮ Semantics:

S, s  ∃p.ϕ iff S
′, s′  ϕ for some S

′, s′ ↔p S, s,

where ↔p denotes bisimilarity wrt X \ {p}-formulas.

◮ Example: ∃̃p(3p ∧ 3¬p) ≡ 3⊤.
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Proposition Let ϕ, ψ be modal formulas, p not occurring in ψ. Then
• ϕ |= ∃̃p.ϕ
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Corollary (‘Uniform Interpolation’)
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◮ automata: finite devices classifying potentially infinite objects

◮ strong connections with (fixpoint/second order) logic
Slogan: formulas are automata

◮ rich history: Büchi, Rabin, Walukiewicz, . . .

◮ applications in model checking

Automata can be classified according to

◮ objects on which they operate (words/trees/graphs, . . . )

◮ transition structure: deterministic/nondeterministic/alternating

◮ acceptance condition: Büchi/Muller/parity/. . .
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A Fundamental Result

◮ Key result in Rabin’s decidability proof for SnS:

• not the Complementation Lemma, but . . .
• the simulation of alternating tree automata by nondeterministic ones

◮ Logically, this corresponds to the elimination of conjunctions

For the modal µ-calculus,

◮ Janin & Walukiewicz introduced modal µ-automata . . .

◮ . . . and proved a corresponding simulation result . . .

◮ . . . which lies as the heart of all results on the modal µ-calculus.
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Automata & Fixpoint Logics

Theorem (Arnold & Niwiński)

Elimination of conjunction is preserved under adding fixpoint operators!

Hence, by the modal distributive law, conjunctions can be eliminated from
the modal µ-calculus.

Corollary (Janin & Walukiewicz)
µML and µCML− (based on

∨

, •) are effectively equi-expressive.
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Axiomatizing Fixpoint Logics

(joint work with Luigi Santocanale)

◮ A connective ♯(p1, . . . , pn) is a flat fixpoint connective if its semantics is
given by the least fixpoint of a modal formula γ(x, p1, . . . , pn):

♯(p1, . . . , pn) ≡ µx.γ(x, p1, . . . , pn)

◮ Examples: 〈∗〉p ≡ µx.p ∨ 3x, pUq ≡ µx.q ∨ (p ∧ 3x).
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◮ Given set Γ of modal formulas, MLΓ is extension of ML with {♯γ | γ ∈ Γ}.

◮ Example: CTL.

Theorem

Sound and complete axiom systems for MLΓ, uniform and effective in Γ.
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◮ Observation: axiomatization of ∇ is independent to that of negation

◮ Change setting to positive modal logic: (= ¬-free residu of classical ML)

◮ Our approach is algebraic.

Axiomatizing ∇ 25



Venema Co-Oxford 2007

Algebraic approach

◮ Positive modal algebra: structure A = 〈A,∧,∨,⊤,⊥,3,2〉 with

• A := 〈A,∧,∨,⊤,⊥〉 a distributive lattice, and
• 2,3 unary operations on A satisfying:

3(a ∨ b) = 3a ∨ 3b 3⊥ = ⊥
2(a ∧ b) = 2a ∧ 2b 2⊤ = ⊤
2a ∧ 3b ≤ 3(a ∧ b)
2(a ∨ b) ≤ 2a ∨ 3b

◮ Modal algebra: A = 〈A,∧,∨,⊤,⊥,¬,3,2〉 with

• 〈A,∧,∨,⊤,⊥,¬〉 a Boolean algebra
• 2 and 3 satisfy, in addition to the axioms above:
¬3a = 2¬a.
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Axioms for ∇

Positive modal ∇-algebra: A = 〈A,∧,∨,⊤,⊥,∇〉 with

◮ 〈A,∧,∨,⊤,⊥〉 a distributive lattice, and ∇ satisfying

◮ ∇1. If ≤ is full on α and β, then ∇α ≤ ∇β,
∇2a. ∇α ∧∇β ≤

∨

{∇{a ∧ b | (a, b) ∈ Z} | Z ∈ α ⊲⊳ β},
∇2b. ⊤ ≤ ∇∅ ∨∇{⊤},
∇3a. If ⊥ ∈ α, then ∇α ≤ ⊥,
∇3b. ∇α ∪ {a ∨ b} ≤ ∇(α ∪ {a}) ∨ ∇(α ∪ {b}) ∨ ∇(α ∪ {a, b}).

Modal ∇-algebra: A = 〈A,∧,∨,⊤,⊥,¬,∇〉 with

◮ 〈A,∧,∨,⊤,⊥,¬〉 a Boolean algebra, and ∇ satisfying ∇1 – ∇3 and:

◮ ∇4. ¬∇α = ∇{
∧

¬α,⊤} ∨∇∅ ∨
∨

{∇{¬a} | a ∈ α}.
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Results

◮ Given a PMA A = 〈A,∧,∨,⊤,⊥,3,2〉, define ∇α := 2
∨

α ∧
∧

3α,
and put A∇ := 〈A,∧,∨,⊤,⊥,∇〉.

◮ Conversely, given a PMA∇ 〈B,∧,∨,⊤,⊥,∇)〉, define 3a := ∇{a,⊤}
and 2a := ∇∅ ∨∇{a}, and put B3 := 〈B,∧,∨,⊤,⊥,3,2〉.

◮ Extend to maps: f∇ := f and f3 := f whenever applicable.

Theorem The functors (·)∇ and (·)3

• give a categorical isomorphism between the categories PMA and PMA∇,
• and similarly for the categories MA and MA∇.
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Results

◮ Given a PMA A = 〈A,∧,∨,⊤,⊥,3,2〉, define ∇α := 2
∨

α ∧
∧

3α,
and put A∇ := 〈A,∧,∨,⊤,⊥,∇〉.

◮ Conversely, given a PMA∇ 〈B,∧,∨,⊤,⊥,∇)〉, define 3a := ∇{a,⊤}
and 2a := ∇∅ ∨∇{a}, and put B3 := 〈B,∧,∨,⊤,⊥,3,2〉.

◮ Extend to maps: f∇ := f and f3 := f whenever applicable.

Theorem The functors (·)∇ and (·)3

• give a categorical isomorphism between the categories PMA and PMA∇,
• and similarly for the categories MA and MA∇.

Corollary ∇1 – ∇4 form a complete axiomatization of ∇.

Corollary Description of topological Vietoris construction in terms of ∇.
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Carioca Axioms for ∇
(joint work with Marta Bilkova & Alessandra Palmigiano)

A set B ∈ ℘℘(S) is a full redistribution of a set A ∈ ℘℘(S) if
•

⋃

B =
⋃

A

• β ∩ α 6= ∅ for all β ∈ B and all α ∈ A

The set of redistributions of A is denoted as FRDB(A).

∇-Axioms:

If ≤ is full on α and β, then ∇α ≤ ∇β. (∇1)

∧

{

∇α | α ∈ A
}

≤
∨

{

∇{
∧

β | β ∈ B} | B ∈ FRDB(A)
}

(∇2)

∇{
∨

α | α ∈ A} ≤
∨

{∇β | ∈ is full on β and A}. (∇3)
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Overview

◮ Introduction: reorganizing modal logic

◮ A modal distributive law

◮ A game-theoretical perspective

◮ Uniform interpolation

◮ Automata

◮ Axiomatizing ∇

◮ A coalgebraic generalization

◮ Concluding remarks
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Almost all of this has been generalized to the level of coalgebras

(for weak pullback-preserving set functors)
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Almost all of this has been generalized to the level of coalgebras

(for weak pullback-preserving set functors)

(partly joint work with Clemens Kupke & Alexander Kurz)
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Kripke Structures as Coalgebras
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Kripke Structures as Coalgebras

◮ Represent R ⊆ S × S as map σR : S → ℘(S):

σR(s) := {t ∈ S | Rst}.

◮ Kripke frame 〈S,R〉 ∼ coalgebra 〈S, σR〉
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Kripke Structures as Coalgebras

◮ Represent R ⊆ S × S as map σR : S → ℘(S):

σR(s) := {t ∈ S | Rst}.

◮ Kripke frame 〈S,R〉 ∼ coalgebra 〈S, σR〉

◮ Kripke model = Kripke frame + assignment (valuation)

◮ A valuation is a map V : X → ℘(S)

◮ represent this as a map σV : S → ℘(X):

σV (s) := {p ∈ X | s ∈ V (p)}.

◮ Combine σV and σR into map σV,R : S → ℘(X) × ℘(S):

◮ Kripke model 〈S,R, V 〉 ∼ coalgebra 〈S, σV,R〉

Coalgebra 32
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Coalgebra

◮ Coalgebra is
a general mathematical theory for evolving state-based systems
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Coalgebra

◮ Coalgebra is
a general mathematical theory for evolving state-based systems

◮ It provides a natural framework for notions like

• behavior
• bisimulation/behavioral equivalence
• invariants

◮ A coalgebra is a structure S = 〈S, σ : S → FS〉,
where F is the type of the coalgebra.

◮ Sufficiently general to model notions like:
input, output, non-determinism, interaction, probability, . . .

◮ Type of Kripke models is KX, with KXS = ℘(X) × ℘(S)
Type of Kripke frames is K, with KS = ℘(S)
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Examples

◮ C-streams: FS = C × S

◮ finite words: FS = C × (S ⊎ {↓})

◮ finite trees: FS = C × ((S × S) ⊎ {↓})

◮ deterministic automata: FS = {0, 1} × SC

◮ labeled transition systems: FS = (℘S)A

◮ (non-wellfounded) sets: FS = ℘S

◮ topologies: FS = ℘℘(S)
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Coalgebra and Modal Logic
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Coalgebra and Modal Logic

◮ Coalgebras are a natural generalization of Kripke structures

◮

Modal Logic∗

Coalgebra
=

Equational Logic

Algebra

* with fixpoint operators
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Relation Lifting

◮ KS := ℘(S)

◮ Kripke frame is pair 〈S, σ : S → KS〉

◮ Lift Z ⊆ S × S′ to K(Z) ⊆ KS × KS′:

K(Z) := {(T, T ′) | ∀t ∈ T∃t′ ∈ T ′.Ztt′ and ∀t′ ∈ T ′∃t ∈ T.Ztt′}

◮ Z is full on T and T ′ iff (T, T ′) ∈ K(Z).

Coalgebra 36



Venema Co-Oxford 2007

Relation Lifting

◮ KS := ℘(S)

◮ Kripke frame is pair 〈S, σ : S → KS〉

◮ Lift Z ⊆ S × S′ to K(Z) ⊆ KS × KS′:

K(Z) := {(T, T ′) | ∀t ∈ T∃t′ ∈ T ′.Ztt′ and ∀t′ ∈ T ′∃t ∈ T.Ztt′}

◮ Z is full on T and T ′ iff (T, T ′) ∈ K(Z).

Proposition

◮ Z is a bisimulation iff (σ(s), σ′(s′)) ∈ K(Z) for all (s, s′) ∈ Z.

Coalgebra 36



Venema Co-Oxford 2007

Relation Lifting

◮ KS := ℘(S)

◮ Kripke frame is pair 〈S, σ : S → KS〉

◮ Lift Z ⊆ S × S′ to K(Z) ⊆ KS × KS′:

K(Z) := {(T, T ′) | ∀t ∈ T∃t′ ∈ T ′.Ztt′ and ∀t′ ∈ T ′∃t ∈ T.Ztt′}

◮ Z is full on T and T ′ iff (T, T ′) ∈ K(Z).

Proposition

◮ Z is a bisimulation iff (σ(s), σ′(s′)) ∈ K(Z) for all (s, s′) ∈ Z.

◮ S, s  ∇Φ iff (σ(s),Φ) ∈ K().
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Moss’ Coalgebraic Logic

◮ Moss: generalize this to (almost) arbitrary functor
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F
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Moss’ Coalgebraic Logic

◮ Moss: generalize this to (almost) arbitrary functor

◮ Define the language CML
F

by

ϕ ::= ⊥ | ⊤ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∇
F
α

where α ∈ F(Fma)

◮ Semantics: S, s  ∇
F
α iff (σ(s), α) ∈ F().

◮ The ‘nabla for Kripke models’ is: •!
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The coalgebraic distributive law

◮ Consider
∧

: ℘(Fma) → Fma, then F
∧

: F℘(Fma) → FFma
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The coalgebraic distributive law

◮ Consider
∧

: ℘(Fma) → Fma, then F
∧

: F℘(Fma) → FFma

◮ Ξ ∈ F℘S is a redistribution of A ∈ ℘FS if α(F∈S)Ξ, for all α ∈ A.

∧

{∇
F
α | α ∈ A} ≡

∨

{∇
F
(F

∧

)(Ξ) | Ξ a redistribution of A}
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(joint work with Clemens Kupke & Alexander Kurz)
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Axioms for ∇F

(joint work with Clemens Kupke & Alexander Kurz)

◮ Consider
∧

,
∨

: ℘(Fma) → Fma, then F
∧

: F℘(Fma) → FFma

◮ Ξ ∈ F℘S is a redistribution of A ∈ ℘FS if α(F∈S)Ξ, for all α ∈ A.

Axioms:

From αF(≤)β derive ∇α ≤ ∇β. (∇1)

∧

{∇
F
α | α ∈ A} =

∨

{∇
F
(F

∧

)(Ξ) | Ξ a redistribution of A} (∇2)

∇{
∨

α | α ∈ A} ≤
∨

{∇β | βF(∈)A}. (∇3)
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Axioms for ∇F

(joint work with Clemens Kupke & Alexander Kurz)

◮ Consider
∧

,
∨

: ℘(Fma) → Fma, then F
∧

: F℘(Fma) → FFma

◮ Ξ ∈ F℘S is a redistribution of A ∈ ℘FS if α(F∈S)Ξ, for all α ∈ A.

Axioms:

From αF(≤)β derive ∇α ≤ ∇β. (∇1)

∧

{∇
F
α | α ∈ A} =

∨

{∇
F
(F

∧

)(Ξ) | Ξ a redistribution of A} (∇2)

∇{
∨

α | α ∈ A} ≤
∨

{∇β | βF(∈)A}. (∇3)

Completeness is on its way
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Concluding remarks

The modal distributive law is a fundamental principle,

Concluding remarks 41



Venema Co-Oxford 2007

Concluding remarks

The modal distributive law is a fundamental principle,

with many applications/manifestations:

Concluding remarks 41



Venema Co-Oxford 2007

Concluding remarks

The modal distributive law is a fundamental principle,

with many applications/manifestations:

◮ logic

Concluding remarks 41



Venema Co-Oxford 2007

Concluding remarks

The modal distributive law is a fundamental principle,

with many applications/manifestations:

◮ logic

◮ game theory

Concluding remarks 41



Venema Co-Oxford 2007

Concluding remarks

The modal distributive law is a fundamental principle,

with many applications/manifestations:

◮ logic

◮ game theory

◮ automata theory

Concluding remarks 41



Venema Co-Oxford 2007

Concluding remarks

The modal distributive law is a fundamental principle,

with many applications/manifestations:

◮ logic

◮ game theory

◮ automata theory

◮ coalgebra

Concluding remarks 41



Venema Co-Oxford 2007

Concluding remarks

The modal distributive law is a fundamental principle,

with many applications/manifestations:
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◮ automata theory
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◮ . . .
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Further research

◮ proof theory

◮ completeness for fixpoint logics

◮ algebraic aspects of ∇

◮ logics for coalgebra

◮ role of negation

◮ constructive content
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