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Abstract. This paper studies finitary modal logics as specification languages for
Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-
known that Set-coalgebras are not semantically adequate for finitary modal logics
in the sense that bisimilarity does not in general coincide with logical equiv-
alence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the
other hand, do provide an adequate semantics for finitary modal logics. This leads
us to study the relationship of finitary modal logics and Set-coalgebras by uncov-
ering the relationship between Set-coalgebras and Stone-coalgebras. This builds
on a long tradition in modal logic, where one studies canonical extensions of
modal algebras and ultrafilter extensions of Kripke frames to account for finitary
logics. Our main contributions are the generalisations of two classical theorems
in modal logic to coalgebras, namely thendson-Tarski theorem giving a set-
theoretic representation for each modal algebra and the bisimulation-somewhere-
else theorem stating that two states of a coalgebra have the same (finitary modal)
theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter exten-
sion of the coalgebra.

1 Introduction

To formalise transition systems as coalgebras for a furiEtorSet — Set has many
advantages. In particular, the theory of transition systems can be set up parametric in
the ‘type’ T' of the transition system and a number of techniques for coalgebras (e.g.
final semantics, isomorphism theorems, final sequence, co-Birkhoff theorems) can be
obtained by dualising the corresponding concepts for algebras (Rutten [18]). Unfortu-
nately, when it comes tepecification languages for coalgebratsis more difficult to
achieve results parametric in the funciar

The idea that (variants of) modal logics are the natural logics for coalgebras goes
back to Moss seminal paper [14]. Applying to modal logic dualised algebraic meth-
ods, leads to the insight that modal logic for coalgebras is dual to equational logic for
algebras [11,13]. But the methods derived from this approach are adequate dnty for
finitary logics. This can be seen as a consequence of the fachdtf&tis equivalent
to the category otompleteatomic Boolean algebras which correspondrtfinitary
propositional logic in the same way as Boolean algebras capture finitary propositional
logic.

* Partially support by the Nuffield Foundation Grant NUF-NALOA4.



Maybe for this reason, the approach towards (more realistic) finitary logics for coal-
gebras has been somewhat ad hoc. It essentially consisted in giving up parametricity in
T and restricting attention to particular classes of functors [12,17,6]. More recently,
Pattinson [15,16] has shown how these logic arise uniformlpgiss given by predi-
cate liftings It is one of the aims of this paper to further develop this approach towards
a theory of logics for coalgebras that is fully parametric in the fun€tor

Another approach to finitary logics for coalgebras is to change the model theory,
that is, to replace coalgebras over Set (Set-coalgebras) by coalgebras over Stone spaces
(Stone-coalgebras) [10]. Stone-coalgebras generalise the so-called descriptive general
frames which are known in modal logic as the standard adequate semantics for finitary
modal logics. Her@adequatemeans that the logic is sound and complete and that two
states are bisimilar iff they have the same theory. The deeper reason for the adequateness
of finitary modal logics and Stone-coalgebras is the duality of Boolean algebras and
Stone spaces, see Johnstone [7].

In [9], we have shown that every sound lodlaiven by predicate liftings induces
a functorZ on the categorBA of Boolean algebras. Using the dual equivalencB f
and the categor§tone of Stone spaces, it follows thathas a ‘dual’L? on Stone and
that L?-coalgebras provide an adequate semanticg for

The main issue of this paper can now be explained as follows: If a finitary modal
logic for T-coalgebras is given by a functéron BA, then an adequate semantics for
this logic is provided by the Stone-coalgebras for the dual funkforThe quest for a
model theory of finitary modal logics for coalgebras now boils down to a comparison
of T-coalgebras over Set and Stone-coalgebrag.forThis is the main theme of this
paper. By building on the well-developed model theory of modal logics, where this
question has been studied for the special case of Kripke frames and Kripke models, our
main contribution is the generalisation of two important theorems of modal logic: The
Jonsson-Tarski theorem and bisimulation-somewhere-else. The former result provides
us with an completeness theorem, and the latter with a model-theoretic characterisation
of logical equivalence.

Summary of Techniques: The main ingredients of our approach are depicted in the
following non-commutingliagram

S

BA Stone 1)

s

The categonBA of Boolean algebras is the main building block of our logics, which
are obtained by ‘adding modal operatorsBA. The categorptone of Stone spaces is
our main technical tooStone is ‘categorically the same’ @A in the sense th&tone

is dually equivalent t@A. But, as a category of topological spac®ne is sufficiently
Set-like to be useful in the study et-based coalgebras.

The functorQ : Set — BA is the contravariant powerset functor mapping a¥¢o the
algebra of predicates ovéf. The functorS is one part of the dual equivalence between
Stone andBA and maps a Boolean algebdato its spaceS A of ultrafilters giving a



topological representatiéof A. Finally, U is the forgetful functor that maps a space to
its carrier set. Note that the one traversal of this diagram, startiBg aproduces the
perfect [8] or canonical extensiapU S(A) for any Boolean algebra. The traversal
starting atSet produces the set of ultrafiltef$SQ(X) over a setX (see e.qg. [3] for
more information).

One of our aims is to lift these constructionsltecoalgebras, wherg : Set — Set.
This will be achieved by first translatingZa-coalgebra to arL-algebra, for a suitable
L : BA — BA, then to transport this algebra by duality to Af+coalgebra ove$tone
and finally back to d'-coalgebra where we ugg, S,U to map the carriers of the
respective structures.

It has been shown in [9] that any logi¢ for T-coalgebras (as e.g. the logics in
[15,16,6,17,12]) given by predicate liftings can be described by a furicton BA
(capturing syntax and proof rules) and a natural transformatioh) — QT (giving
the coalgebraic semantics).

S

L C BA Stone (2

§:LQ = QT ’Q\ %

Set

@

The transformatior allows to lift Q to a functorQ : Coalg(T) — Alg(L). The se-

mantics of formulas w.r.t. to a coalgebfa: X — TX is given by by the unique
morphism from the initialL-algebra taQ¢. The initial L-algebra is commonly known
as the Lindenbaum algebra of the logic

Summary of Results: We will show how to generalise two classic results from modal
logic to coalgebras, namely thenkson-Tarski theorem and the bisimulation-somewhere-
else result for ultrafilter extensions.

Jonsson-Tarski Theorem (Completenes§iven a modal logic described by ands,
we extend/ S : BA — Set to amapU S : Alg(L) — Coalg(T"). Applying

QUS : Alg(L) — Coalg(T) — Alg(L) (3)
to an algebrd. A — A, there will be an injectivd.-algebra morphism

This is known in modal logic, in the case of Kripke frames, as ties§on-Tarski theo-
rem. As a corollary, completeness of the logic wFicoalgebras then follows because
theT-coalgebra corresponding to the initialalgebra provides a counter-model for any
non-derivable formula.

4 The elements oft are represented by the clopen (closed and open) subsets of the topological
spaceSA. A, V, - in A become intersection, union and complement.



Lifting Functors fromSet to Stone. We will lift a functor 7" : Set — Set to a functor
T : Stone — Stone in such a way tha$'@) extends to a functor

SQ : Coalg(T) — Coalg(T).

T will depend on a choice of logic faF, but there is a canonical such, namely the logic
given byall predicate liftings fofl". We show that two states inZ&coalgebra have the
same theory if and only if they are bisimilar in the correspondirgpalgebra.

Ultrafilter Extensions. Ultrafilter extensions are one of the central notions in the model
theory of modal logics. In order to define ultrafilter extensions we need to find, for each
coalgebraX — T'X a suitable coalgebr&d SQ(X) — T(USQ(X)) whereUSQ :

Set — Set maps a sei to the set of ultrafilters oX. We determine conditions that
allow us to obtain a transformatian U7" — TU, thus completing Diagram (2) to

L C BA 5 Stonej T 4)

5:LQ QT o T +:UT 5 TU

The transformatiort allows to lift U to U : Coalg(T') — Coalg(T). The ultrafilter
extension of a coalgebra is then given by the composition

USQ : Coalg(T') — Alg(L) — Coalg(T") — Coalg(T). (5)

Under the assumption that the transformatioabove is natural, we show that two
states in @'-coalgebra X, £) have the same theory if and only if they are bisimilar in

the ultrafilter extensiol/ SQ (X, ). This provides a model-theoretic characterisation
of logical equivalence for finitary logics.

Related Work. The first attempt of formulating a duality which accounts for an al-
gebraic semantics of modal logic, for the special class of Kripke-polynomial functors,
goes back to Jacobs [6]. Moreover, Section %ogfcit. contains some material on ul-
trafilter extensions of coalgebras but fails to give an account of bisimilarity somewhere
else, as there the function embedding a coalgebra into its ultrafilter extension is a mor-
phism of coalgebras.

2 Preliminaries and Notation

Stone Duality. Unfortunately we have space only to indicate the most important no-
tions. For a general introduction we refer to [7,2]. We wfite for the category of sets
and functionsBA for the category of Boolean algebras and their morphismSasek

for the category of Stone-spaces and continuous mapscdrteavariantfunctors wit-
nessing the dual equivalence betw&enandStone are denoted by

P : Stone — BA and S : BA — Stone



wherePX is the Boolean algebra of clopen (closed and open) subsEtawdsS A is the
space consisting of ultrafilters ovelr, on arrows, these functors act as inverse image;
for more on this duality see [7]. The forgetful functors are denotell bystone — Set
andV : BA — Set throughout, and) : Set — BA is the contravariant powerset
functor, which is assumed to take valuesBiA. The compositioQU S constructs the
perfect [8] or canonical extension of a Boolean algebra, and we write

ja:A—=>QUSA, a—{ueceUSA|acu}

for the canonical embedding. The fact that: A — QUSA is an injective Boolean
algebra morphism is known &tone’s representation theorem for Boolean algebras
ja represents! as an algebra of subsets whevre/, - in A become intersection, union
and complement. Another map which we will need throughout the paper is the map

nx : X 2 USQX, z—»{Y CX|zeY}

embedding a seX into the set of ultrafilters of) X. (In fact, but we will not use this,
@ andU S are adjoint on the right anflandn are the (co)units of the adjunction.)
The categonptone allows familiar type constructions. For example, whet€agke
polynomial functors (KPF]6] on Set are given by the left-hand side belowietoris
polynomial functors (VPF)10] on Stone are given by the right-hand side.

T:=1d|K|T'|T4+T | TxT | PoT T:u=1d|K|T'|T+T|TxT |VoT

K, K denote constant functordenotes a seP is covariant powerset andthe Stone
space analogu&’X is the Stone space of closed subsetXghe topology is generated
by {{b C UX | bclosed and C a} | a clopert}.

Coalgebraic Modal Logic. (See [9] for more details). Our treatment of coalgebras
and modal logic is parametric in an endofuncdet — Set, which is denoted by’
throughout. By am-ary predicate lifting forl' we mean a natural transformation:

(2)" — 21" where2' : Set — Set is contravariant powerset (note that= vV Q). A

set/A of predicate liftings and associated arities gives rise to a furdgfarSet — BA

by mappingA — F{[\(ai,...,a,) | A n-ary,a,...,a, € A}; hereF : Set —

BA is the functor that constructs free Boolean algebras and expressions of the form
[Al(ay,...,a,) are understood purely syntactically. To every set of predicate liftings
we associate a logi€(A) given by

LA)s>pu=1f]p—=0]|[A(e1,--.¢n) (Ae A n-ary)

It follows by induction thatC(A) = UJ,,~o(ULo)™(VF{tt,ff}) whereV : BA — Set
is the forgetful functor. B

A modal axiomis an expressiop <> 1) whereyp, 1) € Lo(FX) for a denumerable
set X of variables. We writed F ¢ if ¢ is derivable using propositional reasoning,
congruence (ifp; < ¥1,...,on < ¥y, then[A (o1, ..., 0n) © [Al(¢1,...,¥,)) and
substitution instances of axioms.if1

Given a set4 of modal axioms, we define a functdr : BA — BA by LA =
LoUA/ ~ where~ is the least equivalence relation 6.y A that contains all sub-
stitution instances of axiomg «» ¢ € A. This allows us to view syntax and proof



calculus of a logic given by a set of predicate liftings and modal axioms as endofunctor
L : BA — BA. Note that then-fold application ofL to the initial Boolean algebra
yields the set

LA, A) ={p € L(A) | rankp) < n}/~

where~ is the inter-derivability relation given hy.
For aT-coalgebra(C, ), the semantic§y], C C of a formula is given by the
inductive extension of the assignment

[M(ers - 0n)ly =77 0 MO [ealys - - - [enll)

to the whole of£(A). Assuming soundness of the semantics, thatls ¢ <> v implies
[e], = [¥], for all T-coalgebragC, v), we can define a natural transformation

o0x : LQ(X) = QT (X)

by the inductive extension of the assignméni(p1, ..., 0n))~ = AMX) (@1, .-, ¢n)
where(:) .. is the equivalence class oby ~.

This allows us to recast the coalgebraic semanticg£ (of) as follows: Fory €
VF({t,f}), [¢], is given canonically; ifp € (ULo)"*' (VF({tt,f})) we obtain
[¢l, =~ ' od(n(p)) wherer : LyU — L takes equivalence classes. Assuming that
the initial L-algebra exists, we arrive at the following compact characterisation of the
coalgebraic semantics. The semantics of formulas w.r.t. to a coalgeb¥a— T X is
given by by the unique morphism from the initial algetira — I

I LI (6)
] L LLH
0x <2 orx X 1Qx

We say that two states y in two coalgebras atgehaviourally equivalentor bisimilar

if they can be identified by some coalgebra morphism. If two states are bisimilar, then
they satisfy the same formulae. The converse is not true in general. This failure plays
an important role in this paper.

3 Jonsson-Tarski Theorem (Completeness)

Given an algebra : LA — A, we want to transform it to the Set-coalgebra

U8(a) = USA"S* USLA " TUSA.

Thinking of the elements df'SLA as ultrafilters ovelL A, we define

ha:USLA — TUSA (7)
u = ha(u) € ({6(Lja(a)) | a € u} (8)



that is,h 4 chooses an element fA{d(Lj4(a)) | a € u} for each ultrafiltens on LA.
This definition is constructed in such a way th&§ preserves the semantics (compare
Diagram(9) below with Diagram (6)). The notatiéhS suggests that bott’ and S
can be lifted seperately (Section 5), which is possible4fis natural. Here we neither
requireh 4 to be natural not/S to be functorial.

Definition 1. We say that is definable if for all algebrad and all ultrafilters: on LA
we have thaf){d(Lja(a)) | a € u} is non-empty.

Remark 2. A necessary condition fak to be definable is that is injective. For sup-
pose otherwise. Then there will be are LA such thatz #L andd(Lja(a)) = 0. As
a #1 we find an ultrafilten, € USLA s.t.a € u. Butthen\{6(Lj4(a)) | a € u} = 0.

The essence of completeness w.r.t. to the coalgebraic semantics is that

is an injectiveAlg(L)-morphism. This is known as thédsson-Tarski theorem. It is an
extension of Stone’s representation theorem from Boolean algebras to modal algebras
(ie L-algebras).

To see how completeness follows, assume ¢higtnot derivable and : LA — A
is the initial algebra. We hawe |= ¢ # T, henceQUS(a) |= ¢ # T by j4 being an
injective morphism, hencE S(a) K ¢ by definition of the coalgebraic semantics (see
Diagram (6)), thus providing the countermodel for

From Stone’s theorem, we know thgt is an injectiveBA-morphism. To see what is
needed to makgy an L-algebra morphism we take a look at the following diagram.

A 2 LA (9)
in JjLa LLJ'A
QUSA QUSLAZ QTUSA LQUSA
QUS«a Qha=h,"! dus

The lower part, which is ati.-algebra omQU S 4, is obtained by transforming4, «)
into aT-coalgebra and back to diralgebra. From the naturality ¢f it follows that; 4
is an L-algebra morphism if the triangle commutes. This leads us to

Theorem 3. Assuming that is definable, the logic given hyis complete w.r.t. the
coalgebraic semantics.

Proof, We show that the triangle in the diagram above commutesb Eoil A, let us
write b for jLa(b) = {u € USLA | b € u}. Eliding subscripts, we have to show
h=(8(Lj(b))) = b, that is,

h(u) € 8(Lj(b)) & b € u.

‘<" holds by definition ofh. For ‘=" assumeb ¢ w. It follows —b € u, henceh(u) €
d(Lj(=b)), henceh(u) € =d(Lj (b)), ie h(u) ¢ 5(Lj(b)).



Remark 4. The completeness proof of Jacobs [6] works essentially this way- (isis
ourh). Compared to the completeness proof of [9] (which mimicked the induction along
the final coalgebra sequence of [15]), tlmdson-Tarski approach to completeness is
simpler as it avoids an induction along the final sequence. On the other hand not all
logics admit such a completeness proof: If we take the finite powerset functor together
with the standard modal logic, thénis not definable, see Example 23.

4 Lifting Functors from Set to Stone

In this section we are going to use predicate liftings to lift a fun@torSet — Set to a
functor? : Stone — Stone. We will give two descriptions of . First,7X is the dual of
the Boolean algebra generated by the images of the predicate liffitigs —» QTUX
(Definition 7). Second[" is the dual of the functok onBA that describes the complete
logic corresponding to the given predicate liftings (Remark 16).

Given a collectionS of subsets ofX we denote byS)ga the subalgebra of the
Boolean algebra&(X) generated bys, i.e. by closingS under taking finite unions,
intersections and under complementation. We will use the following technical lemma.

Definition and Lemma 5. Given a functorF' : C — Set and a functoG : C°P — Set
such that there is a natural transformatjon G — VQF°P. Then we can define a
functor <G>B/_\ : C°P —» BA by Ietting <G>BAX = <]X[GX]>BA and <G>BAf =
VQFPf [(aysay forarbitrary X,V andf: X - Y € C.

Proof. Using the naturality of it is easy to show thaiG)ga is well defined on objects
and morphisms. Functoriality ¢t7)ga then follows from the functoriality of () F°P.

Definition 6. Let F, G : C — Set be functors and : F' — G a natural transformation.
Then we define a functd¥(r) : C — Set by S(7)(X) := 7x[FX] for X € C and by
letting S(7)(f) to be the unique map such that the following diagram commutes

FX —=3(n)(X)—GX

LFJ’ L%(T)(f) ‘/Gf

FY —=3(1)(Y)—GY
wheref : X — Y € C was arbitrary.

We are now ready for the definition of a lifting ofSat-endofunctor tbtone.

Definition 7. GivenT : Set — Set and a setl of predicate liftings\ : V@™ — VQT
define A
T:=S((3(r"))en)

wherer” := [(Ay_o i"™)aea] : [Ieq VP™ — VQT denotes the natural transfor-
mation obtained by cotupling of all the transformations o i”* and the mapsg;* are
the embedding¥y P X — V™ UX.

Proposition 8. T is a functor.



Proof. Clearly 74 = [(Ay. o i")xe4] is @ natural transformation frofi] V P™ to
VQTU. Therefore(7) is a functor fromStone® — Set and there is a natural trans-
formationj : S(r) — VQTU. But then by Lemma §S3(7))ga is a functor from
Stone°® to BA. ThereforeT is a functor fromStone®® to Stone®” or, equivalently,
T : Stone — Stone.

The previous definition pre-supposes a4eff predicate liftings to define the lifted
functorT : Stone — Stone. The next proposition, which was stated in [19] and which
is an instance of the Yoneda lemma, shows that there is a canonical choice for the set of
liftings.

Proposition 9. There is a 1-1 correspondence
{n-ary predicate liftings\x : (2")* — 27¥} = {subsets of'(2")}
given byS C T'(2") — X where
AMC): (Pr,...,P) e PC)" = {t€eTC | 1g0T{lp,,...,1p )(t) =1}
where, forY” C X, 1y : X — 2 is the characteristic function af.

Given this canonical choice of liftings, it is instructive to look at some concrete
examples.

Example 10. 1. Suppos€’'X = K is constant with some finite sé&f as its value.
ThenT = K whereK is the setk with the discrete topology. To see that, note that
every lifting is determined by a subsetC K, which gives rise to the algebfaK
of all subsets of<, which in turn induces the lifted funct@rX = SQK =2 K.

2. ForTX = X,i.e.T =1d,we getf =~ Id. Forn = 1, we obtain a unary lifting\g
for everyS C 2; this gives rise to the liftings

A=id A=- A=t M=f

where);(C) : P(C) — P(C). One can show, that akary liftings can be obtained
as Boolean combinations af . Hence the generated Boolean algeér?))saX
is isomorphic taPX, whenceld & Id.

3. ForTX = P(X), we obtainT = V whereV : Stone — Stone denotes the
Vietoris functor. Invoking Proposition 9, we obtain 8 unary liftings of typ@C' —
VQTC, which are generated by Boolean combinationsl@nd<, whered(C) :
2¢ — 2T% s given byc — {d C C | d C ¢} and® = —~oOo—. Similarly, alln-ary
liftings can be defined, and one obtains that for the @a&e= PX, (3(74))paX
is the Boolean algebra generated{iyu | « € PX} U {<{a | a € PX} quotiented
by the axioms of standard modal logic, il&p <> == andO(py, ..., p,) <
(D1 A - -+ A Ogy,). From this it follows thafl” = V), see [10] for details.

Remark 11. It is possible to prove thatcommutes with the formation of products,
coproducts and the composition of functors, i.e.

ToxTo =Ty xTy, ThtTo=T,+T5 and T, oTo =T, oTs.



Combining this fact with the above mentioned examples one can show that for every
Kripke polynomial functofI” the corresponding Vietoris polynomial functor is isomor-
phic to the functoff'.

We will now show that we can extend the funct®f) : Set — Stone to a functor

Coalg(T) — Coalg(T). As a first step of this construction let us see how we can trans-
form ultrafilter of QTUX naturally into ultrafilter of 3(74))saX by simply forgetting
the sets IMQTUX \ (S(r4))gaX.

Definition and Lemma 12. The functionzx defined by
7x : SQTUX — TX
u— un ((%(TA»BAX)

is well-defined and continuogs. The family of functiatig-sione gives rise to a natural
transformationt : SQTU — T.

Proof. Let j be the natural embedding ¢&(74))gaX into QTUX. Then it is easy
to see thatS; = 7. Hencenx is well defined and continuous. Naturality ®fthen
follows from the naturality of.

With the help ofr we can turrl’-coalgebras int(ﬁcoalgebras.
Definition 13. Let (X,) € Coalg(7). Then we define a functiofy : SQX —
TSQX by Ietting& = 'erQX o SQTUX o SQ’)/

4

SQy SQTnx TsQx

SQX SQTX SQTUSQX TSQX

The operation of turning @-coalgebra into é’-coalgebra is functorial.
Proposition 14. The mapping
(X,7) € Coalg(T) — (SQX,4) € Coalg(T)
f € Coalg(T) — SQf € Coalg(T)
defines a functof(Q : Coalg(T") — Coalg(T).
Proof. The claim follows from the fact thaf andz are both natural.

The semantics of the logic w.rf-coalgebras is given by the following predicate
liftings.

Definition 15. A predicate liftingA : (V@)™ — VQT for T induces a predicate lifting
A: (VP)" — VPT for T via

Ax = Vk(s(r4))sax © AUX © 1%

Whel’ei% : (VPX)" — (VQUX)” andk<%(TA)>BAX : <$(TA)>BAX — PS<%(TA)>BAX
is the isomorphism given by Stone duality.

10



Remark 16. 7' can be described more abstractly. bét: L'Q — QT describe the
semantics of the logi€ given as above by predicate liftings (and no axioms). We can
define ‘an improved versior?, of L’ ‘with axioms’ by factoringl’ A — LQUSA —
QTUSAthroughitsimage ab’A —» LA — QTUSA. One then shows the following.

1. Lis a functor.

2. LQX is obtained by factoring’ : L'QX — QT X through its image. The image
0x : LQX — TQX gives the interpretation of w.r.t. T-coalgebras whereas,
intuitively, the quotient.’ QX — LQX describes the axioms added4o That¢
is injective corresponds to the completeness of the logic describéd $se [9].

3. L is dual toT', that is, there is an isomorphisf. — 7'S, or, equivalentlyy :
LP — PT. The isod gives aT'-coalgebra semantics to the logicwhich agrees
with the one from Definition 15.

4. The functorSQ : Coalg(T)) — Coalg(7") can now be described as mappifig—

TX t0SQX — SQTX 2% SLOX 3 TSQX.

Proposition 17. 1. Consider a state of a 7-coalgebra and the statg (z) in the
corresponding’-coalgebrax andrx (x) have the same theory.
2. Two states of d'-coalgebra are bisimilar iff they have the same theory.

Proof. 1. Let: : LI — L be the initial L-algebra ando € I. The semantics op
w.r.t. a coalgebr&X’ — T'X and its ultrafilter extensioSQX — T'SQX is given
by the initial algebra maps as in the following diagram (see Remark 16).

L

T LI
/ L[H]set L[H]sett\
)
[H]Stonei QX QTX = LQX !L[[-}]Smne

IR

\E |/

PSQX ~— PSQTX <2 PSLQX ~—— PFSQX ~— LPSQ

The left column means thate [¢]stone Iff [¢]ser € u (Note the similarity with the
truth lemma of the canonical model known in modal logic). This implies the claim.
2. This follows from?" being dual taL.

The following corollary reconciles logical equivalence and bisimilarity. Although
two logically equivalent states in a Set-coalgebra may fail to be bisimilar, they will be
bisimilar in the corresponding Stone-coalgebra:

Theorem 18. GivenT : Set — Set and a logic. for T-coalgebras, lefl” : Stone —
Stone be the lifted functor. Then, givéiX, ) € Coalg(7') andz,y € X, we have that
z andy have the same theory iffy (x) is bisimilar tonx (y) in SQ(X,¥).

11



5 The Ultrafilter Extension of a Coalgebra

In this section we defin#, thus lifting Diagram (1) to algebras and coalgebras

5

Alg(L) Coalg(T) (10)

Coalg(T)

USQ(X 5 TX) will be the ultrafilter extension of. Although SQ is left-adjoint
to U, this will not hold in general for the lifted functors. The reason is that the unit
nx : X = USQX may fail to be a coalgebra morphism. This is the observation that
gives rise to Theorem 27.

We need a transformatian 7" — T'U. This can be done ifltrafilters in 7" have
non-empty intersection that is, if for all Stone space$ and all ultrafiltersu € U7X
we have( u # 0. We then define

tx : UTX = TUX
u s tx(u) € ﬂ u

Remark 19. UsingT'S = SL, we see thaty appeared already &g in (7). Similarly,
ha istsa. Note that naturality was not required in Section 3.
Under the assumption thats natural, we can now lift/ : Stone — Set to a functor

U : Coalg(T) — Coalg(T)
mapping¢ : X — TXtoUX B UTX 5% TUX. Inthe following proposition we prove
two useful properties of.
Proposition 20. For all X € Stone let tx be defined as above. Then

1. tx is injective for allX. .
2. If for all X and for allu € UTX we have thaf)u is a singleton set, thehis a
natural transformation.

Proof. The first item follows from the fact that for two ultrafiltets # v’ we always
have(u N Nu' = (. To prove that is natural we have to show th&t/ f o tx =
ty o UT f for some arbitraryf : X — Y. Letu € UT X. Then

ty(UTf(uw)) = ty(TUf ™) () = F
& Fe(TUF ) ) = (TUF ) HF)
for the F'such that (ﬂ u) = {F'}
& F=TUf|F'| & TU f(tx(u)) = F.

SS(LA— A)=SA— SLA=TSA, see Remark 16.3.
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Kripke polynomial functors fulfill this criterion, for example:

Example 21. Let T' = P and /A the canonical set of liftings. Then it is easy to see that
(3(71))saX = PVX and therefore we have for alle UTX = S((S(74))saX) that
Nu = {F} for someF € VX by Stone duality. Thereforeis natural according to
Proposition 20. The reader is invited to check that in 18t= (3(¢)X, ;) whereS(t)

is defined as in 6 andis the quotient topology induced lpy. Therefore our definition

of an ultrafilter extension foP-coalgebras coincides with the one used in modal logic.

Remark 22. The construction sketched in the example works also for other functors:
If ¢ is natural, the mappin@ : Stone — Stone, X ~ (3(¢)X, 1), can be extended

to a functor with the property that = T and thatUTX C TUX for all X. We can
then use the inclusiot7’X C TUX which simply forgets the topology in place of the
t-map to define the ultrafilter extension. This works in particular for a KR#here we

get thatT is equal to the corresponding VPF.

There are also functors for which we cannot define an ultrafilter extension.

Example 23. LetT = P, andA = {<} whereP,, denotes the finite power set functor
ando(Y) :={Y"' | Y'isfinite andY’ NY # 0}. Thent cannot be defined in general.
For a counterexample considér= (w U {*}, 7) wherer is generated by the Boolean
set algebra of all finite subsets ©fand all cofinite subsets af U {x} that containx.
ThenX is a Stone space. If we defibe:= {O({n}) | n € w} C (3(71))gaX one can
easily check that/ has the finite intersection property. Therefore we can exiéna
an ultrafilteru, € UP,,X. But obviously) U = () and hence alsp)u = 0.

Of course, finitely branching Kripke frames, ie coalgebrasPAgr do have ultrafilter
extensions. The point of the example above is that these ultrafilter extensioRs are
coalgebras but nd®,,-coalgebras.

The important property we need is thgireserves the semantics. The semantics of
the logic w.r.t.7-coalgebras was given in Definition 15 and Remark 16.3.

Proposition 24. ¢ : UT — TU preserves the semantics. That is, the subsetsXof
determined by interpreting a formula gn X — TX and ontx o U¢ : UX —» TUX
are identical.

Proof. The claim is proven by induction on the structure of formulas. We only provide
the inductive step for formulas of the forfh]. Letz € X andy = [A]g, then

2 € [¥leove & o € (tx 0 U s ([Plirove)) & € (15 0 U™ (u([e]e))
@ zeUe! ({u cUTX | ﬂu C /\UX(HQO]]E)})

& weUe ({ueUTX | hux(lvle) € u}) = Us™ (Axllvl))
ST € |I’9ﬂ]£a

where the=--part of (x) is true because

ﬂu Z Aux([ele) = Avx([ele) € u= —Auvx([v]e) € u= ﬂu C —Aux([¢le)-
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Remark 25. Thatt preserves the semantics means that the left-hand column of the
diagram

I LI
/// \\\
/ L[H]e L[[']]&L \
. bx
[lesove PX PTX LPX L([Jesovey

\ |/

A

QUX ~— QUIX ~2 QTUX <2 LQUX

commutes. We can therefore allow as transformatioti7’ — TU any transformation
making the lower right square commute, or, redrawing it a bit, making the following
commute.

LQUX du QTUX (11)
‘/QtV
LPX —— pT'X QUTX

This diagram appeared already as the upper square of Diagram (9), compare Remark 19.

Proposition 26. Assume that is natural. Then Stone-bisimilarity equals Set-bisimilarity.
That is, two states i : X — T'X are bisimilar iff they are bisimilar iV ¢.

Proof. C follows from ¢ being naturalD: If two states inU¢ are bisimilar than they
have the same theory. Now apply Propositions 24 and 17.2.

We can now improve on the bisimulation-somewhere-else result of Theorem 18.
Together with the proposition above, it implies that two state¥ ir» 7'X that have
the same theory are in fact bisimilar in some otSetcoalgebra, namely the ultrafilter
extension ofX — T'X.

Theorem 27. GivenT : Set — Set and a logic. for T-coalgebras, lef” : Stone —
Stone be the lifted functor. Assume that ultrafiltersihhave non-empty intersection
and thatt : UT — TU is natural. Then, giveiX, ) € Coalg(T) andz,y € X, we
have thatr andy have the same theory iffy () is bisimilar tonx (y) in USQ(X, ).

Remark 28. The assumption ofif andt is satisfied for all Kripke polynomial functors.

6 Conclusion and Future Work

The focus of this paper was on the relationship between Stone-coalgebras and Set-
coalgebras. This is a special instance of a more general phenomenon in computer sci-
ence where topology-based structures and set-based structures interact. This was ob-
served already in Abramsky [1] where powerdomain-coalgebras and powerset-coalgebras
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were compared. We believe that the methods used here will generalise to other such sit-
uations.

First, we can treat other logics than classical ones by replacing the duality between
BA andStone by one for, e.g. Heyting algebras or distributive lattices. Infinitary logics
can be treated as well, see e.g. [4]. Second, we can reptadsy other categories of
interest in semantics. Third, we can make algebraic tools available by upgrading the
triangle of Diagram (1) to a square whé& et is now accompanied by its dual category
of complete atomic Boolean algebras. This will enable the use of methods developed in
the study of perfect or canonical extensions of Boolean algebras (see e.g. [20, Section
7).

There are also a number of more immediate open questions. Formulate a finitary de-
finability result for classes of coalgebras in the style of Goldblatt-Thomason [5], based
on ultrafilter extensions. [f" preserves finite sets than it has a canonical lifting to from
Set to Stone; show that then this lifting agrees witf Find nice conditions guarantee-
ing that ultrafilters irl” have non-empty intersection.
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