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Abstract. In this paper we discuss a uniform method for constructing free modal
and distributive modal algebras. This method draws on works by (Abramsky
2005) and (Ghilardi 1995). We revisit the theory of normal forms for modal logic
and derive a normal form representation for positive modal logic. We also show
that every finitely generated free modal and distributive modal algebra axioma-
tised by equations of rank 1 is a reduct of a temporal algebra.

1 Introduction

Modal logics play an important role in many areas of computer science. In recent years,
the connection of modal logic and coalgebra received a lot of attention, see eg [30].
In particular, it has been recognised that modal logic is to coalgebras what equational
logic is to algebras. The precise relationship between the logics and the coalgebras can
be formulated using Stone duality [9]. From this perspective, algebras are the logical
forms of coalgebras [1]; and the algebras that appear in this way give rise to modal
logics.

In this paper we take the opposite view and ask how coalgebraic and categorical
methods can elucidate traditional topics in modal logic. Algebraic methods and tech-
niques proved to be very useful in investigations of modal logics, see eg [8, 30]. Here
we apply a mix of algebraic and coalgebraic (and categorical) techniques to shed some
light on the construction of canonical models of modal logics. In principle, almost all
properties of a given modal logic are enshrined in its free modal algebras or, dually and
equivalently, in its canonical models [8]. Therefore, an understanding of the structure
of the canonical model of a given modal logic can be the key for understanding the
properties of this logic.

The general idea that we will discuss in this paper has appeared before in differ-
ent contexts. Fine [16] used his canonical formulas for describing canonical models of
modal logics and for deriving completeness results for these logics. Moss [25] revisited
Fine’s formulas to give a filtration type finite-model property proofs for various modal
logics. Abramsky [2] constructed the canonical model of closed formulas of the basic
modal logic as the final coalgebra for the Vietoris functor and Ghilardi [18, 17] gave
a similar description of canonical models of modal and intuitionistic logics to derive a
normal form representation for these logics. For positive modal logic similar techniques
were developed by Davey and Goldberg [13].
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The aim of this paper is to unify all these approaches and present a coherent method
for constructing free modal and distributive modal algebras. Modal algebras are alge-
braic models of (classical) modal logic and distributive modal algebras are algebraic
models of positive (negation-free) modal logic. We will show how to construct free al-
gebras for a variety V equipped with an operator f . In case of modal algebras V is the
variety of Boolean algebras and in case of distributive modal algebras V is the variety
of distributive lattices. The main idea of the construction is the following: We start with
the free V-algebra and step by step add freely to it the operator f . As a result we obtain
a countable sequence of algebras whose direct limit is the desired free algebra.

We apply this general method to modal and distributive modal algebras. For dis-
tributive modal algebras these results appear to be new. In case of modal algebras this
approach gives simple and coherent proofs of known results. We use the Stone dual-
ity for Boolean algebras and the Priestley duality for distributive lattices to describe
the dual spaces of the finite approximants of the free algebras. The key for dualising
these constructions lies in the coalgebraic representation of modal spaces as coalgebras
for the Vietoris functor [22] and in the coalgebraic representation of modal Priestley
spaces as coalgebras for the convex set functor [20, 27]. This allows us to represent the
canonical models of modal and positive modal logic as a limit of finite sets and posets,
respectively. We also observe that the underlying Stone space of the canonical model
of the basic modal logic is homeomorphic to the so-called Pelczynski space. This space
appears to be one of the nine fixed points of the Vietoris functor on compact Hausdorff
spaces with a countable basis [28, 26].

As we will see below, this method directly applies to modal and positive modal
logics that are axiomatised by the formulas of rank 1. We also indicate how to adjust
our techniques to modal logics that are not axiomatised by formulas of rank 1. As an
example we consider the ‘reflexive’ modal logic, that is, the modal logic axiomatised
by the additional reflexivity axiom ϕ → ♦ϕ, which is not of rank 1. This example
also highlights how the Sahlqvist correspondence—an important technique of modal
logic— can be applied to our method in order to describe canonical models of modal
logics that are not axiomatised by formulas of rank 1.

In the end of the paper we revisit Fine’s normal forms for modal logic in a manner
similar to Abramsky [2] and Ghilardi [18] and derive normal forms for positive modal
logic. We also generalise Ghilardi’s result that every free modal algebra is a reduct of a
temporal algebra to all varieties of modal and distributive modal algebras axiomatised
by formulas of rank 1.

Other Related Work Canonical models of modal logics have been investigated quite
thoroughly. However, these investigations mostly concentrated on transitive modal log-
ics; that is, modal logics with transitive Kripke frames. For an overview of these results
we refer to [12, Section 8.6 and 8.7] (see also [7, Chapter 3] for similar results in the
case of intuitionistic logic). The method of constructing canonical models for transitive
modal logics is based on building the canonical model of a given logic layer by layer,
that is, inductively on the depth of the canonical model. Although very useful, this
method does not go through for non-transitive modal logics. For building free algebras
for non-transitive modal logics one needs to use a different approach.
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2 Dualities for Boolean algebras and distributive lattices

In this section we briefly recall the Stone duality for Boolean algebras and the Priestley
duality for distributive lattices.

2.1 Stone duality for Boolean algebras

A Stone space is a 0-dimensional (a topological space with a basis of clopens) compact
Hausdorff space. For every Stone space X let Clp(X) denote the set of clopens (closed
and open subsets) of X . We also let P(X) denote the powerset of X . The next theorem
states the celebrated Stone representation theorem.

Theorem 2.1. (eg [19, 4.4], [14, 11.4]) For every Boolean algebra B there is a Stone
space XB such that B is isomorphic to (Clp(XB),∪,∩,−, ∅). If B is finite then XB is
finite and Clp(XB) = P(XB).

Proof. (Sketch) Let B be a Boolean algebra. Let XB := the set of all maximal filters
of B. For a ∈ B let â = {x ∈ XB : a ∈ x}. We declare {â : a ∈ B} to be a basis for a
topology on XB . Then XB becomes a Stone space and B is isomorphic to Clp(XB).

Let BA denote the category of Boolean algebras and Boolean homomorphisms. Let
also Stone denote the category of Stone spaces and continuous maps. The Stone rep-
resentation theorem can be extended to corresponding categories.

Theorem 2.2. (see eg [19, 4.4]) BA ' Stoneop.

Proof. (Sketch) By Theorem 2.1 one only needs to deal with morphisms. Let f : X →
Y be a continuous map. Then f−1 : Clp(Y ) → Clp(X) is a Boolean homomorphism.
Conversely, if h : A → B is a Boolean homomorphism, then the map h−1 : XB → XA

is continuous. It is also easy to check that this correspondence is one to one.

Next we will discuss the duality between join preserving maps between Boolean alge-
bras and special relations on corresponding Stone spaces. Let X and Y be Stone spaces.
A relation R ⊆ X × Y is called point closed if R[x] = {y ∈ Y : xRy} is a closed set
for every x ∈ X . We say that R is a clopen relation if for every clopen U ⊆ Y the set
〈R〉U = {x ∈ X : R[x] ∩ U 6= ∅} is a clopen subset of X .

Theorem 2.3. (see e.g., [8]) There is a one-to-one correspondence between join pre-
serving maps between Boolean algebras and point-closed and clopen relations on their
dual Stone spaces. Moreover, on finite Stone spaces all relations are point-closed and
clopen.



Proof. (Sketch) (1) Let h : A → B be a join preserving map, that is, for all a, b ∈ A
we have h(0) = 0 and h(a ∨ b) = h(a) ∨ h(b). Let XA and XB be the Stone spaces
dual to A and B, respectively. We define Rh ⊆ XB ×XA by

xRhy iff y ⊆ h−1(x)

or, equivalently, xRhy iff (a ∈ y implies ha ∈ x).1 Conversely, if R ⊆ XB ×XA is
a point-closed and clopen relation, then 〈R〉 is the desired map Clp(XA) → Clp(XB).

Vietoris spaces and their duals, defined below, are central to our investigations.

Definition 2.4 (Functor V ). Let B be a Boolean algebra. Let V (B) be the free Boolean
algebra over the set {♦a : a ∈ B} modulo the equations, for all a, b ∈ B,

(1) ♦0 = 0 (2) ♦(a ∨ b) = ♦a ∨ ♦b

Thus, V is a functor on Boolean algebras. Now we define the dual to V on Stone spaces.

Definition 2.5 (Functor K). For every Stone space X we let K(X) be the set of all
closed subsets of X equipped with a topology a subbasis of which is given by the sets

��(U) = {F ∈ K(X) : F ⊆ U} ♦♦(U) = {F ∈ K(X) : F ∩ U 6= ∅}

where U ranges over clopen subsets of X .

The next theorem shows that the two definitions are dual to each other.

Theorem 2.6. [19, Proposition 4.6] Let B a Boolean algebra and X its dual Stone
space. Then the algebra V (B) is dual to K(X). If B is finite, V (B) is dual to P(X).

It follows from the definition of V (B) that a map ♦ : B → V (B) mapping each
element a ∈ B to ♦a is join-preserving. The next proposition characterises the relation
on X × K(X) which is dual to ♦. We just need to observe that R♦ defined as in the
proof of Theorem 2.3 is ∈.

Proposition 2.7. Let R♦ ⊆ K(XA) × XA be the relation corresponding to the join-
preserving map ♦ : B → V (B). Then for every U ∈ K(X) and x ∈ XA we have
UR♦x iff x ∈ U .

2.2 Priestley duality for distributive lattices

We briefly review the duality between distributive lattices and Priestley spaces (Stone
spaces with special partial orders). Recall that a subset U of an ordered set (X, R) is
called an upset if for every x, y ∈ X we have x ∈ U and xRy imply y ∈ U . The
complement of an upset is called a downset. A relation R on a Stone space X is said to
satisfy the Priestley separation axiom if

¬(xRy) implies there exists a clopen upset U such that x ∈ U and y /∈ U .

1 Reading c ∈ z as z satisfies c, we see that h acts here as a modal ♦.



Definition 2.8. A pair X = (X, R) is called a Priestley space if X is a Stone space
and R a partial order satisfying the Priestley separation axiom.

For every Priestley space X = (X, R) we let ClpUp(X) denote the set of all clopen
upsets of X. We also denote by Up(X) the set of all upsets of X.

Theorem 2.9. (see, e.g, [14, 11.23]) For every distributive lattice D there is a Priest-
ley space XD such that D is isomorphic to (ClpUp(XD),∪,∩, ∅). If D is finite, then XD

is finite and ClpUp(XD) = Up(XD).

Let DL be the category of distributive lattices and lattice homomorphisms. Let also
Priest denote the category of Priestley spaces and continuous order-preserving maps.
We have the following analogue of Theorem 2.2.

Theorem 2.10. (see, e.g, [14, 11.30]) DL ' Priestop.

Next we will briefly discuss the connection of meet and join preserving maps with
Priestley relations. For a relation R ⊆ X × Y and U ⊆ Y we let [R]U = {x ∈ X :
R[x] ⊆ U}. Let X = (X, R) and Y = (Y, S) be Priestley spaces. A relation Q ⊆ X×Y
is called clopen increasing (resp. clopen decreasing) if for every x ∈ X the set Q[x] is
a closed upset of Y (resp. a closed downset of Y) and for every clopen upset U of Y the
set [Q]U is a clopen upset of X (resp. 〈Q〉U is a clopen downset of X).

Theorem 2.11. (eg [11]) There is a one-to-one correspondence between join pre-
serving (resp. meet preserving) maps between distributive lattices and clopen increas-
ing (resp. clopen decreasing) relations on their dual Priestley spaces. Moreover, on
finite Priestley spaces a relation Q is clopen increasing (clopen decreasing) iff Q[x] is
an upset (resp. a downset) and [Q] (resp. 〈Q〉) maps upsets to upsets.

Vietoris construction for Priestley spaces and distributive lattices

Definition 2.12. For every distributive lattice D let V (D) denote the free distributive
lattice over the set {♦a : a ∈ D} ∪ {�a : a ∈ D} modulo the equations

1. ♦0 = 0, �1 = 1,
2. ♦(a ∨ b) = ♦a ∨ ♦b, �(a ∧ b) = �a ∧�b,
3. �(a ∨ b) ≤ �a ∨ ♦b, �a ∧ ♦b ≤ ♦(a ∧ b).

Next we describe the dual construction of the Vietoris space for Priestley spaces [27].
Let X = (X, R) be a Priestley space. A set F ⊆ X is called convex if for every
x, y, z ∈ X if x, y ∈ F and xRz and zRy, then z ∈ F . For every Priestley space
X = (X, R) let Conv(X) denote the set of all closed convex subsets of X. We define a
topology on Conv(X) a basis of which is given by the Boolean closure of the sets

��(U) = {F ∈ Conv(X) : F ⊆ U} ♦♦(U) = {F ∈ Conv(X) : F ∩ U 6= ∅}

where U ranges over clopen upsets of X.2 Moreover, for every Y, Z ∈ Conv(X) we
define the so-called Egli-Milner order REM by

2 We note that this definition of topology on the set of closed and convex subsets of a Priestley
space together with Theorem 2.13 below solves the problem raised in [27, Section 7.1] on how
to define an analogue of the Vietoris topology on the set of closed and convex subsets of a
Priestley space.



Y REMZ iff Y ⊆ 〈R〉Z and Z ⊆ 〈Ř〉Y .

where Ř is the converse of R. Then (Conv(X), REM ) is a Priestley space. The next
theorem, which is the Priestley space version of a theorem of Johnstone [20] (see also
Palmigiano [27]), shows that the convex set construction on Priestley spaces is the dual
to V .

Theorem 2.13. Let D be a distributive lattice and X = (X, R) be its dual Priestley
space. Then (Conv(X), REM ) is the Priestley space dual to V (D).

As in the case of modal algebras, we have join-preserving and meet-preserving maps ♦
and � from D to V (D), mapping every element a ∈ D to ♦a and �a, respectively.

Proposition 2.14. Let R♦, R� ⊆ Conv(XA) × XA be the relations corresponding to
♦ : D → V (D) and � : D → V (D), respectively. Then R♦ = R� and for every
U ∈ Conv(X) and x ∈ X we have UR♦x iff x ∈ U .

3 Modal algebras and distributive modal algebras

In this section we recall the definitions of modal and distributive modal algebras. We
also look at the dual order-topological spaces of these algebras.

Modal algebras A modal algebra (see e.g.[8, 5.2]) is a pair (B,♦B) such that B
is a Boolean algebra and ♦B : B → B is a unary operator called a modal operator
satisfying the equations of Definition 2.4. We also use a shorthand �Ba = −♦B − a,
for every a ∈ B. Next we recall the representation theorem for modal algebras.

Definition 3.1. (see e.g., [8, Definition 5.65 and Proposition 5.83]) A pair (X, R) is
called a modal space if X is a Stone space and R ⊆ X × X is a point-closed and
clopen relation. 3

Therefore, for every modal space, the algebra (Clp(X), 〈R〉) is a modal algebra. More-
over, every modal algebra can be represented in this way.

Theorem 3.2. (see, e.g., [8, Theorem 5.43]) For every modal algebra (B,♦B) there
exists a modal space (X, R) such that (B,♦B) is isomorphic to (Clp(X), 〈R〉).

The modal space (X, R) is called the dual of (B,♦B). Modal spaces can also be seen
as coalgebras for the Vietoris functor K. In particular, every modal space can be rep-
resented as a Stone space X together with a continuous map R : X → K(X). The
fact that R is well defined corresponds to R[x] being closed, and R being continuous is
equivalent to R being a clopen relation. For the details we refer to [22].

Distributive modal algebras Lacking complements, one needs to represent both ♦
and �. A distributive modal algebra (see e.g., [11]) is a triple (D,♦D,�D) such that
♦D : D → D and �D : D → D are unary operations satisfying for every a, b ∈ D the
equations of Definition 2.12.

3 Some authors also call modal spaces descriptive frames; see e.g., [8].



Definition 3.3. A triple (X, R,Q) is called a modal Priestley space if X = (X, R) is a
Priestley space and Q ⊆ X ×X is a relation such that

1. Q[x] is closed and convex for every x ∈ X; i.e., Q[x] ∈ Conv(X).
2. 〈Q〉U ∈ ClpUp(X) and [Q]U ∈ ClpUp(X) for every U ∈ ClpUp(X).

Theorem 3.4. (see [11]) For every distributive modal algebra (D,♦,�) there exists
a modal Priestley space (X, R,Q) such that (D,♦,�) is isomorphic to (ClpUp(X),
〈R〉, [R]).

We mention here that the modal Priestley spaces can be seen as coalgebras for a functor
Conv on Priestley spaces. In particular, every modal Priestley space can be represented
as a Priestley space X together with an order-preserving and continuous map Q : X →
Conv(X). That Q[x] is closed and convex guarantees that Q is well defined. Q being
order-preserving and continuous is equivalent to 〈R〉 and [R] being well-defined maps
on ClpUp(X). For the details we refer to [27].

We close this section by mentioning the connection between modal algebras and
modal logic: a (positive) modal formula ϕ is a theorem of the basic modal logic K iff ϕ
is valid in every (distributive) modal algebra.

4 Main construction

As observed by Abramsky [2] and Ghilardi [18] the category of modal algebras is iso-
morphic to the category Alg(V ) of algebras for the functor V and, therefore, the free
modal algebras can be obtained by a standard construction in category theory, the initial
algebra sequence. Indeed, under fairly general circumstances [4], for a functor L on a
category C, the L-algebra Lω free over C ∈ C is the colimit of the sequence (Ln)n<ω

L0
e0 // L1

e1 // L2
. . . Lω (1)

where L0 = 0 is the initial object of C and Ln+1 = (C + L)(Ln) and en+1 = (C +
L)(en). Due to Lω being a colimit, there is a canonical morphism (C +L)(Lω) → Lω,
the components of which provide the insertion of generators C → Lω and the L-algebra
structure L(Lω) → L. The same result can also be obtained from a slightly different
sequence, the one used by [18], which is more convenient for our purposes

L0 = C, Ln+1 = (C + L)(Ln), e0 : C → C + L(C), en+1 = (C + L)(en) (2)

In this paper we are interested in the case where C is a variety4 V and L encodes
a signature that extends the signature ΣV of V by additional operations Σ′ and the
equations EV of V by additional equations E′. The terms in E′ may use the operations
built from the combined signature Σ + Σ′. We say that an equation in E′ is of rank
1 if every variable is under the scope of exactly one occurrence of an operation in Σ′.
For example,♦p → �p is of rank 1, but p → ♦p and ♦♦p → ♦p are not. The precise

4 For us, a variety is given by operations of finite arity and equations.



relationship between L-algebras and algebras for an extended signature is studied in
[23]. Roughly speaking, there is a one-to-one correspondence between functors L :
V → V and extensions of V by operations Σ′ and equations of rank 1 E′; under this
correspondence, Alg(L) is isomorphic to the variety defined by operations ΣV + Σ′

and equations EV + E′. In other words, a variety is isomorphic to Alg(L) iff it is
axiomatized by equations of rank 1.

The basic construction we will describe is a variation of the sequence (2) which is
both more special and more general. More special, because we take C to be a variety
V, more general because we consider sequences whose step-wise construction is not
necessarily given by a functor as in (2), ie, for the time being, additional equations not
of rank 1 are allowed.

Let V be a variety of algebras, let Vf be a variety obtained from V by expanding
the signature of V by an operator f and let AX be a set of axioms involving terms built
from the operations of V and f . In other words, the algebras in Vf are the pairs (A, f),
where A ∈ V and f : A → A is a map satisfying the axioms in AX.5 Further, we let
Eq(V) and Eq(Vf ) be the equational theories of V and Vf , respectively. For every
n ∈ ω we will construct the n-generated free Vf -algebra as a colimit of n-generated
V-algebras A0 i0 // A1 i1 // ... . A0 is the n-generated free V-algebra, and each
Ak+1 is obtained from Ak by freely adjoining to it the operator f . In other words, for
each k ∈ ω the algebra Ak will be the algebra of all the non-Eq(Vf )-equivalent terms
of degree ≤ k. Moreover, for each k ∈ ω, there are two maps ik and fk between Ak

and Ak+1. Since Ak is the algebra of all terms of degree ≤ k and Ak+1 is the algebra
of all terms of degree ≤ k + 1, there is an embedding of Ak into Ak+1. The map ik
will be this embedding. Each term of degree m, for m ≤ k can be turned into a term
of degree m + 1 ≤ k + 1, by adjoining to it the operator f . The map fk is exactly the
map that adjoins f to each element of Ak. The operator fω : Aω → Aω is obtained by
lifting the maps fk : Ak → Ak+1 to Aω.

The technical details are as follows. We fix a set P = {p1, . . . , pn} of variables (or
atomic propositions) in the language of V. All the terms that we consider are build from
P using the operations of V and f . For each k ∈ ω, let Sk be the set of all terms in the
language of Vf of degree ≤ k, that is, of all terms that do not contain nestings of ‘f ’
deeper than k. We say that an equation s = t, where s and t are terms, is deduced in V
(resp. Vf ) from Γ and write Γ `V s = t (resp. Γ `Vf

s = t) if s = t is deduced from
Γ in the equational theory of V (resp. Vf ). Let ≡Vf

be the relation on Sk defined by
s ≡Vf

t iff `Vf
s = t. Using the notation above we make the following

Definition 4.1. The sequence (Tk)k<ω is the sequence (Lk)k<ω , see (2), where C is the
free V-algebra over P and L : V → V maps A to the free algebra over {fa | a ∈ A}.
The sequence (Ak)k<ω is the quotient of (Tk)k<ω by ≡Vf

.

The algebra Ak is the algebra of (equivalence classes of) terms of degree ≤ k, Ak+1 is
the algebra of terms of degree ≤ k + 1 and the ik : Ak → Ak+1 obtained from quoti-
enting the ek of (2) are the obvious embeddings. Moreover, we define fk : Ak → Ak+1

5 It is straightforward to replace f by a set of operations of finite arity. Here we consider only
one unary operator to keep notation simple.



to be the quotients of the maps Tk → L(Tk) → T0 + L(Tk) (insertion of generators
followed by injection into a coproduct). Because of ik+1 ◦ fk = fk+1 ◦ ik, the fk give
rise, in the underlying category of sets, to a cocone over (Ak)k<ω , equipping Aω with
a Vf -algebra structure fω : Aω → Aω. More concretely, fk maps a term t of degree k
to the term f(t) of degree k + 1; and, since each a ∈ Aω comes from some Ak, we can
write fω(a) = fk(a) for some k.

Theorem 4.2. The colimit of (Ak)k<ω is the free n-generated Vf -algebra.

Note that if V is locally finite (ie the finitely generated algebras are finite), then each
Ak is finite. Thus, if V is locally finite we can approximate every finitely generated free
Vf algebra by finite n-generated V algebras. This is the case in our examples, where V
is either the variety BA of Boolean algebras or the variety DL of distributive lattices.

The role of rank 1 axioms The equational reasoning needed to determine whether
two terms are identified in Ak may involve terms of degree larger than k. We therefore
define s ≡k

AX t if, in the equational logic for the signature of Vf , the equation s = t has
a proof from the axioms AX that only uses terms of degree ≤ k.

Definition 4.3. The sequence (A′
k)k<ω is the quotient of (Tk)k<ω by (≡k

AX)k<ω .

Theorem 4.4. The colimit of (A′
k)k<ω is the free n-generated Vf -algebra.

Note that the Ak are determined by the equational theory Eq(Vf ) whereas the (A′
k) de-

pend on the particular axiomatisation AX. Moreover, in contrast to the ik : Ak → Ak+1,
the i′k : A′

k → A′
k+1 need not be injective. But if they are, one often can deduce desir-

able properties like decidability, normal forms, and others as shown by Ghilardi [18].
The following gives a sufficient condition. For a detailed definition of L below see [21,
Section 4.1.3].

Theorem 4.5. Let L be the functor on V where L(A) is the free V-algebra generated
by {fa|a ∈ A} modulo the axioms AX. If AX is of rank 1, the sequences (Ak)k<ω ,
(A′

k)k<ω and (Lk)k<ω (see (2)) coincide.

In particular, we will exploit that for rank 1 axioms, the morphisms i′k : A′
k → A′

k+1

are injective.

5 Free modal and distributive modal algebras

We now combine Sections 2 - 4. For modal (distributive) algebras, the axioms AX of
Section 4 are of rank 1 (see Definitions 2.4 and 2.12) and Theorem 4.5 applies.

Free modal algebras Let B0 be the n-generated free Boolean algebra, that is, B0 is
isomorphic to the powerset of a 2n-element set (eg [19, 4.9]). Let X0 be the dual of B0.
According to the construction discussed in the previous section we let L = B0 + V in
(1), that is,

Bk+1 = B0 + V (Bk).

The maps ik,♦k : Bk → Bk+1 are as in Section 4. From Theorem 4.2 we obtain



Corollary 5.1. The algebra (Bω,♦ω) obtained from the colimit of (Bk)k<ω is the free
modal algebra over B0.

Now we will look at the dual of (Bω,♦ω). Let X0 be a 2n element set (the dual of B0)
and (because of the duality of P and V (Theorem 2.6) and of × and +)

Xk+1 = X0 × P(Xk).

Theorem 5.2. The sequence (Xk)k<ω with maps πk : X0 × P(Xk) → Xk defined by

πk(x,A) = (x, πk−1[A])

is dual to the sequence (Bk)k<ω with maps ik : Bk → Bk+1. In particular, the πk are
surjective. Moreover, the relation Rk ⊆ (X0 × P(Xk))×Xk defined by

(x,A)Rky iff y ∈ A

is dual to ♦k : Bk → Bk+1 (see Theorem 2.3).

Remark 5.3. An element x = (l, S) ∈ Xk+1 can be understood as a tree with the root
labelled by an element l ∈ X0 and the children being the elements of S ∈ P(Xk).
These trees have a rich history and have been studied, for example, by [3, 2, 6, 18, 5,
31].

Corollary 5.4. The modal space (Xω, Rω), where Xω is the limit in Stone of the family
{Xk}k∈ω with the maps πk+1 : Xk+1 → Xk, and Rω is defined by (xi)i∈ωRω(yi)i∈ω

if xk+1Rkyk for each k ∈ ω is (isomorphic to) to the dual of (Bω,♦ω).

Remark 5.5. Note that (Xω, Rω) is isomorphic to the canonical model of the basic
modal logic K; see [8, Section 5]. Therefore, a formula of modal logic is a theorem of
K iff it is satisfiable in (Xω, Rω). Moreover, (Xω, Rω) is also the K-coalgebra cofree
over X0.

Free distributive modal algebras Let D0 be the free n-generated distributive lattice
and X0 be its dual poset, that is, X = (P(n),⊆), where n = {0, . . . , n − 1} is an
n-element set (eg [19, 4.8]). According to the construction discussed in the previous
section we let Dk+1 = D0 + V (Dk). where V is the Vietoris functor for distributive
lattices. The maps ik,♦k : Dk → Dk+1 are as in Section 4. From Theorem 4.2 we
obtain

Corollary 5.6. The algebra (Dω,♦ω) obtained from the colimit of (Dk)k<ω is the free
modal distributive algebra over D0.

For the dual of (Dω,♦ω), Theorem 2.13 leads us to define Xk+1 = X0 × Conv(Xk).

Theorem 5.7. The sequence (Xk)k<ω with πk : X0 × Conv(Xk) → Xk defined by
πk(x,A) = (x, πk−1[A]) is dual to the sequence (Dk)k<ω with maps ik : Dk → Dk+1.
In particular, the πk are surjective. Moreover, the relation Qk ⊆ (X0×Conv(Xk))×Xk.
defined by (x,U)Qky iff y ∈ U is dual to ♦k : Dk → Dk+1 (see Theorem 2.11).



Corollary 5.8. The modal Priestley space (Xω, Qω), where Xω is the inverse limit in
Priest of the family {Xk}k∈ω with the maps πk+1 : Xk+1 → Xk and Qω is defined
by (xi)i∈ωQω(yi)i∈ω if xk+1Qkyk for each k ∈ ω is (isomorphic to) to the dual of
(Dω,♦ω).

Similar to the modal case the space (Xω, Qω) is isomorphic to the canonical model of
the basic positive modal logic and it is the final coalgebra for the functor X0×Conv on
Priestley spaces.

6 Applications

Our first three applications are based on approximating the free algebras (and their du-
als) by the initial sequence of an appropriate functor as in (2). The last section, indicates
how to go beyond rank 1 in a systematic way using Sahlqvist theory, but the details have
to be left for future work.

6.1 Normal forms

In this section we discuss normal forms for the elements of finitely generated free modal
and distributive modal algebras. In logical terms this is equivalent to a normal form
representation for the formulas of the corresponding language.

Definition 6.1. Let V be a variety and A(n) an n-generated free algebra of V. We say
that V admits a normal form representation if for every a ∈ A(n) there exists a term
t(a), effectively computable from a, such that for every a, b ∈ A(n) we have `V a = b
iff t(a) = t(b).

We write At(−) for the set of atoms of a Boolean algebra and, for T ⊆ B0 and S ⊆
At(Bk), let

αS,T :=
∧
p∈T

p ∧
∧
p/∈T

¬p ∧
∧

ϕ∈S

♦ϕ ∧�
∨

ϕ∈S

ϕ

Lemma 6.2. a ∈ Bk+1 is an atom iff a = αS,T for some T ⊆ Bk and S ⊆ At(Bk).

Similarly, for sets T ⊆ D0 and S ⊆ J(Dk), where J(Dk) is the set of all join-
irreducible elements of Dk we let

βS,T :=
∧
p∈T

p ∧
∧

ϕ∈S

♦ϕ ∧�
∨

ϕ∈S

ϕ

Lemma 6.3. a ∈ Dk+1 is join-irreducible iff a = βS,T for some T ⊆ Dk and S ⊆
J(Dk).

Corollary 6.4. Basic modal logic and basic positive modal logic admit normal form
representations.



Proof. The result follows from above lemmas and the fact that every formula ϕ in n-
variables can be seen as an element of the n-generated free algebra of the correspond-
ing variety. As we showed above, for every element of the n-generated free modal or
distributive modal algebra, there exists k ∈ ω such that ϕ belongs to Bk or Dk, re-
spectively. Every element of a finite Boolean algebra (resp. finite distributive lattice) is
a join of atoms (join-irreducible elements) that are below this element. Therefore, we
obtain that ϕ =

∨
αS,T (resp. ϕ =

∨
βS,T ).

Remark 6.5. The formulas αS,T are the so-called Fine’s canonical formulas [16, 25].
Abramsky [2] and Ghilardi [18] derive these formulas in a way similar to ours.

6.2 Free modal algebras as temporal algebras

In this section we will give another corollary of our representations of free modal and
distributive modal algebras. We will show that these algebras are reducts of temporal
algebras. In case of modal logics this was first observed by Ghilardi [18].

Definition 6.6. A modal algebra (B,♦) is a reduct of a temporal algebra if there exist
�P : B → B such that for every a, b ∈ B we have ♦a ≤ b iff a ≤ �P b.

A distributive modal algebra (D,�,♦) is a reduct of a temporal algebra if there
exist �P ,♦P : D → D such that for every a, b ∈ B we have ♦a ≤ b iff a ≤ �P b and
♦P a ≤ b iff a ≤ �b.

Theorem 6.7. Let V be a variety of modal or distributive modal algebras axiomatised
by the formulas of rank 1. Then every finitely generated free V-algebra is a reduct of a
temporal algebra.

Proof. (Sketch) We only look at the modal case. Let (Bω,♦ω) be the free V-algebra.
Then since each Bk is finite, the map ♦k : Bk → Bk+1 has a right adjoint �k

P :
Bk+1 → Bk, for every k ∈ ω. Therefore, all we need to show is that the maps �k

P can
be extended to the whole of Bω. For this it is sufficient to prove that ik−1�

k−1
P = �k

P ik.
This equation holds if and only if for every x ∈ Xk, the equation π−1

k−1Rk−1[x] =
Rkπ−1

k [x] holds. Checking that the latter equation is satisfied is easy and is based on
the fact that for every k ∈ ω the maps πk are surjective. We skip the details.

6.3 Pelczynski compactification

In this section we characterise the space Xω. We show that Xω is homeomorphic to the
so-called Pelczynski space.

Definition 6.8. (see [28] and [26]) A space P is called the Pelczynski space if P =
Xiso ∪ Xlim, where Xiso is a countable set of isolated points of P, Xlim is the set of
limit points of P, the space Xlim is homeomorphic to the Cantor space C and Xiso =
P.

Theorem 6.9. The underlying Stone space Xω of the canonical model (Xw, Rw) is
homeomorphic to the Pelczynski space P.



Proof. (Sketch) The proof uses a result of Barr [6] that the set Xiso of isolated points
of Xω is dense in Xω. We proceed by observing that the set Xiso is countable and that
the set Xlim of the limit of points of Xω is uncountable and contains no isolated points
in the topology induced from Xω. Thus [15, 6.2.A.(c)], Xlim is homeomorphic to the
Cantor space C and therefore Xω is homeomorphic to the Pelczynski space P.

Remark 6.10. In fact it is not a coincidence that the final coalgebra for the Vietoris
functor is based on the Pelczynski space. We can prove that for every polynomial func-
tor T on Stone spaces, the final coalgebra for T is finite or is homeomorphic to the
Cantor space C, the Alexandroff compactification of a countable discrete space or to
the Pelczynski space P.

6.4 Modal logics not axiomatised by rank 1 axioms

In this section we indicate that our method can be extended to logics that are not ax-
iomatised by axioms of rank 1. As a simple example we consider the logic T obtained
from the basic modal logic K by adding to it the reflexivity axiom p → ♦p (see also
Ghilardi [18, Section 5]). The Kripke frames for this logic are characterised by their
accessibility relation being reflexive. Let VT be the variety of modal algebras corre-
sponding to T. Since the reflexivity axiom is not of rank 1, in order to construct finitely
generated free VT-algebra, we need to take quotients of the algebras Bk (Section 5).
For every k ∈ ω we will quotient Bk by the relation ≡k

AX, AX = {p → ♦p}, as in
Definition 4.3. In other words, we define the sequence (B′

k)k<ω by letting B′
0 = B0

and B′
k+1 = B′

0 + V (B′
k) modulo ika → ♦ka, for a ∈ B′

k.
In dual terms, for every k ∈ ω we select a subset Yk of Xk such that for every

U ⊆ Yk, we have π−1
k (U) ⊆ 〈Rk〉U . This is equivalent to π−1

k (y) ⊆ 〈R〉{y} for every
y ∈ Yk. (The fact that we can move from sets to singletons is not a coincidence, it is
a consequence of a more general fact that ϕ → ♦ϕ is a Sahlqvist formula [8, Section
3.6]). The latter condition is equivalent to πk(x,A) ∈ A, for every (x,A) ∈ Yk+1 and
k ∈ ω. Therefore, Y0 = X0 and for every k ∈ ω, Yk+1 = {(x,A) : x ∈ Y0, A ⊆
Yk, πk(x,A) ∈ A}. By induction on k we can also show that the restriction of πk to Yk

is a surjection for every k ∈ ω, which means that the quotients of ik’s are embeddings.
Let Sk = Rk � Yk and ξk = πk � Yk, for each k ∈ ω. We arrive at the following
theorem.

Theorem 6.11. The modal space (Yω, Sω), where Yω is the inverse limit in Stone
of the family {Yk}k<ω with the maps ξk+1 : Yk+1 → Yk and Sω is defined by
(xi)i<ωSω(yi)i<ω if xk+1Skyk for each k < ω is (isomorphic to) to the canonical
model for the modal logic T.

This example suggests that a similar technique can be applied to other logics axioma-
tised by Sahlqvist formulas. Studying these questions in detail is one of the directions
of future work.

7 Conclusions and future work

In this paper we presented a uniform method for constructing free algebras for algebras
with operators axiomatised by equations of rank 1. We applied this general method to



construct free modal algebras and free distributive modal algebras. We also recalled
normal forms for modal logic and derived normal forms for positive modal logic. We
list directions of further research.

One is to apply this construction to other non-classical logics for example intuition-
istic logic, many-valued logics etc. More generally, one might be able to obtain results
for varieties, in particular for locally-finite ones, that do arise from logic.

In the context of modal logic most of the important systems can not be axiomatised
by the formulas of rank 1. Therefore, for describing free algebras for those systems, we
need to adjust this method as indicated in Section 6.4. As adding axioms means to take
quotients of the algebras Ak, it corresponds to taking subsets of the Xk on the dual side.
To do this in a uniform way, one should look at Sahlqvist formulas.

Another interesting direction for further research is to spell out in detail the con-
nection of this approach with the one of Moss [25]. It seems that Moss’ filtration type
technique has a direct representation in our construction. For various modal logics Moss
constructs canonical models of formulas of finite modal degree. These models can be
obtained from the models Xk by lifting in an appropriate way relations Rk between
Xk+1 and Xk to Xk+1.

The procedure to obtain normal forms should generalise to all logics of rank 1 (as
long as the axioms are effectively given). This should be related to recent work of
Schröder and Pattinson [29] on the complexity of rank 1 logics. Marx and Mikulás [24]
also obtain complexity bounds for bi-modal logics by looking into algebras of terms of
degree ≤ k. Obtaining normal forms for logics that are not axiomatised by formulas of
rank 1 is another interesting question.

We showed that the canonical model of the basic modal logic is based on the Pel-
czynski space. For other logics, however, such a characterisation does not exists. So a
natural question is what are the underlying Stone spaces of canonical models of other
modal logics. As we saw above the canonical model of the basic modal logic is a fi-
nal coalgebra for the Vietoris functor. So an interesting question is whether the final
coalgebra for every finite-set preserving functor is also based on the Pelczynski space.

All these questions hold also for positive modal logic and their variations considered
in domain theory. But moreover, the recent work of Bruun and Gehrke [10], which
connects ontologies with free distributive algebras with operators, adds another smack
to this investigations: The axioms that [10] consider in their paper are of rank one.
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