
Topics in Coalgebra

Alexander Kurz

University of Leicester, UK

5 October 2004

Rough notes for the participants of the summer school affiliated to CTCS’04 held in Copen-
hagen, 9-11 August 2004.

1

Contents

1 Coalgebras 3
1.1 Basic Definitions and Examples . 3
1.2 Other Notions of (Co)Algebras . 6

1.2.1 Algebras for a Signature . 6
1.2.2 Algebras for a Signature over a Base Category 7
1.2.3 Coalgebras for a Signature . 9
1.2.4 (Co)Algebras for a (Co)Monad . 9

1.3 Further Remarks . 10

2 Behavioural Equivalence 11
2.1 Basic Definitions and Examples . 11
2.2 Other Notions of Bisimulation . 12

2.2.1 Bisimulation . 13
2.2.2 Bisimulation via Relators . 14
2.2.3 Bisimulation via Relation Lifting 16

2.3 Further Remarks . 16

3 Final Coalgebras 18
3.1 Basic Definitions and Examples . 18
3.2 The Final Coalgebra Sequence . 20

3.2.1 Approximating Final Coalgebras 21
3.2.2 The Metric Induced by the Final Sequence 22

4 Exercises 23

2

1 Coalgebras

1.1 Basic Definitions and Examples

Definition 1.1 (Coalgebras). Given a category X , called the base category, and a functor
T : X −→ X , a T -coalgebra (X, ξ) is given by an arrow ξ : X −→ TX in X . A morphism
between two coalgebras f : (X, ξ) −→ (X ′, ξ′) is an arrow f in X such that ξ′ ◦ f = Tf ◦ ξ:

X
ξ

f

TX

Tf

X ′

ξ′
TX ′

The category of coalgebras and morphisms is denoted by Coalg(T). We write Alg(T) for
Coalg(T op)op and call its objects algebras for the functor T op : X op → X op.

Exercise 1.2. Spell out the definition of Alg(T). Note that, up to dual isomorphism, there
is no difference between coalgebras over X and algebras over X op.

Notation 1.3. 0,1,2 denote sets of the respective cardinality. For K ∈ X the constant
functor X 7→ K, f 7→ idK is denoted by K and the identity functor by Id . We freely use
structure available in X . For example, Set has products, coproducts and is cartesian closed,
ie, given functors F, G and a constant functor K, we also have functors F ×G, F +G, KF ,
F K defined pointwise.1 A special case is the contravariant powerset functor 2Id . Its action
on functions corresponds to inverse image. The covariant powerset is denoted by P.

Example 1.4. Let X = Set be the category of sets and functions.

1. (Streams) Let TX = O ×X and Tf = idD × f . A coalgebra

X
ξ
→ O ×X

can be understood as a process which, started in some state x ∈ X, produces a list
of outputs (o0, o1, . . .) determined by ξ(xn) = (on, xn+1). The infinite list (or stream)
(o0, o1, . . .) is called the behaviour of the state x, a notion formalised in Section 2.

2. (Deterministic Automata) Let TX = (2×X)I . A coalgebra

X
ξ
−→ (2×X)I

is a deterministic automaton which determines for each state x ∈ X and each input
i ∈ I the pair (b, x′) = ξ(x)(i) where b ∈ {0, 1} indicates whether x is an accepting
state and x′ is the successor state of x.

1Eg (F ×G)(X) = FX ×GX , (F ×G)(f) = Ff ×Gf , etc. In particular, (FfK) is post-composition
with Ff and KFf is pre-composition, ie, (FfK)(g) = Ff ◦ g and KFf (h) = h ◦ Ff where f : X → Y ,
g : K → FX , h : FX → K.

3

3. (Partial Functions, ‘Exceptions’, ‘Classes’) If one wants to allow the state
transition map for deterministic automata to be partial, then this can be accounted
for by letting TX = 2× (1 + X)I . The idea of a ‘method’ as mapping an ‘object’ x
and input i to either an ‘exception’ e ∈ E or an output and a successor state can be
formalised as a coalgebra

X −→ (E + O ×X)I .

A ‘class’ consisting of several methods m1, . . .mn would then correspond to a coal-
gebra 〈m1, . . .mn〉 : X → (E1 + O1 ×X)I1 × . . . (En + On ×X)In.

4. (Polynomial Endofunctors) The above examples of T (restricting inputs I to finite
sets) are particular instances of polynomial endofunctors which are built according
to

T ::= Id | K | T × T | T + T.

T -algebras are the usual algebras given by a signature (see below). An algebra
structure TA → A describes how to constructed elements of A using terms built
from a finite number of operations. A coalgebra structure X → TX describes how
to deconstruct (or observe) states of X using terms built from a possibly infinite
number of operations.

5. (Relations, Kripke Frames) A Kripke frame is a set with a relation (X, R),
R ⊆ X × X. The difference to relations is in the notion of morphism. A mor-
phism f : (X, R) → (X ′, R′) between Kripke frames is not only relation-preserving
(xRy ⇒ f(x)R′f(y)) but also satisfies the backward condition2 f(x)R′y′ ⇒ ∃y .
xRy & f(y) = y′. This notion of morphism can be elegantly captured by considering
relations (X, R) as coalgebras

X
ξ
−→ PX

where PX is the covariant powerset functor3 and ξ(x) = {y | xRy} is the set of
successors of x. In the following , we will identify Kripke frames with P-coalgebras.

6. (Labelled Transition Systems) Transition systems with labels from a set L are
coalgebras for the functors P(L × −) or, equivalently, P(−)L. The morphisms are
again precisely those functions whose graph is a bisimulation (exercise).

7. (Probabilistic Transition Systems) Probabilistic transition systems in which for
each state and label there is either no successor or a probability distribution of
successors are coalgebras

X → (1 + Dω(X))L

2Beware, this is not equivalent to f(x)R′f(y) ⇒ xRy.
3PX is the set of subsets of X and Pf is the direct image map.

4

where

Dω(X) = {µ : X → R
+
0 | {x | µ(x) 6= 0} is finite and

∑

x∈X

µ(x) = 1}

Dω(f)(µ) = λy.
∑

x∈f−1(y)

µ(x)

8. (Hypersystems, Neighbourhood Frames, Topological Spaces) Coalgebras

X → 22X

are called hypersystems in [37]. There is a one-to-one correspondence between coal-
gebras ξ : X → 22X

and maps ξ̌ : 2X → 2X , ie, coalgebras for a signature consisting
of one (2,2)-ary operation symbol (see next subsection); this—and the examples

below—suggest that (22(−))-coalgebras are one of the fundamental examples of coal-
gebras. The functor 22− is also of interest as an example of a functor that does not
preserve weak pullbacks (see Exercise 4.4).

Of independent interest are certain covarieties4 of hypersystems. For example, the
class of coalgebras ξ : X → 22X

such that ξ(x) is closed under supersets is known in
modal logic as neighbourhood frames (see eg the recent [19]). If ξ(x) is, moreover, re-
quired to be closed under finite intersections, then one obtains normal neighbourhood
frames. In terms of ξ̌, the two conditions above are that ξ̌ is monotone and preserves
finite intersections. If we add the requirement ξ̌ ⊆ ξ̌ ◦ ξ̌, then ξ̌ is an interior opera-
tor and we obtain the covariety of topological spaces and open and continuous maps.
If we impose on ξ̌ to (only) preserve infinite intersections, then one obtains Kripke
frames.

9. (Nesting Initial Algebras and Final Coalgebras) If H : Set × Set → Set is a
functor such that H(−, A) has an initial algebra for each A, denoted by µY.H(Y, A),
then we denote by µY.H(Y, X) the induced endofunctor on set. Dually, we denote
by νY.H(Y, X) the endofunctor that maps X to the final coalgebra of the functor
H(−, X) : Set→ Set. See eg Hensel and Jacobs [20] for more.

Example 1.5. Some examples of coalgebras over other base categories than Set.

1. Let X be the category of sets with inclusions as arrows. A functor is a monotone
operator. A coalgebra X ⊆ TX is a post-fixed point.

2. The functors of examples (1-4) use products, coproducts and exponents5. Analogous
functors exist therefore on any other category than Set providing that structure.

4A covariety is a full subcategory that is closed under subcoalgebras, homomorphic images and coprod-
ucts. They are precisely the (co)equationally definable subcategories, see [28] for more information.

5The exponent XI can be generalised in two ways: If I is an object of the category one needs cartesian
closure; if I is a set one just needs I-fold products.

5

Analogies of the powerset and the probabilistic functor are available on a number of
topological spaces and domains.

3. Often algebraic and coalgebraic operations interact. For example, in process algebra,
one has the coalgebraic structure given by labelled transition systems and algebraic
structure as eg prefixing, choice, parallel composition. Algebraic and coalgebraic
structure is typically expected to interact in way that guarantees that coalgebraic
bisimulation (see next section) is a congruence wrt the algebraic operations.6 Fol-
lowing Turi and Plotkin [42], these situations can often be described by bialgebras

FX
ϕ
−→ X

γ
−→ GX which satisfy γ ◦ ϕ = Gϕ ◦ λX ◦ Fγ where λ : FG → GF

is a natural transformation (a ‘distributive law’) describing the interaction of the
algebraic operations given by F and the coalgebraic ones given by G. One can then
lift G to an endofunctor G′ on Alg(F) and show that the category of bialgebras is
isomorphic to the category of G′-coalgebras over Alg(F).

4. Some of the interesting base categories in semantics as eg preorders, generalised
ultrametric spaces, generalised metric spaces can be considered as enriched categories.
See eg Worrell [44] for examples of coalgebras over enriched categories.

5. If one wants to consider datatypes together with appropriate logics, it makes sense
to consider coalgebras for functors that act on fibred categories, see Hermida and
Jacobs [21] (and also Section 2.2).

1.2 Other Notions of (Co)Algebras

This section is intended to give some background on other ways to define algebras and
coalgebras. In particular, we will compare the notions of (co)algebras for a functor, for
a signature and for a (co)monad. We will also indicate why algebras over set are usually
given by a signature and coalgebras over set by a functor. This section may be somewhat
dense at places but will not be needed later on.

1.2.1 Algebras for a Signature over Set

Usually, algebras are given wrt a signature Σ which consists of operation symbols σ ∈ Σ
with associated arities nσ. A Σ-algebra consists of a set A and an interpretation σA : Anσ →
A of each operation symbol σ. A morphism between Σ-algebras is a function f : A → A′

such that f(σA(〈ai〉i<nσ
)) = σA′(〈f(ai)〉i<nσ

). We write SAlg(Σ) for the category of algebras
for the signature Σ. We may also want to consider equations (t = s) ∈ E over variables
V . An algebra A satisfies the equation t = s if for all ‘valuations of variables’ v : V → A
the extension v# from variables to terms satisfies v#(t) = v#(s). The category of algebras
given by a signature and equations is denoted by SAlg(Σ, V, E), or shorter, SAlg(Σ, E).

6Intuitively, this says that adding the algebraic operations does not allow to distinguish more states
than with the coalgebraic structure alone.

6

Remark (on matters of size). In the definitions above, we want to allow arities to be
cardinals and the collection of operation symbols of a given arity to be a (small) set. Σ,
V and E, however, may be proper classes. One reason for admitting classes is to treat
structures such as complete semilattices, complete atomic Boolean algebras, etc using
algebraic methods. Another reason is that the signature and equations associated to a
functor T : Set→ Set below may require proper classes.

That algebras for a signature are algebras for a functor is the content of the next
proposition the proof of which is straightforward.

Proposition 1.6. If Σ is a (small) set then SAlg(Σ) ∼= Alg(T) for TA =
∐

σ∈Σ Anσ .

Conversely, we can associate to any functor T : Set → Set a signature and equations.
But before doing this we present a generalisation of algebras for a signature to arbitrary
base categories.

1.2.2 Algebras for a Signature over a Base Category

Following earlier work by Lawvere, Linton [29] generalised algebras for operations and
equations from algebras over Set to algebras over an arbitrary base category X . The idea
is to replace arities by objects in X and operations An → A by operations X (X, A) →
X (Y, A) or, more suggestively, AX → AY (where X replaces Set, X replaces n and Y
replaces 1).

In detail, following Rosický [34], arities are pairs (X, Y) of objects in X and a signature
Σ consists of a set of operation symbols for each arity. A Σ-algebra is given by an object
A ∈ X and an arrow σA : AX → AY for each σA ∈ Σ. Terms are defined inductively by
(i) xf is a (X, Y)-ary term for all arrows f : Y → X in X , (ii) σ is a term for all σ ∈ Σ,
(iii) if t is an (Z, Y)-ary term and s a (X, Z)-ary term then s · t is a (X, Y)-ary term. A
(X, Y)-ary term t induces on an algebra A a map tA : AX → AY (where xf is interpreted
by X (f, A) : AX → AY). An equation is a pair of (X, Y)-ary terms (t, s) and an algebra
satisfies the equation if tA = sA. Given such a signature Σ and equations E, we write
SAlg(Σ, E) as before for the corresponding category of algebras.

We can show now in full generality a converse of the above proposition saying that
(co)algebras for a functor are (co)algebras for a signature and equations.

Proposition 1.7 (Reiterman [32]). Let T be an endofunctor on X . There are signature
and equations such that SAlg(Σ, E) ∼= Alg(T).

Proof. For each object X ∈ X there is an (X, TX)-ary operation symbol σX . For each
f : Y → X there is an equation

xTf · σ
X = σY · xf . (1)

This defines the category SAlg(Σ, E). A T -algebra A with structure α : TA → A deter-
mines a (Σ, E)-algebra which interprets operations as σX

A : AX → ATX , f 7→ α ◦ Tf . Con-
versely, a (Σ, E)-algebra A determines the T -algebra σA

A(idA) : TA→ A. To see that this

7

T -algebra determines the original Σ-algebra A, we have to check that σA
A(idA)◦Tf = σX

A (f),
f : X → A. This follows from A satisfying the equation xTf · σ

A = σX · xf which is inter-
preted on A as

AA
σA

A

Af

ATA

ATf

AX
σX

A

ATX

Remark 1.8.

1. In general, the proof only works because we have so many operation symbols, one
for each object in X (to obtain a T -algebra from a (Σ, E)-algebra A we needed an
(A, TA)-ary operation). But if X is lfp (as eg Set) and T is ω-accessible (as eg
polynomial functors or Pω), then on can restrict arities (X, TX) to objects X that
are finitely presentable. The T -algebra corresponding to A ∈ SAlg(Σ, E) is then
obtained as follows. A is a filtered colimit ci : Xi → A of finitely presentable objects
Xi. Since T preserves filtered colimits, TXi → TA is a filtered colimit as well. Since
σX

A (ci) : TXi → A is a cocone, there is a unique mediating arrow TA→ A.

2. It is instructive to specialise the construction of the proof for the case X = Set.
An operation AX → ATX is then the same as TX-many operations AX → A, that
is, we obtain a signature whose set of X-ary operation symbols is TX. Denote by
qA :

∐
X∈X

TX × AX → TA the natural transformation sending (σ, v) ∈ TX × AX

to Tv(σ). The relationship between T -algebras and σ-algebras can now be described
as follows. Given a T -algebra α, the corresponding (Σ, E)-algebra is described by
s = α ◦ qA as in ∐

X∈X
TX × AX qA

s

TA

α

A

A pair (σ, v) ∈ TX × AX can be viewed as an X-ary term that takes his arguments
from A. The equations (1) become, for a chosen A, (σ, v◦f) = (Tf(σ), v), v : X → A;
these equations generate an equivalence relation on

∐
X∈X

TX × AX which is the
kernel of qA. This shows that, conversely, given a Σ-algebra A with structure s, A
corresponds to a T -algebra iff s factors through qA.

3. As a consequence of the above, if T is a finitary functor on Set then Alg(T) ∼=
Alg(Σ, E) where the n-ary operation symbols are the elements of Tn, n < ω, the
variables are given by a countable set V and the equations are those (σ, f) = (σ′, f ′)
for which ∐

n<ωTn× V n qV

TV

8

qV (σ, f) = qV (σ′, f ′), see [6][Chapter III.3]. There is also a converse, stating that
if the equations only involve terms ‘of depth 1’ then Alg(Σ, E) is the categories of
algebras for a functor (namely the polynomial functor of Proposition 1.6 quotiented
by the equations), see [6].

1.2.3 Coalgebras for a Signature

Since coalgebras over X are (dually isomorphic to) algebras over X op, the above concept
of algebras over a base category gives rise to a notion of coalgebras for a signature over a
base category. Spelling this out for X = Set, operations have arities which are pairs (X, Y)
of sets. Operations are interpreted on a carrier set A by functions Set(A, X)→ Set(A, Y)
or, as a shorthand, XA → Y A. For example, hypersystems (as well as neighbourhood
frames, topological spaces, Kripke frames, see Example 1.4) are coalgebras for a single
(2, 2)-ary operation. More generally, operations XA → Y A are modal operators that
transform X-valued predicates into Y -valued predicates. These ‘predicate transformers’ are
in fact modal operators in the sense that they respect the notion of behavioural equivalence
presented in the next section. Coalgebras for operations and equations were investigated
by Davis in the 70s [13] and more recently in [28].

Remark 1.9. One might be inclined to say that algebras for a functor on Set are of limited
interest since they are not more powerful than algebras for operations and equations.
But then, why are coalgebras usually described by functors and not by operations and
equations?

Part of the answer might involve the following observation. The functors that describe
algebras over Set are often finitary. In that case, as follows from Remark 1.8, one can find
a nice signature, in the sense that the arities can be chosen to be finite. This depends on
the fact that every set is the union (or filtered colimit) of finite sets. Unfortunately, the
dual property cannot be proved in (but is consistent with) ZFC, see [5][A.5].

1.2.4 (Co)Algebras for a (Co)Monad

If the signature of a category SAlg(Σ, E) is a proper class, then U : SAlg(Σ, E) → Set

may fail to have a left adjoint (ie free algebras need not exist in SAlg(Σ, E)). Often one
is interested in this additional property. Categories of algebras given by operations and
equations and having free algebras can be characterised as categories of algebras for a
monad.

Recall from Mac Lane [30] that a monad (M, η, µ) consists of an endofunctor on a
category X and two natural transformations η : Id → M , µ : MM → M satisfying
µ ◦Mη = µ ◦ ηM = IdM and µ ◦ µM = µ ◦Mµ. The category MAlg(M) of algebras for the
monad M is the full subcategory of algebras α : MA → A for the functor M satisfying
α ◦ ηA = idA and α ◦ µA = α ◦ Mα.7 A functor U : A → Set is called monadic if it

7It follows from the equations that µA : MMA → MA is the free algebra over A with ‘insertion of
generators’ given by ηA : A→MA.

9

has a left adjoint F with counit ε and the functor A → MAlg(UF), A 7→ (UA, UεA) is an
isomorphism.

The following theorem is formulated over Set but also holds for arbitrary base categories
[29] (and hence for coalgebras over Set) using Linton’s notion of a signature (see above).

Theorem 1.10 (Linton [29]). Monadic categories over Set coincide with categories SAlg(Σ, E)
that have free algebras.

Sketch. Given a left adjoint F of U : SAlg(Σ, E)→ Set one appeals to Beck’s theorem [30]
to show that SAlg(Σ, E) is isomorphic to MAlg(UF). Conversely, given a monad M one
finds a signature and equations as in the proof of Proposition 1.7, representing the algebras
for the functor M by operations and equations. One then adds appropriate equations that
enforce the laws α ◦ ηA = idA and α ◦ µA = α ◦Mα.

1.3 Further Remarks

Functors of Mixed Variance It seems essential for the theory of coalgebras for a
functor that the functor be an endofunctor. This excludes, in particular, functors of mixed
variance. Consider a functor F : Set × Setop → Set. The natural notion of morphism
from a ‘coalgebra’ ξ : X → F (X, X) to ξ′ : X ′ → F (X ′, X ′) is a map f : X → X ′ such
that F (f, id) ◦ ξ = F (id, f) ◦ ξ′ ◦ f . These coalgebras have been of interest in the study of
so-called ‘binary methods’ (cf. Example 1.4.3) but there mathematical properties are quite
different. See Tews [38, 39, 40].

Covariety Theorems Birkhoff’s variety theorem states that a class of algebras for a
signature is closed under images, quotients and products iff it is equationally definable.
Dualising this theorem, the main question is what should replace equational logic. Different
answers are offered by [15, 33, 25, 14, 7, 4, 28].

10

2 Behavioural Equivalence

We consider different notions of bisimulation for coalgebras and compare them in the case
of coalgebras over sets.

2.1 Basic Definitions and Examples

The notion of behavioural equivalence is most useful as an equivalence between states of
systems rather than only systems. This is one of the reasons to assume a base category
X = Set. Another is that, otherwise, the comparison with alternative formulations in the
next subsection became rather complicated.

Definition 2.1 (Behavioural Equivalence). Given two coalgebras (X, ξ), (X ′, ξ′) and two
states x ∈ X, x′ ∈ X ′ we say that x, x′ are behaviourally equivalent if there is a coalgebra
(Q, κ) and there are coalgebra morphisms f, f ′

X

ξ

f
Q

κ

X ′
f ′

ξ′

TX TQ TX ′

such that f(x) = f ′(x′).

Behavioural equivalence is transitive because Coalg(T) has pushouts.

Remark 2.2. The idea of the above definition is that two states are behavioural equivalent
iff they can be related by coalgebra morphisms. This is emphasised by the following two
alternative formulations.

1. Behavioural equivalence is the smallest equivalence relation containing the pairs

((X, ξ, x), (X ′, ξ′, f(x)) for all f : (X, ξ)→ (X ′, ξ′) and all x ∈ X.

2. The equivalence classes of behavioural equivalence are the components of the category
of elements of the forgetful functor.

3. This shows that the notion of behavioural equivalence can be applied to any set-
valued functor A → Set. But it is typically category of coalgebras where this notion
is interesting. It is trivial, for example, in categories of presheaves or, more generally,
many-sorted algebras (because of the existence of a trivial terminal object).

The quotient wrt behavioural equivalence is a coalgebra itself.

Proposition 2.3. Consider U : Coalg(T) → Set. For any coalgebra (X, ξ) the quotient
X → Q of X wrt behavioural equivalence is a coalgebra. This quotient is ‘maximal’ in the
sense that every surjective coalgebra-morphism Q→ Y is an isomorphism.

11

Proof (Sketch). We use that Set is cocomplete and that U creates colimits (see Exercise 4.1.
First note, for x, y ∈ X, that x ≃ y iff there is a coalgebra Bx,y and a coalgebra-morphisms
f : X −→ Bx,y, such that f(x) = f(y). The quotient of X wrt behavioural equivalence is
now the colimit of the X → Bx,y. If e : Q→ Y is a surjective (=epi) coalgebra-morphism
then Y is a quotient of X and there must be a coalgebra morphism s such that s◦ e = idQ.
Hence e is injective and therefore an isomorphism.

Note that two states x, y in two different coalgebras are behavioural equivalent iff they
are equivalent considered as states of the coproduct of the coalgebras (which is disjoint
union). It therefore suffices to consider behavioural equivalence as a relation on a given
coalgebra.

Example 2.4. In the following we select from Example 1.4 and give examples of x ≃ y
for two states in the same coalgebra ξ : X → TX for different functors T .

1. (Streams) x ≃ y iff the stream produced by x is the same as the one produced by
y.

2. (Deterministic Automata) x ≃ y iff the language accepted in x is the same as
the language accepted in y.

3. (Relations, Kripke Frames, Labelled Transition Systems) x ≃ y iff they are
bisimilar in the usual sense. That is, given ξ : X → P(A ×X) and writing x

a
−→ y

for (a, y) ∈ ξ(x), it holds x ≃ y iff

x ≃ y & x
a
−→ x′ ⇒ ∃y′ . y

a
−→ y′ & x′ ≃ y′

x ≃ y & y
a
−→ y′ ⇒ ∃x′ . x

a
−→ x′ & x′ ≃ y′

For the proof of 1, using Proposition 2.3, it is enough to show that (a) x ≃ y implies
that the two streams produced by x and y are the same and (b) the set of streams pro-
duced by elements of X carries a coalgebra structure that makes it into a quotient of X
(exercise!). Similarly for 2. For 3, ‘only if’ follows from the fact that coalgebra morphisms
are bisimulations, ‘if’ follows from the fact that the two projections from the bisimulation
to X are coalgebra morphisms (see the definition of bisimulation in the next section).

2.2 Other Notions of Bisimulation

In the following, we will consider other formalisations of bisimilarity and see 3 different
ways of capturing the notion of bisimulation (rather than just bisimilarity8). We will also
see that these notions essentially agree for coalgebras over sets.

8But one can define a notion of bisimulation that corresponds to behavioural equivalence, see Exer-
cise 4.3.

12

All three notions of bisimulation considered below, can be motivated from the well-
known observation that bisimilarity is a coinductively defined relation, in the sense that
it is the largest fixed point9 of a monotone operator. Let us look, as an example, at
(unlabelled) transition systems, that is, T = P. Then, given (X, ξ), bisimilarity on X is
the largest fixed point of the operator

Φ(R) = {(x, y) ∈ X ×X | ∀x′ ∈ ξ(x).∃y′ ∈ ξ(y).x′Ry′ & ∀y′ ∈ ξ(y).∃x′ ∈ ξ(x).x′Ry′}

In order to generalise this from transition systems to coalgebras for an arbitrary functor,
we need to separate the part of the definition of Φ that uses T from the part that uses
(X, ξ). We can write Φ(R) as

ξ∗P̂(R)

where ξ∗ = (ξ × ξ)−1 and

P̂(R) = {(A, B) ∈ PX ×PX | ∀a ∈ A.∃b ∈ B.aRb & ∀b ∈ B.∃a ∈ A.aRb} (2)

2.2.1 Bisimulation

Aczel and Mendler defined bisimulation in [2] as follows. R ⊆ X × X ′ is a bisimulation
between coalgebras (X, ξ) and (X ′, ξ′) if one can find a coalgebra structure ̺ on R such
that the projections X ← R→ X ′ become coalgebra morphisms.

X

ξ

R

̺

X ′

ξ′

TX TR TX ′

x, x′ are called bisimilar iff there is a bisimulation R such that xRx′. Note that ̺ need not
be unique (eg for T = P (exercise)) and is not part of the structure of a bisimulation.

Example 2.5. Consider two coalgebras 〈head , tail〉 : X → D × X, 〈head ′, tail ′〉 : X ′ →
D ×X ′. Then R is a bisimulation iff

x R x′ ⇒ head(x) = head ′(x′)

x R x′ ⇒ tail(x) R tail ′(x′)

It is not immediate that bisimilarity is an equivalence relation and it depends on T
preserving weak pullbacks.10

Comparing bisimilarity with behavioural equivalence we would expect that bisimilarity
on a coalgebra (X, ξ) and behavioural equivalence are the same, in other words, that
bisimilarity is the kernel pair of the quotient wrt behavioural equivalence. In order to

9Here, inductively defined refers to smallest fixed point and coinductively to largest fixed point.
10The composition of two bisimulations is a bisimulation if ([37]) and only if ([18, 16]) T weakly preserves

pullbacks. T weakly preserves kernel pairs iff for any set C and any C×T -coalgebra behavioural equivalence
and bisimilarity agree [17].

13

get the not necessarily unique arrow ̺ one needs to assume that T maps pullbacks to
weak pullbacks (or, equivalently in any category with pullbacks, that T preserves weak
pullbacks). The proof of the following proposition is straight forward. 11

Proposition 2.6. If T : Set → Set preserves weak pullbacks, then bisimilarity and be-
havioural equivalence coincide.

Proof. That bisimilarity implies behavioural equivalence is immediate from the respective
definitions. For the converse, consider

R TR

X X TX TX

Q TQ

where X → Q is the quotient wrt behavioural equivalence and R is the pullback. Since
TR is a weak pullback, the required structure on R exists.

2.2.2 Bisimulation via Relators

Let us write Rel for the category that has sets as objects and relations as arrows.12 We
denote by (−)◦ the operation that maps a relation R : A→ B to its converse R◦ : B → A.
Intuitively, a relator extends a functor from Set to Rel. This idea has been formalised
in different ways. We follow [11]. The proofs taken from this paper are sketched in the
exercises.

Note that every arrow in Set, called a map in this context , appears in Rel as its graph.
We write f, g for maps in Rel and denote the projections of a relation R : A → B by
r1 : R → A and r2 : R → B. A relator Γ is a graph homomorphism Rel→ Rel such that
(a) Γ(id) = id, (b) fR ⊆ R′g ⇒ (Γf)(ΓR) ⊆ (ΓR′)(Γg),13 (c) Γ preserves maps.

It follows that Γ is monotone (R ⊆ R′ ⇒ ΓR ⊆ ΓR′) and that Γ induces a functor
Γ♯ : Set→ Set (ie Γ preserves composition of maps). Conversely, each functor T : Set→ Set

extends to a relator T̂ given by T̂A = TA and and T̂R = (Tr2)(Tr1)
◦. Equivalently, given

R : A→ B, T̂R is given by the image factorisation

TR −→ T̂R →֒ TA× TB

11Recall that the kernel pair of a morphism X → Y is the pullback of X → Y ← X . A weak pullback
is defined like a pullback but the mediating map need not be unique.

12The homsets of Rel are partially ordered and this order is respected by composition of relations, so
Rel is a 2-category, or, more specifically, a Poset-enriched category.

13fR ⊆ R′g iff f × g restricts to R iff {(f(x), g(x)) | (x, y) ∈ R} ⊆ R′ iff R ⊆ (f × g)−1(R′). Assuming
monotonicity, (b) is equivalent to Γ((f × g)−1(R′)) ⊆ (Γf × Γg)−1(ΓR′) where ‘⊆’ can be replaced by an
equality if Γ preserves composition.

14

of TR→ T (A×B)→ TA× TB.

As an example, T̂ has been explicitly given for T = P in (2).

Given a T -coalgebra (X, ξ), one can now define a bisimulation on X to be a post fixed-
point (and bisimilarity on X to be the largest fixed point) of the monotone operator
R 7→ (ξ× ξ)−1(T̂ (R)). Equivalently, a bisimulation is a subset R ⊆ X ×X such that there
is a (necessarily unique) map ˆ̺ such that

X

ξ

R

ˆ̺

X ′

ξ′

TX T̂R TX ′

commutes.

The following theorem is not needed to compare the different notions of bisimilarity but
it shows the role of ‘weak pullback preservation’ in the context of relators. It is a special
case of a theorem of [11] where it is developed for arbitrary regular categories instead of
Set. Note that for a relator to be a (2-)functor is the same as to preserve composition of
relations.

Theorem 2.7 ([11, 4.3]). Let T be a functor on Set and Γ a relator.

1. T̂ is a functor iff T preserves weak pullbacks.

2. Γ is a functor then Γ = (̂Γ♯).

The next proposition is the analogue of Proposition 2.6. But now, preservation of weak
pullback is used for the other direction.

Proposition 2.8. Given a coalgebra (X, ξ) for a weak pullback preserving functor T ,
behavioural equivalence on X is the largest fixed point of the monotone operator R 7→
(ξ × ξ)−1(T̂ (R)).

Proof. It is immediate from the respective definitions that Aczel-Mendler bisimulation on
X is a post-fixed point of R 7→ (ξ × ξ)−1(T̂ (R)). To show that, conversely, the largest
fixed-point of R 7→ (ξ × ξ)−1(T̂ (R)) is contained in the behavioural equivalence on X,
consider the diagram of the proof of Proposition 2.6 with T̂R instead of TR. Recall that
R was defined as kernel pair of X → Q. We find an arrow f : T̂R→ P from T̂R to the the
pullback P of TX → TQ ← TX. Since T preserves weak pullbacks, the arrow TR → P
has a half-inverse g, exhibiting R as an Aczel-Mendler bisimulation via gf : R→ TR.

15

2.2.3 Bisimulation via Relation Lifting

Another approach to bisimulation (or other coinductively defined relations) is to replace
the carrier sets X of coalgebras (X, ξ) by pairs (X, R) where R is a relation on X and then
lift the functor T from sets to sets with relations. To be specific, consider the category
BPred of ‘binary predicates’ the objects of which are pairs (X, R), R ⊆ X ×X and arrows
are functions X → X ′ such that xRy ⇒ f(x)R′f(y). A lifting of T is a functor T̄ such
that (p is first projection)

BPred
T̄

p

BPred

p

Set
T

Set

meaning that T̄ (X, R) = (T̄0(X, R), T̄1(X, R)) satisfies T̄0(X, R) = TX.14

It is convenient to abbreviate (T̄0(X, R), T̄1(X, R)) by (T (X), T̄ (R)).

There may be different choices for T̄ giving rise to different liftings of T , but there is a
canonical one, namely the one which is obtained from TR → T (X ×X) → TX × TX as
the image TR→ T̄ (X, R) →֒ TX × TX.

For example, with T = P, T̄ (R) is the P̂(R) given in (2).

One can now define a bisimulation on a coalgebra (X, ξ) to be a relation R such that
((X, R), ξ) is a T̄ -coalgebra. Moreover, if T has a final coalgebra (Z, ζ), then T̄ has a
final coalgebra and it is given by ((Z, =), ζ), in accordance with the fact that behavioural
equivalence is the identity relation on the final coalgebra (see the next section).

It is immediate from the definitions that the relation lifting T̄ and the relator T̂ give
rise to the same notion of bisimulation.

The above is only a particular instance of a much more general approach using fibrations,
see Hermida and Jacobs [21]. A general theorem describing how final T -coalgebras are
lifted to final T̄ -coalgebras is given in Hensel and Jacobs [20].

2.3 Further Remarks

A Comparison We have seen that, if the functor preserves weak pullbacks, all notions
of bisimilarity or behavioural equivalence coincide. If the functor does not preserve weak
pullbacks, the notions of bisimulation fall apart and do not work nicely anymore. For
example, bisimilarity may fail to be an equivalence relation. But behavioural equivalence
still works fine. So the point of view I would take, given the examples I am aware of,
is the following. Given a functor T : Set → Set, behavioural equivalence is the correct
formalisation of the intuitive notion of bisimilarity; the other notions work only in case the
functor preserves weak pullbacks.

14Moreover, T̄ is often required to be fibred which amounts to T̄ ((f × g)−1(R′)) = (T̄ f × T̄ g)−1(T̄R′).

16

Having said that, I want to emphasise that this judgement relies on choosing the base
category Set. The case of functors on categories other than Set seems not to be much
investigated. See Worrell [44] for work generalising relators for coalgebras over an enriched
category and Plotkin [31] for some remarks on coalgebras over cpos.

Relators and Simulations The term ‘relator’ seems to be due to the Thijs [41]. His
notion of monotonic relator or weak relator [8] insists on relators preserving composition
but, more importantly, does not require that maps are preserved. This allows to treat
simulations instead of bisimulations, see [8, 12]. A related approach to simulations based
on relation liftings is proposed in [22].

Other Process Equivalences and Preorders The test suite approach by Klin [23,
24] shows how the fibrational approach can be used to characterise a large number of
equivalences and preorders on processes other than (bi)simulation. Instead of BPred, it
uses a category of ‘test suites’ which has objects (X, θ) where θ is a collection of subsets
of X and, similar to topological spaces, f : X → X ′ is a morphism if f−1(a′) ∈ θ for
all a′ ∈ θ′. As for relation liftings, one uses the lifted functor to define a monotone
operator. The specialisation preorder of the largest fixed point is then the defined preorder.
Klin develops a methodology how to define the lifted functors in order to obtain specific
preorders of interest.

17

3 Final Coalgebras

3.1 Basic Definitions and Examples

Definition 3.1. An object A in a category A is called final or terminal if for any object
B in A there is a unique arrow B → A.

As any limit, a final coalgebra is determined uniquely up to isomorphism.

The final T -coalgebras can be considered as solutions of the ‘domain equation’ X ∼= TX:

Proposition 3.2 (Lambek’s lemma). If ζ : Z → TZ is a final coalgebra, then ζ is an
isomorphism.

Elements of the final coalgebra can be understood as equivalence classes of behaviourally
equivalent states.

Proposition 3.3. x ≃ y iff x and y are mapped to the same element of the final coalgebra.

Example 3.4. We select again from Example 1.4.

1. (Largest Fixed Points) Let X be a category of sets with inclusions as morphisms.
Then the final T -coalgebra is the largest fixed point of T .

2. (Streams) If TX = D ×X, then the final coalgebra is 〈head , tail〉 : Dω → D ×Dω

where head(l) = l(0) gives the first element of the infinite list l and tail(l) = λn ∈
ω.l(n + 1).

3. (The Automaton of all Languages) The set of all languages can be equipped
with a transition structure that makes it into a final coalgebra. A language L is an
accepting state if it contains the empty word. And L makes an a-transition to the
language La = {w | aw ∈ L}. See Rutten [35].

4. (Non well-founded sets) Aczel’s [1] universe of non-well founded sets is the final
coalgebra for the covariant powerset functor (of course, due to Lambek’s lemma, the
carrier of this final coalgebra cannot be a set but is a proper class).

Coinduction

Final Coalgebras give rise to the principle of coinduction. Since we know that for any
coalgebra ξ : X −→ TX there is a unique morphism into the final coalgebra (Z, ζ), we can
define a function f : X −→ Z just by giving an appropriate structure ξ:

X

f

ξ
TX

Tf

Z
ζ

TZ

18

We say that a function f : X −→ Z is defined by coinduction if it arises in such a way
from a ξ : X −→ TX.

For example, let us define the operation zipping two streams (recall Example 3.4). That
is, we are looking for a function

zip : Dω ×Dω −→ Dω

such that

head(zip(l1, l2)) = head(l1) (3)

tail(zip(l1, l2)) = zip(l2, tail(l1)) (4)

Exercise 3.5. Show that zip is defined by coinduction via

ξ : Dω ×Dω −→ D ×Dω ×Dω

〈l1, l2〉 7→ 〈head(l1), 〈l2, tail(l1)〉〉,

More precisely, show that, for an arbitrary zip : Dω × Dω −→ Dω, zip is a morphism
(Dω ×Dω, ξ) −→ (Dω, ζ) iff it satisfies 3 and 4.

For another example do the following

Exercise 3.6. Find a function ξ : Dω −→ D ×Dω showing that

head(even(l)) = head(l) (5)

tail(even(l)) = even(tail(tail(l))) (6)

is a coinductive definition.

We can also use coinduction as a proof principle. It is based on the following

Proposition 3.7 (coinduction proof principle). Behavioural equivalence is equality on the
final coalgebra.

It follows that, in order to show that two elements of a final coalgebra are equal, it is enough
to show that there is a bisimulation relating them. This is called ‘proof by coinduction’.

For an example, recall the functions zip and even and define odd(x) = even(tail(x)). We
want to show

zip(even(x), odd(x)) = x.

It is not difficult to guess the bisimulation

R = {〈zip(even(x), odd(x)) , x〉 , x ∈ Dω}.

It remains to check the two clauses of Example 2.5 (exercise!).

19

Remark 3.8. Coinduction becomes really interesting only if we also consider algebraic
operations. For example, if D is a ring, we can define operations like addition and multi-
plication of streams coinductively. In fact, one can go much further and Rutten [36] devel-
oped a coinductive calculus of streams to solve so-called behavioural differential equations.
Another area is process algebra where operations on processes are defined in the style of
SOS, ie, coinductively, see Turi and Plotkin [42] and, for a recent account, Bartels [10].

3.2 The Final Coalgebra Sequence

The final coalgebra sequence, or final sequence, or terminal sequence, can be pictured as

1 T1 . . . T n1 . . . T ω1 T (T ω1) . . .

We write Tn for T n1 and define, for a sufficiently complete category X , the final sequence
of T as an ordinal indexed sequence of sets (Tn) together with a family (pn

m)m≤n of arrows
pn

m : Tn → Tm for all ordinals m ≤ n such that

• Tn+1 = TTn and pn+1
m+1 = Tpn

m for all m ≤ n

• pn
n = idTn

and pn
k = pm

k ◦ pn
m for k ≤ m ≤ n.

• The cone (Tn, (p
n
m))m<n is limiting whenever n is a limit ordinal.

The final sequence has many applications. It can be used to prove the existence of final
coalgebras. It allows to reduce coinduction to induction along the final sequence. It can
be used to define a metric on Tω. Tn is also the natural semantic domain for formulae of
modal logic of depth n.

The fundamental observation here is that any coalgebra ξ : X → TX gives rise to a
cone over the final sequence

X

ξ0 ξ1 ξn ξω

1 T1 . . . T n1 . . . T ω1 . . .

where ξn : C → T n1 is Tξm ◦ ξ if n = m + 1 is a successor ordinal and ξn is the unique
map satisfying ξm = pn

m ◦ ξn for all m < n if n is a limit ordinal.

Example 3.9. If TX = D × X, then the final sequence ‘terminates’ after ω steps since
Tω = Dω is the final coalgebra (cf. Example 3.4).15 The finitary approximants are Tn = Dn

and ξn(x) gives the list of the first n outputs, ie, forgets from the behaviour of x all but
the first n steps (cf. Examples 1.4, 2.4).

15More precisely, the inverse of T (Tω)→ Tω is the final coalgebra.

20

3.2.1 Approximating Final Coalgebras

The example suggests that the Tn should be considered as approximating the final coalge-
bra; and the elements of Tn as behaviours up to n steps. Indeed, we have the following

Proposition 3.10. If, for some ordinal n, the arrow pn+1
n : T (Tn)→ Tn is an isomoprhism,

then the inverse (pn+1
n)−1 is a final coalgebra.

Proof. That, given a coalgebra (X, ξ), ξn is a coalgebra morphism follows from ξn = pn+1
n ◦

Tξn ◦ ξ. For uniqueness suppose f : X → T n1 is a coalgebra morphism and let fm =
pn

m ◦ f . One shows that fm = ξm for all m ≤ n. The step for a successor ordinal is
fm+1 = pn

m+1 ◦ f = pn
m+1 ◦ pn+1

n ◦ Tf ◦ ξ = pn+1
m+1 ◦ Tf ◦ ξ = T (pn

m) ◦ Tf ◦ ξ = Tfm ◦ ξ.

This theorem also has a converse.

Theorem 3.11 (Adámek and Koubek [3]). Let X be cocomplete and cowellpowered.16 If
the final coalgebra exists, then the final sequence terminates.

Remark 3.12 (Existence of Final Coalgebras). Sufficient conditions for the final coalgebra
(over Set) to exist are that T is bounded [37] or that T is accessible [5]. Both notions are
in fact equivalent [4].

Remark 3.13 (Reducing Coinduction to Induction). Given two states x, y in a coalgebra
(X, ξ), in order to establish that they are behaviourally equivalent, we usually employ a
proof by coinduction (ie we find an appropriate bisimulation). But we can also use induc-
tion along the final sequence to establish ξn(x) = ξn(y) for all ordinals. In fact, that is what
one often does to establish soundness of proofs by coinduction. For example, going back
to streams, one way to proof that the existence of a bisimulation (Example 2.5) relating
x and y implies (head(tailn(x))n<ω = (head(tailn(y))n<ω (ie behavioural equivalence) is
by induction on n < ω. The fact that the induction has to cover only natural numbers,
corresponds to the final sequence terminating at ω.

To summarise, we can consider the elements of the final sequence T n1 as approximants
to the final coalgebra. This makes sense even if the final coalgebra does not exist.

Example 3.14. If TX = PX, then the final sequence does not terminate. Pω1 is known
as the final coalgebra for the compact powerset on complete ultrametric spaces or also for
the convex powerdomain on Stone spaces. In order to obtain an explicit description of Pω1
(see Worrell [43] for the full story), observe that an element of Pn1 can be considered as
a tree of depth n where x is a child of y if x ∈ y. The projections pn

m cut a tree at depth
m and then quotient it so that it depicts again a set. Pω1 contains all trees ‘that can be
built using an infinite sequence of such trees (tn) of finite depth’. It is not difficult to see
that Pω1 has an infinitely branching tree.

16Cowellpowered means that any object X there is, up to isomorphism, only a set of epis with domain
X .

21

Now consider the finitary powerset functor Pω. Obviously, Pω
ω 1 = Pω1. Since we have

indicated in the example above that Pω1 has infinitely branching trees, we cannot expect
Pω1 to carry a Pω-coalgebra structure.17 But on the other hand, since Pω is finitary, we
know that a final coalgebra exists and appears in the final sequence. In fact, one needs
another ω iterations to cut out, at each step, the infinitely branching nodes. This is the
significance of the following theorem.

Theorem 3.15 (Worrell [43]). For a finitary T : Set→ Set the final sequence terminates
after ω + ω steps.

3.2.2 The Metric Induced by the Final Sequence

Consider a functor T : Set → Set. Every cone (X, ξn) on the finitary part of the final
sequence induces a (pseudo)-metric on X, namely d(x, y) = 2−n where n is the smallest
number such that ξn(x) 6= ξn(y). In particular, T ω1 is a (ultra)metric space.

The following theorem exhibits T ω1 as a metric completion. We write T n0 for the elements
of the initial sequence which is defined dually to the final sequence.

Theorem 3.16 (Barr [9]). If T0 6= 0 and T preserves monos then the canonical map
T ω0→ T ω1 is injective and T ω1 is the Cauchy-completion of T ω0.

For example, in the theory of the infinitary lambda calculus one usually defines sets of
infinite terms as metric completions of finite terms. Using the theorem above, one can
show that these definitions are equivalent to certain coinductive definitions.

The topology on T ω1 can also be used to study finitary logics for coalgebras. For
simplicity, let us say that a finitary logic for coalgebras consists of a set of formulae and
each formula denotes a subset of some T n1, n < ω.18 For example, assuming that all T n1
are finite, one can then show that the logic is compact iff the functor T weakly preserves
limits of ω-chains [27].

17But, since Pω+11→ Pω1 is surjective, it has a right-inverse which is a P-coalgebra structure on Pω1.
18Then we can say that (X, ξ), x |= ϕ iff ξn(x) in the denotation of ϕ.

22

4 Exercises

The following (rather unsystematic selection of) ‘exercises’ contain further material that
has not made it into the short course of 5 lectures.

Structure of Coalg(T)

Colimits in Coalg(T) are calculated as in the base category. Also, a coalgebra-morphism is
epi in Coalg(T) iff it is epi in the base category. This follows from

Exercise 4.1 (structure of coalgebras). Show that the forgetful functor U : Coalg(T)→ X
creates colimits. That is, for a diagram D : I → Coalg(T), if d : UDi→ X is a colimiting
cocone then there are unique morphisms ci with Uci = di and, moreover, ci is a colimiting
cocone in Coalg(T).

The situation for limits is more complicated. Concerning monos the situation is the fol-
lowing. U preserves and reflects monos if T preserves weak pullbacks. In particular, if
T : Set → Set preserves weak pullbacks, then a coalgebra morphism is mono iff it is
injective.

Limits can be obtained from the observation that, for coalgebras over set, if (Xi, ξi) are
subcoalgebras of (X, ξ), then the union

⋃
Xi is a subcoalgebra of (X, ξ). The following

exercise treats a special case.

Exercise 4.2. Show that the equaliser of f, g : A→ B in Coalg(T), T : Set→ Set, is given
by the largest subcoalgebra contained in {x ∈ A | f(x) = g(x)}.

This can be generalised to other limits and also to other base categories, see eg [26].

Behavioural Equivalence

The following exercise gives a formulation of behavioural equivalence in terms of an op-
erator T̃ , resembling the definitions of bisimulation via relators and relation lifting in
Section 2.2.

Exercise 4.3 (pre-congruence [2]). Given a relation R on X, define T̃R as the kernel of
Tq where q is the quotient q : X → X/R of X wrt (the equivalence generated by) R. Call
R a pre-congruence on a coalgebra (X, ξ) if

R ⊆ ξ−1(T̃ (R)).

Show that R is pre-congruence on (X, ξ) iff there is (a necessarily unique) ξR such that the
quotient q : X → X/R is a coalgebra-morphism (X, ξ)→ (X/R, ξR).

23

Preservation of Weak Pullbacks

The next exercise gives an example of a functor that does not preserve weak pullbacks. A
related functor, whose coalgebras are the monotone neighbourhood frames (Example 1.4),
has the same property as shown in Hansen and Kupke [19]. A third example, from Aczel
and Mendler [2], is given by the functor that maps a set X to {(x, y, z) | card({x, y, z}) ≤ 2}
(it is not difficult to see that the cardinality restriction prohibits the map that should exist
into the image of the weak pullback).

Exercise 4.4 (22− does not preserve weak pullbacks [37]). Show that the hypersystems
functor T = 22− does not preserve weak pullbacks. [Hint: The pushout of the constant
maps zero, one : 2→ 2 is given by the empty set 0. Apply T to this pushout diagram and
let P be the pushout of T (zero) and T (one). One has to show that the canonical map
T0 → P is not surjective for which a sufficient condition is that the cardinality of P is
larger than 2.]

References

[1] P. Aczel. Non-Well-Founded Sets. CSLI, Stanford, 1988.

[2] P. Aczel and N. P. Mendler. A final coalgebra theorem. In Category Theory and
Computer Science, volume 389 of LNCS, 1989.

[3] J. Adámek and V. Koubek. On the greatest fixed point of a set functor. Theoret.
Comput. Sci., 150(1), 1995.

[4] J. Adámek and H.-E. Porst. On varieties and covarieties in a category. Math. Struc-
tures Comput. Sci., 13, 2003.

[5] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. CUP, 1994.

[6] J. Adámek and V. Trnková. Automata and Algebras in Categories. Kluwer, 1990.

[7] S. Awodey and J. Hughes. The coalgebraic dual of Birkhoff’s variety theorem. Tech-
nical Report CMU-PHIL-109, Carnegie Mellon University, Pittsburgh, PA, 15213,
November 2000.

[8] A. Baltag. A logic for coalgebraic simulation. In CMCS’00, ENTCS 33, 2000.

[9] M. Barr. Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci.,
114(2), June 1993.

[10] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD
thesis, Vrije Universiteit Amsterdam, 2004.

24

[11] A. Carboni, G. Kelly, and R. Wood. A 2-categorical approach to change of base and
geometric morphisms I. Technical Report 90-1, Department of Pure Mathematics,
University of Sydney, 1990.

[12] C. Ĉırstea. On logics for coalgebraic simulation. In CMCS’04, ENTCS 106, 2004.

[13] R. Davis. Quasi-cotripleable categories. Proceedings of the American Mathematical
Society, 35, 1972.

[14] R. Goldblatt. What is the coalgebraic analogue of Birkhoff’s variety theorem? Theoret.
Comput. Sci., 266, 2001.

[15] H. P. Gumm. Equational and implicational classes of co-algebras. Extended abstract.
RelMiCS’4. The 4th International Seminar on Relational Methods in Logic, Algebra
and Computer Science, Warsaw, 1998.

[16] H. P. Gumm. Elements of the general theory of coalgebras. LUATCS’99, 1999.

[17] H. P. Gumm and T. Schröder. Types and coalgebraic structure. Algebra Universalis.
to appear.

[18] H. P. Gumm and T. Schröder. Coalgebraic structure from weak limit preserving
functors. In CMCS’00, volume 33 of ENTCS, 2000.

[19] H. Hansen and C. Kupke. A coalgebraic perspective on monotone modal logic. In
CMCS’04, ENTCS 106, 2004.

[20] U. Hensel and B. Jacobs. Proof principles for iterated datatypes. In Category Theory
and Computer Science, volume 1290 of LNCS, 1997.

[21] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Information and Computation, 145(2), 1998.

[22] J. Hughes and B. Jacobs. Simulations in coalgebra. Theoret. Comput. Sci., 327, 2004.

[23] B. Klin. An Abstract Coalgebraic Approach to Process Equivalence for Well-Behaved
Operational Semantics. PhD thesis, University of Aarhus, 2004.

[24] B. Klin and P. Sobocinski. Syntactic formats for free: An abstract approach to process
equivalence. In Proceedings of CONCUR 2003, volume 2671 of LNCS, 2003.

[25] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis,
LMU, 2000.

[26] A. Kurz. Coalgebras and Modal Logic - Course Notes for ESSLLI 2001. University of
Helsinki, 2001.

25

[27] A. Kurz and D. Pattinson. Coalgebraic modal logic of finite rank. Math. Structures
Comput. Sci., 15, 2005.

[28] A. Kurz and J. Rosický. Operations and equations for coalgebras. Math. Structures
Comput. Sci., 15, 2005.

[29] F. Linton. An outline of functorial semantics. In Seminar on triples and categorical
homology theory, LNM 80. 1969.

[30] S. Mac Lane. Category Theory for the Working Mathematician. Springer, 1971.

[31] G. Plotkin. Bialgebraic semantics and recursion (extended abstract). In CMCS’01,
2001.

[32] J. Reiterman. Algebraic theories and varieties of functor algebras. Fund. Math., 118,
1983.

[33] G. Roşu. Equational axiomatizability for coalgebra. Theoret. Comput. Sci., 260, 2001.

[34] J. Rosický. On algebraic categories. In Universal Algebra (Proc. Coll. Esztergom
1977), volume 29 of Colloq. Math. Soc. J. Bolyai, 1981.

[35] J. Rutten. Automata and coinduction - an exercise in coalgebra. In CONCUR’98,
LNCS 1466, 1998.

[36] J. Rutten. Behavioural differential equations: A coinductive calculus of streams,
automata, and power series. Report SEN-R0023, CWI, Amsterdam, 2000.

[37] J. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput. Sci., 249,
2000.

[38] H. Tews. Coalgebras for binary methods: Properties of bisimulations and invariants.
Theor. Inform. Appl., 35, 2001.

[39] H. Tews. Coalgebraic Methods for Object-Oriented Specification. PhD thesis, Univer-
sity of Dresden, 2002.

[40] H. Tews. Predicate and relation lifting for parametric algebraic specifications. In
CMCS’04, ENTCS 106, 2004.

[41] A. Thijs. Simulation and Fixpoint Semantics. PhD thesis, Rijksuniversiteit Groningen,
1996.

[42] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In LICS’97,
1997.

[43] J. Worrell. Terminal sequences for accessible endofunctors. In CMCS’99, ENTCS 19,
1999.

26

[44] J. Worrell. On Coalgebras and Final Semantics. PhD thesis, Oxford University Com-
puting Laboratory, 2000.

27

