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Abstract

Coalgebras for a functdr on a categoryt’ model many different types of transition systems in a
uniform way. This paper focuses on a uniform account of finitary strongly complete specification
languages for Set-based coalgebras.

We show how to associate a finitary logic to any finite-sets preserving fufictord prove the

logic to be strongly complete under a mild condition’'BnThe proof is based on the following
result. An endofunctor on a variety has a presentation by operations and equations iff it preserves
sifted colimits.

1 Introduction

Coalgebras for a functdf on a categoryX’ model many different types of transition systems in a
uniform way. Coalgebras are dual to algebras and the logic of algebras is equational logic. But then,
what is the logic of coalgebras? Can logics for coalgebras be described in a uniform way, and their
properties be established in a uniform manner?

Our approach to these questions is based on Stone duality. We think of Stone duality [15, 2] as relating
a category of algebrad representing a propositional logic to a category of topological spates
representing the state-based models of the logic. The duality is provided by two contravariant functors
P ands,

P maps a spac¥ to a propositional theory anfimaps a propositional theory to its ‘canonical model'.
Abramsky [1] extended a basic Stone duality as in Diagram 1 by ‘synchronising’ dual constructions
on both sides of Diagram 1, thus providing a description of domain theory in logical form. This
suggests that the modal logic of a funcioshould be given by its dudl on A:
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Then the category of.-algebras is dual to the category ‘Bfcoalgebras and the initidl-algebra
provides a propositional theory characterisifigbisimilarity. Moreover, if L can be presented by
generators and relations, one inherits a proof system from equational logic which is sound and strongly
complete. Thus, logics fdf-coalgebras arise from presentations of the dudl ofy generators and
relations. We characterise those functbrsn varietiesA that have a finitary presentation.

Whereas the result above gives us logics for coalgebras, our next aim is to prove a strong completeness
result for finitary logics for Set-coalgebras. The approach indicated in Diagram 2 can be applied to
Set-coalgebras, but as the duabet is the categorfCZ ABA of completeatomic boolean algebras, the
corresponding logics are infinitary. Our solution is to consider two Stone dualities:

Stone ___BA 3 L (3)

7( Set__ CABA

The upper row is the duality between Stone spaces and Boolean algebras, accounting for (classical
finitary) propositional logic.. describes an expansion of propositional logic by modal operators and
axioms. The lower row is the duality where our Set-ba®edoalgebras live. How can these two
worlds be related?

The crucial observation is the followin®A is the Ind-completion of finite Boolean algebras, that is,
the completion of finite Boolean algebras under filtered colingits;is the Ind-completion of finite
sets; and finite sets are dual to finite Booleans algebras. In other vBetfs is the Pro-completion

of finite Boolean algebras, that is, the completion of finite Boolean algebras under cofiltered limits.

L K, OPS T°oP (4)

BA, = Set’P

If T preserves finite sets then we can associate a modal lo@ibtodefiningL to be the continuous
extension that agrees wifhion finite sets. Moreover, we obtain a natural transformation

6:LP— PT

giving the semantics to the logic by inducing a funcfer: Coalg(T) — Alg(L). Similarly, if T
weakly preserves cofiltered limits, we obtain

h:SL—TS

giving rise to a map on objects: Alg(L) — Coalg(T'). From this, one obtains strong completeness:
We can associate to ardy-algebraA the coalgebra A, which provides a counter example for each
formula not holding inA.

Summary of Results Our main results are the following:

1. A functor on a variety4 has a presentation iff it preserves sifted colimits.
2. Algebras over Ind-completions can be represented via algebras over Pro-completions.

3. To any functor orbtone that is determined by its action on finite Stone spaces, one can associate a
finitary strongly complete modal logic that characterigelisimilarity.
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4. To any functor onSet that preserves finite sets and weakly preserves cofiltered limits, one can
associate a finitary strongly complete modal logic.

The first two results are of purely categorical nature and are treated in Sections 4 and 5. The next two
results are essentially corollaries of the first two and are described in Sections 7 and 8. The last one
generalises a result in modal logic known as bisimilarity-somewhere-else.

Comparison with other approacheslin his seminal paper [24], Moss described a coalgebraic logic

for any weak pullback preserving functor on sets, which to a large extent, answers our question for a
parametric logic for coalgebras. But his solution has some drawbacks. First, the restrictions to sets and
to weak-pullback preserving functors are essential to his approach. This prevents generalisations to
logics for systems modelled in a domain theoretic (ie topological) setting. And it prevents extensions
to situations where the modal lawp A Oy — O(p A ) does not hold. This is typically the case

in logics for games where one také&g to mean that the player can play some move that restricts
the opponent to moves after whighholds. Second, Moss’s logic does not provide modalities to
decompose the structure Bf which is needed to allow for a flexible specification language. Related

to this, there is no proof system and no completeness result.

To address these issues, attention was focused on special classes of functors given by a restricted num-
ber of type constructors for which logics were built in an ad hoc manner [22, 27, 14]. Pattinson [25]
showed that these languages with their ad hoc modalities arise from modal operators given by certain
natural transformations, called predicate liftings, associated with the fufic®chibder [29] investi-

gates the logics given by all predicate liftings of finite arity and shows that these logics are expressive
for finitary functors7. This restriction to finitary functors excludes traditional transition systems.
Moreover, it is not clear how this approach generalises to topological and domain theoretic settings.

Our approach does not suffer any of these drawbacks. On the other hand, for Set-functors, we restrict
attention to those that preserve finite sets and weakly preserve cofiltered limits. As we will explain,
this is justified by focussing on strong completeness results.

The observation that all logics given by predicate liftings correspond to a fuhatarBA was made

in [19]. That functors that have a presentation give rise to a logic for coalgebras was noted in [10].
Here we give a characterisation of the functors which have presentations. The process of taking a
finite set preserving functor and extending iBA, and hence tStone, is related to a construction in
Worrell [33] where a Set-functor is lifted to complete ultrametric spaces.

2 Algebras and Coalgebras

Given a functotl on a category4, an L-algebra (notation{ A, «) or justa) is an arrowr : LA — A.
A morphismf : & — o’ isan arrowf : A — A’ suchthatf oo = o' o Lf.

The category of algebras for a signatdtend equationg’ is defined as usual (in particular, carriers
are sets) and denoted g(X, ). We say that a categoryl, equipped with a forgetful functor
U : A — Set, has apresentationif there exists a signatur& and equationgw such thatA is
concretely isomorphic tlg(%, E). A (or more precisely/ : A — Set) is monadic(over Set) iff A
has such a presentation atid .A — Set has a left adjoint.

A functor isfinitary if it preserves filtered colimits. An objeét of a categoryC is finitely presentable
if its hom-functorhom(K,—) : K — Set is finitary. In Set, the finitely presentable objects are



precisely the finite sets and Kig(X, F) they are the algebras described by a finite set of generators
and a finite set of relations.

A category monadic oveSet is called avarietyif it has a set of finitely presentable objects and every
object is a filtered colimit of these. This is the case whenever all operatidhaiia of finite arity. We
are particularly interested in the varid®A of Boolean algebras and in the varidd. of distributive
lattices (with top and bottom elements).

Given a functofl’ on a categoryt’, aT-coalgebra(notation: (X, £) or justf) isan arrow : X — T'X
in X. Amorphismf : £ — ¢ isanarrowf : X — X’ suchthatl'f o =¢ o f.

Throughout the paper it will be the case thatis the categorybet or some category of topological
spaces. It makes therefore sense to speak of the elemestategof someX € X. We say that two
statesr,2’ of ¢ : X — TX and¢ : X’ — TX' are behaviourally equivalent disimilar if there

are coalgebra morphismys f’ with f(x) = f’(2’). This notion of bisimilarity avoids the problems

of Aczel and Mendler [4] bisimulations, which do not work properlyZifdoes not preserve weak
pullbacks. It goes back to Aczel and Mendler [4], who use it to generalise the final coalgebra theorem
of Aczel [3] by removing the assumption of weak-pullback preservation.

3 Sifted Colimits Preserving Functors

Since a variety4 can be built from its finitely presentable algebras by using filtered colimits, filtered
colimits preserving functoré : A — A are fully determined by their values on finitely presentable
algebras. The latter form a small part/6fin the sense that, up to an isomorphism, there is only a set
of them.

Filtered colimits are precisely those which commute in sets with finite limits. Thus they stem out
from the doctrine of finite limits while varieties are given by the doctrine of finite products, see Law-
vere [23]. Itis therefore natural to consider colimits which commute in sets with finite products. These
colimits are calledifted colimits They were studied in [6] and the main result is that any variety can
be built up from its strongly finitely presentable algebras by using sifted colimits. Here, an algebra
A is strongly finitely presentablié hom (A, —) : A — Set preserves sifted colimits. These algebras
coincide with finitely presentable (regular) projective algebras, ie with retracts of finitely generated
free algebras. Any filtered colimit is of course sifted. Another important kind of sifted colimits are
reflexive coequalizers (a parallel pair of arroyisy is reflexive if there is t withft = gt = id).
Reflexive coequalizers include coequalizers of equivalence relations.

Sifted colimits preserving functors : A — A are fully determined by their values on finitely
generated free algebras. Their algebraic character is documented by the next result; recall that for a
functor L preserving filtered colimitsilg(L) is only locally finitely presentable.

Theorem 3.1. Let A be a variety and. : A — A preserve sifted colimits. TheXig(L) is a variety.
Proof. Analogous to [5, Remark 2.75] using [7, 1.4.19]. O

The following result is a consequence of the fact that every finitely presentable algebra is a reflexive
coequalizer of finitely generated free algebras.

Proposition 3.2. Let A be a variety and. : A — A preserve filtered colimits and reflexive coequal-
izers. TherL preserves sifted colimits.



Proof. Let Ay, be the full subcategory ofl consisting of finitely presentable objects adg;, be the

full subcategory ofA consisting of strongly finitely presentable objects. Following [6, 2.3.(2)].is

the (free) closure afl,;, under reflexive coequalizers. Thhss uniquely determined by its restriction
Lgs, on Agp,. SinceA s a (free) closure ofdy, under sifted colimitsL,;, has a unique extension

L’ : A — A preserving sifted colimits. Since both reflexive coequalizers and filtered colimits are
sifted colimits, we havd.’ = L. HenceL preserves sifted colimits. O

In some very simple but important varieties like sets or linear spaces, every finitely presentable algebra
is projective. As a consequence we get the next result which, in particular, impliesigal is a
variety.

Proposition 3.3. Let A be a variety such that every finitely presentable algebra is projective. Then
any functorL : A — A preserving filtered colimits preserves sifted colimits.

The previous proposition can be extended to boolean algebras. In fact, the trivial Boolean algebra
is the only finitely presentable that is not projectidds the reflexive coequalizer

A
FI—ZF0——1 (5)
where F' is the left adjoint to the forgetful functdBA — Set, « maps the generator to the top, and
o maps the generator to the bottom. IIf: BA — BA preserves filtered colimits and the above
coequalizer, the, preserves sifted colimits.

Proposition 3.4. For any filtered colimit preserving functat : BA — BA there is a sifted colimit
preserving functor.’ : BA — BA such thatL and L’ are isomorphic when restricted to the full
subcategory oBA without 1. MoreoverAlg(L) = Alg(L').

Proof. Define’ = L on the full subcategory @A not containingl, andZ’1 such thatl’ preserves
the coequalizes in (5). Since there are no arrois— A other than the identity, we only have to
definel’ on arrowsh : A — 1, A # 1. Choose an arrov : A — F0 and definel.’h = L'so L'f.
This does not depend on the choicefofindeed, for another arrogw: A — FO0, thereisk: A — F'1
such that o k = f,00 k = g. Finally, the proof that.’ preserves sifted colimits is essentially the
same as the one of Proposition 3.2. O

The proposition shows that as far as we are concerned with algebraBAy@&re can assume any
finitary functor to preserve sifted colimits.

4 Presenting Functors on Varieties

We show that sifted colimits preserving functors are precisely those that can be presented by finitary
operations and equations in finite sets of variables.

4.1 Presentations of algebras and functors

An algebraA in a variety. A with forgetful functorU : A — Set is said to be presented by generators
G and relations? C UFG x UFG if A is the coequalizer

#
1

FR—ZFG—1~ A (6)

)



whereF is left-adjoint toU andﬂ, 7r§ come from the projections frork to U F'GG. Each algebral is
presented by its canonical presentation which has as set of gendratasd as relations the kernel
of the counite4 : FUA — A.

Following [10], we define analogously the notion of a funcior A — A having a presentation by
operations and equations. The generafalsA of LA are given by a Set-funct@r X =[], G x

X*. The elements of}, are thek-ary operations. Relations are now induced by equations over finite
setsV of variables, which are instantiated using valuationsV’ — U A. The point of (7) below is
that it generalises (6) in such a way that the generators and relations defididgpend uniformly
onA.

Definition 4.1 ([10]). A finitary presentation by operations and equations of a functor is d@ait’)
whereG : Set — Set, GX = [[,., G x X¥ andE = (Ey)ye,, BEv C (UFGUFV)?. The
functor L presented byG, F) is the joint coequalizer

#

7T1 v
FEy —Z FGUFV Uy pqua 2214 @)

)
whereV ranges over finite cardinals amdver morphisms (valuations of variablgs)y” — A.

Example 4.2. A modal algebra, or Boolean algebra with operator (BAO), is the algebraic structure
required to interpret (classical) modal logic which consists of propositional logic plus a unary modal
operatorD preserving finite conjunctions. Modal algebras are therefore algebras for the filinctor
BA — BA, whereLA is defined by generatofSa, a € A, and relationsIT = T, O(a A d') =

Oa A Od'. Thatis,GX = X, Ey =0forV #£2, E; ={0T = T,0(vg Av1) = Oug A Ovy }.

Remark 4.3. 1. That the generators appear now as a functor expresses that the same genera-
tors (theO in the example above) are used for &lH. Similarly, the coequalizer (7) is ex-
pressed using equations in variablés that is, the same relations are used foriall. In
Ey C (UFGUFV)? the innerU F allows for the conjunction im(vo A v1) whereas the outer
U F allows for the conjunction imvg A Ovy. Finally, note that relationship between the opera-
tor O and the boolean operators can not be expressed by a distributive law behaedd/ F
asL is not defined on sets but only on algebras.

2. In the works of [25, 19, 29] ‘modal axioms of rank 1’ play a prominent role. These are exactly
those which, considered as equations, are of the foynC (UFGUFV)?.
Before we come to the main consequence of the definition, let us point out the useful fact:

Proposition 4.4. Consider a functor, on a variety A. If L has a presentation theh preserves
surjective morphisms and injective morphisms.

The main point of the definition is that one obtains a presentatidigifl) from a presentation oft
and from a presentation @f.

Theorem 4.5 ([10]). Let A = Alg(X.4, E4) be a variety and>, E) a finitary presentation of
L:A— A ThenAlg(X4+ XL, B4+ Er) is isomorphic toAlg(L), where equations iy 4 and £,
are understood as equations ovey + Xr.

Remark 4.6. 1. The logical significance of theorem is that it ensures that the Lindenbaum algebra
for the signaturec 4 + X7, and the equations 4 + E, is the initial L-algebra.

2. The special format of the equations is needed to guarantee that, given a presentation of a functor
(3, E), the algebras for the presented functor satisfy



4.2 The characterisation theorem

Before turning to functors on an arbitrary variety we have a look at functofeon

It is well known how to present a finitary endofunctlron Set by operations and equations: Any
suchH is a quotient

I 2k x x* 25 HX (8)
k<w
(o,1) — Hl(o) %)

wherek = {0,...k — 1} andl : Kk — X. o € Hk is ank-ary operation and the quotient gives the
action ofo on a list of arguments: £ — X.

Now considet. : A — A. The idea behind (8) can also be applied to the set-valued fubidtoince
(8) depends on considering aritiess objects in the domain &f, we replace: by the free algebras
Fk € A. SoHk becomed/ LFk andX* = Set(k, X) becomesA(Fk, A) = Set(k,UA) = U A*,
which leads us to consider

[JULrk xvAr 25 ULA (10)
k<w
(o,1) +— (ULeaoULFI)(0) (11)

This gives us a signature withrary operation$/ L F'k, which we describe by the functor
GY = [[ULFk x Y*. (12)
k<w

To obtain the equations from (10), since sifted colimit preserving functors are determined by their
action on free algebras, it is enough to consider the maps But the kernel ofory : GUFV —
ULFYV determines only the séfLF'V and not the algebra F'V. The equations in variablds will
therefore be given by the kernel of the adjoint transpose of

f
FGUFV 2% LFV.

Definition 4.7. Let L be an endofunctor on a variety. The finitary presentatiof(z, £') of L (Def-
inition 4.1) is given by generatols : Set — Set as in (12) and equations = (Ey )y ¢, WhereEy,
is the kernelry, 7o : Eyy — UFGUFYV of Ugfpv, with p as in (10).

We first show that the functor presented {dy, £') agrees withL on finitely generated free algebras
Fn.

Lemma 4.8. Considern € N. Then

f
FEy —= FGUFV ™Y pGUFR™™ LFn (13)

is a joint coequalizer.



Proof. We start by showing that

f
™ oo

)

is a coequalizer. LeP be the kernel pair of%, in .A. UP = E,. Moreover, thel/-image of this
kernel pair is a split coequalizer. From this, it follows that themage of (14) is split, hence (14)

is a coequalizer ind. Next we show that the joint coequalizer of (13) agrees with the coequalizer of
(14). First, to see that all pairs in the kernelgﬁfn are identified in the joint coequalizer it is enough
to choosel’ = n andv = idy. Conversely, by the definition afy, a pair(s,t) in FGUFn is
identified in the joint coequalizer only if there s andv : FV — Fn such thaf(s, t) is the image
underlU FGUv of a pair in the kernel of%.,,. So we have to show that the kerneldf,, is contained

in the kernel Ofgg;n o FGUwv. But this follows from the commutativity of

o5
FGUFn——LFn

FGUUT TLU

FGUFV?LFV

oFv
which is due to naturality of". O

The characterisation theorem is now proved using that sifted colimits preserving functors are deter-
mined by their action on finitely generated free algebras.

Theorem 4.9. An endofunctor on a variety has a finitary presentation by operations and equations if
and only if it preserves sifted colimits.

Proof. Suppose first that has a presentation as in (7). Let A; — A be a sifted colimit. We have
to show thatLc; is a sifted colimit. Given a cocong : LA; — L’ we have to show that there is a
uniquek as depicted in

.

FEy —= FQUFV — FGUA; 2> 1.4,

'
2 FGU¢; Le\ "
FGUv!

FGUATLA """" =1

h

U preserves sifted colimits becaudds a variety,G preserves sifted colimits because they commute
with finite products, and” preserves all colimits. Therefore we havevith d; o g4, = h o FGUg;.
Thenk is obtained from the joint coequalizeg once we show thdto FGUv* o7r§ = ho FGUv* owg
forallv : V. — UA. For this considepv : V' — UA. Sincehom(V, —) preserves sifted colimits
(V is finite) andU preserves sifted colimits, there is somre and somew : V' — UA; such that
v="Ucjo. Itfollows i = cjo w?, henceFGU ! = FGUc¢jo FGUuw".

For the converse, l€iG, E) be the presentation of a sifted colimits preserving funét@nd denote
by L' the functor presented b{z, F). It follows from Lemma 4.8 thal’ F'n = LFn on finitely
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generated free algebras:. We know from the first part of the proof that preserves sifted colimits.
HenceL andL’ are sifted colimits preserving functors which agree on finitely generated free algebras
and, therefore, are isomorphic. O

The theorem will give rise to finitary logics for functors in Sections 7 and 8. But let us note two
immediate corollaries. First sifted colimit preserving functors preserve regular epis in general. Using
that they have a presentation, one can also show:

Corollary 4.10. A sifted colimit preserving functat on a variety preserves monos.

The import of this proposition is the following. If we build the Lindenbaum algebra of a logic using
the initial algebra sequencé — L0 — L?0... then the corollary implies that all arrows in the
sequence are injective. This means that logical equivalence of formulas ofrdepthbe decided at
leveln.

Using that sifted colimits preserving functors are closed under composition one immediately obtains:

Corollary 4.11. Functor having a finitary presentation are closed under composition.

5 Algebras on Ind and Pro Completions

As motivated in the introduction, we study the relation between two completions of a small category
with finite limits and colimits: the completiof-) : C — IndC by filtered colimits and the completion
(=) : C — ProC by cofiltered limits. Consider

11
IndC=__ ~ProC (15)
b))
) (=)
C

whereX is the left Kan-extension of-) along(ﬁ), andII is the right Kan-extension c(fi) along
(—). In particular we have R R
»C=C e =cC (16)

Example 5.1. 1. C = BA, (finite Boolean algebras = finitely presentable Boolean algebras),
IndC = BA, ProC = Set®®. XA is the set of ultrafilters oved andII is (contravariant)
powerset.

2. C = DL, (finite distributive lattices = finitely presentable distributive latticdsiiC = DL,
ProC = Poset®. ¥ A is the set of prime filters ovet andll gives the set of downsets.

Proposition 5.2. X is left adjoint toll.

Proof. IndC is the subcategory dfet®” of finite limit preserving functors(ﬁ) is the codomain
restriction of the Yoneda embeddidg— Set®””, and(—) is the codomain restriction of the dual of
the Yoneda embeddir@® — Set®. We need a natural isomorphism

YA —- X
A—TIX



SinceX is filtered colimit preserving an cofiltered limit preservingProC is a (free) completion of
C under cofiltered limits anthdC is a (free) cocompletion af under filtered colimits, it suffices to
have natural isomorphisms

hom(C, —) — hom(D, —)

hom(—, C) — hom(—, D)

(becaus&’ = hom(—, C') andC = hom(C, —)). Since the first line is ifSet®)°P, we need a natural
isomorphism
hom(D, —) — hom(C, —)

hom(—,C) — hom(—, D)
where the both lines are in the corresponding functor categories. But this is evident. O

We want to present algebras ovedC by algebras ovelProC

II
i (Indc ProC ) K (17)

P

where we assume that and K agree orC, that is,
SHC =KC TKC=HC (18)

The natural transformation é : HII — I1K. 11X is a filtered colimitC; — I1X. If H preserves
filtered colimits we therefore obtai I — IIK as in

1
1156 HIIX ——TKX (19)
CiT HciT THKC?
C; HC; —=1IKC;

wherec® : ©C; — X is the transpose af : C; — TIX. § allows us to liftII to a functor
i p

1

Alg(H) Alg(K) (20)
mapping ak -algebra( B, 3) to the H-algebra(I1B, 3 o i ).

The transformation h : KX — X H. his defined as in the following diagram where theare a
filtered colimit and we assume that weakly preserves filtered colimits.

h
A KYA—">YHA (21)
1 ]
Ay, KYA, —=SHA,

h 4 is not uniquely determined and we do not assume that it is natural. It allows ¥otlifia map on
objects

Alg(H) Alg(K) (22)

—

X

10



Representing H-algebras asll-images of K-algebras. Denote by: the unit of the adjunction
> 4 II. Our next theorem states that for all algebfad — A the following diagram commutes

A HA (23)

ITh 4 Osa
[IYA<—IIYXHA<—IIKYA<— HIIXA

Theorem 5.3. Assume in Diagram 17 thall preserves filtered colimits, that weakly preserves
filtered colimits, and that and K" agree onC (ie the equations (18) hold). Then for ahf+algebra
(A, ) itholds thatt4 : A — II¥X A is an H-algebra morphisnfA4, o) — II(XA, a0 ha).

Proof. To show that Diagram 23 commutes, we have to show thas an H-algebra morphism.

Since. is naturaley 4 = Ilha o 0x4 © Hiu g does suffice, see the upper row of Diagram 24, where

LHA

//xﬂ‘mw\

HA =~ HIIZA KX A YA (24)
Hdy, He; / r% ‘HEHdk
HA, HC;, —TIKXC; NKYA, —=TISHA,
YHA,

¢i : C; — 1Y A anddy, : A, — A are filtered colimits. The left-hand quadrangle is Diagram 19 and
the right-hand quadrangle is theimage of Diagram 21. The outer quadrangle commutes, hgnce

is the unique arrow from the colimiting coco&d, to the cocondlX Hdy, o LH A, We have to show
thatlTh 4 o 0.4 © Hi 4 iS also an arrow between these cocones.

Thed), form the colimiting cocone for the diagra(#)lA, thec; for (i)lHEA. There is a functor
l:(-)|A— (-)|lIXAtakingk : B— Atol(k) =w1a0k: B — IIXA. We haveél(k) = A and
Laody, = cyyy. Itfollows that theH A, = HC)( form a subdiagram of th& C; and that any cocone

over theHCl(k) induces a cocone over thié A, it is therefore enough to show that Diagram 25
commutes and that the lower IineLECZ(k). The diagram commutes since the triangle in the middle

HA ;> HIISA KA A (25)
\\HX Heyr) / 1% ]HEHdk
HCygy ——=TKSCygy KA, —>TSHA),

11



commutes, which follows from

R IIK ¢ IIKnYXA
K Cl O IKSIYA — 2 - IKS A
idT ]HK%
HKEAkaKZA

where the right-hand triangle is one of the triangle equalities of the adjunction givenly— 11X
andn : Id — XII and the upper row iE[Kclﬁ(k). Finally, using the other triangle equality and that the

units are isos on finite objects, the lower Iine{mKEél(k))fl = UIKs Gy = “HC O

This theorem will give rise to completeness of Set-coalgebras in Section 8. To illustrate the power of
the theorem we derive some corollaries.

1. (Stone [30]) Choos€ = BA,,, H and K to be the identity. TheindC, ProC, > andII are as in
Example 5.1 and we obtain: Every boolean algebian be embedded into a powerset, with Boolean
operations receiving their set-theoretic interpretation.

2. (Jonsson and Tarski [17]) = BA,, as above but tak# to be the functol. from Example 4.2 and
K to be powerset. With this data, our theorem states that every Boolean algebra with operators can be
embedded into a complete Boolean algebra whose carrier is a powerset.

3. (Stone [31]) Choos€ = DL,,. ThenIndC, ProC, ¥ andII are as in Example 5.1 and we obtain:
Every distributive latticed can be embedded into the completely distributive lattice of subEets.

4. (Gehrke and@nsson [11]) This is the generalisation of (2.) to distributive lattices.Fone takes
the Vietoris functor of Johnstone [16], restrictedb.

6 A Brief Review of Stone Duality

For most of the paper, we need from this subsection only the fact that there is a cegarpf
topological spaces which is dually equivalen®4. The reason for giving a more abstract account, is
that we will occasionally mention distributive lattices and want to indicate possible extensions of our
results.

To treat different Stone dualities simultaneously, one considers them as arising from the adjunction
of topological space$op and framedrm [15]. Frm captures the algebraic properties of a topology,
namely, a frame is a distributive lattice with infinite joins that distribute over finite meets. There are

contravariant functors

P
——3

Top Frm

~—

S

P(X,0) =0, P(f) = f~1,andS(A) = Frm(4, 2), where2 is the two element frame (consisting
of L, T). S(f) =As € S(A).so f. The functorsP? andS are adjoint on the right, that is, there is a
bijection, natural inX and A,

Top(X,SA) = Frm(A, PX).
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We are interested in subcategorieslop andFrm on which the adjunction restricts to a dual equiva-
lence, or duality for shortP.X = A then means thafl is an expressive and complete propositional
theory for X in the following sense

e for x £ y € X there isa € PX separating: andy,
e fora £ b € Athereisr € SA= X such thate(a) = 1 andx(b) = 0.

We read the second property asuitioes not imply then there is a counter-example These two
properties are ultimately responsible for our expressiveness and completeness results.

Two examples of relevant subcategories are the categjone of Stone spaces, which is dualBa\.
And the categonppec of spectral spaces (coherent spaces in [15]), which is duaLtoFor many
more examples see Abramsky and Jung [2] and Johnstone [15].

7 Adequate Modal Logics for Coalgebras

In this section we show how we can associate to a furiftar modal logic that is adequate f@r
coalgebras in the sense that it is sound, complete, and characterises bisimilarity. We do this in two
steps.

1. First, abstracting from syntax, we simply consider as propositions of the logic the elements
of the initial L algebra, wherd. is the dual of7. We call this logic the abstract logic of
T-coalgebras.

2. Second, we obtain a syntax and a proof system for the abstract logic from a presentation of the
functor L. We call these logics the concrete logicsittoalgebras.

The point of the separation is that the results we prove about the concrete logics do not depend on the
chosen presentation and are conducted solely on the level of the abstract logics.

7.1 Abstract modal logics

Consider
P
Coalg(T) Alg(L) (26)
|
P
TC X ,,431:
I
Set Set

where we assume that

¢ the dual equivalence betweghand.A arises from the adjunction dlop andFrm by restricting
to subcategoried’ and A,

e [LisdualtoT, thatis, there is an isomorphism

6:LP — PT

13



e Ais avariety (see p.3).

¢ allows us to extend the equivalence betweerand.A to an equivalence betwedlvalg(7) and
Alg(L), whereP maps a coalgebr@X, {) to (PX, P¢ o §x). We can therefore considéig(L) as
providing a logic forCoalg(7):

Definition 7.1. The algebra of propositions in variabl&sis the freeL-aIggbraProp(V) over V.
Given a coalgebréX;, £), we write [] x . ,,y for the morphisnProp(V) — P(X, ) determined by
the valuatiom. : V' — UPX. The semantics of a propositignis [] v ¢ ,) € X.

We define
Coalg(T) = (¢ F ¢)

if [o](xen S [¥xen for all coalgebras and all valuations. For a collectiorof ‘sequents’
i F i, we writel' = (¢ F ¢) if Coalg(T) =T = Coalg(T) = (¢ F ).

Remark 7.2. Because distributive lattices have no implication, the notatiort- v) is needed to
logically encode the ordet of the lattices. This is as in [1].

Proposition 7.3. The logic forT-coalgebras given in the previous definition
1. respects bisimilarity: propositions are invariant under bisimilarity
2. is expressive: any two non-bisimilar states are distinguished by some proposition

3. T E (p F ) iff o < inthe quotient oProp( V') wrt the equationgy; A v; = i | (@i -
7701) € F}.

The proposition is an immediate consequence of Stone duality.

7.2 Concrete logics

We restrict our attention now to the duality BA andStone. In particular, in Diagram 26P° maps a
Stone space to its basis of clopens &hehaps a Boolean algebra to the set of ultrafilters ovier

We will show that a modal logic enjoying the properties of Proposition 7.3 can be associated to any
functorT : Stone — Stone that is determined by its action on finite Stone spaces.

Let L = PTS be the dual off. ThatT is determined by its action on finite Stone spaces means
that L preserves filtered colimits. By Proposition 3.4, we can asshre preserve sifted colimits.

It follows from Theorem 4.9 thak has a presentatioft.;, £ ) and from Theorem 4.5 that the free
L-algebrasProp( V') are the Lindenbaum algebras of the equational 108iga + X1, Ega + E1.).

To translate this equational logic into a modal logic is a standard procedure [9]. Each term in operation
symbols fromX¥ga + X, is considered as a formula. Equations= t are rendered as « t.
Conversely, any formula can be read as an equatios= T whereT € Yga. To summarise:

Theorem 7.4.LetT : Stone — Stone be a functor preserving cofiltered limits. Th&rhas a sound
and strongly complete modal logic that characterises bisimilarity.
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Example 7.5. 1. Stone coalgebras for functors built according to
T :=K|Id|TxT|T+T|T"|PT

(K a constant)N a finite constantP powerspace) were considered in [21]. All these functors
preserve cofiltered limits and the above theorem summarises most aspects of that paper.

2. Given a Stone spadeX, OX) defineH(X,0X) = (HX,HOX) asHX = {h C PX}.
HOX is generated by the seBa = {h € HX | a € h}. ThenH is a functor orStone. Its
dual has a simple presentation: One unary operaii@amd no equations.

3. DefineH!(X) = {h € PX | h upward closed. Then' is a functor orStone. Its dual is
presented by a unary operatorand an equation saying thatis monotone.H'-coalgebras
were studied in [12].

8 The Finitary Modal Logic of Set-Coalgebras

The aim of this section is to associate a strongly complete modal logic to suitable fufictSes —
Set. As we are interested here in classical propositional logic the logic will be given by a functor
L7 : BA — BA. That is we are concerned with the following situation

P

L (BA — Set ) 7 (27)

whereS maps an algebra to the set of its ultrafilters & the contravariant powerset. Note tiat
and P take a meaning here that differs from the previous section.

Assuming thatl” preserves finite sets, we defilig: to be Ly A = PT'SA on finite BAs and then
extendLr continuously to all oBA. As L preserves filtered colimits, we can associate a modal
logic to it, as explained in Section 7. This logic is sound and strongly complete for Stone-coalgebras
for the dualT of Ly. Here, we show that strong completeness also hold§ vealgebras.

Note that Diagram 27 is an instance of Diagram 17. From (19) we obtain a natural transformation
¢ : Ly P — PT which in turn yields, as in (20), a functdt : Coalg(T") — Alg(L7). P now induces

a semantics exactly as in Definition 7.1. But we cannot use Proposition 7.3 to prove completeness as
we do not have a dual equivalence betwBé&nandSet. We proceed as follows:

Supposd’ I/ ¢. Let A be the freel.p algebra quotiented bly. By Theorem 5.3, there is&-coalgebra
onSAsuchthaty : A — PSAis anLp-algebra morphism.4 maps all propositions i to all of
S A, buty only to a proper subset. Therefore there is an elemeftdrsatisfyingl” and refutingy.
We have shown:

Theorem 8.1. LetT : Set — Set preserve finite sets and weakly preserve cofiltered limits. Then
has a sound and strongly complete modal logic.

Remark 8.2. 1. The weak preservation of cofiltered limits means, in particular, that all projections
in the final sequence are onto. The only example of a functor we are aware of that does not
satisfy this condition is the finite powerset functor, see [33]. And indeed, standard modal logic
is strongly complete wrt Kripke frames, but not wrt finitely branching ones.
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2. The probability distribution functor [32] does not preserve finite sets. And indeed, modal logics
for probabilistic transition systems, see eg [13], are not strongly complete. Similaflifo
K x X whereK is an infinite constant.

3. In contrast, we can extend our result to functdrs— (7X)X for infinite K if T preserves
finite sets. Indeed¥ is a cofiltered limit of the functorg®: whereK; ranges over the finite
subsets of<. We can now apply the theorem to obtain logicsx, and then extend the result
to the colimit of theL«, and the limit of thel'%i. This allows us to include functors such as
(PX)X =2 P(K x X), K infinite (which give rise to labelled transition systems).

4. In [20] it was shown that one can have such a theorem if a suitadian (21) exists. Here we
gave conditions under which this is indeed the case.

Example 8.3. 1. The functors built according to
T 2= N|Id|TxT|T+T|T5|PT

(K a constant)N a finite constantP powerset) were studied in [26, 14]. Their completeness
results are extended here to strong completeness.

2. The double contravariant powerset funédr does not preserve weak pullbacks [28] and there-
fore cannot be treated by Moss’s coalgebraic logic [24]. But it does satisfy the assumptions of
the theorem and.,,- has a particularly simple presentation: one unary operation symbol
and no equations.

3. Similarly, but more importantly, the subfuncttipX of 22" which takes as values upward
closed sets of subsets, does not preserve weak pullbacks f1g]can be presented by one
unary operatod and one equation expressing thats monotone. Coalgebras for that functor
are also known as monotone predicate transformers. They provide a natural semantics for logics
of 2-player games, mentioned in the introduction.

9 Conclusion

Summary The purpose of the paper was to associate a finitary modal logic to a funcsorthat the
logic is strongly complete wit'-coalgebras. We took up the idea, well-established in domain theory
[2], that a logic for the solution of a domain equati@n= 7'X is given by a presentation of the dual

L of T. We characterised those functors on a variety that have a presentation (Theorem 4.9).

In a second move, we related two pairs of Stone dualities, one for the logic and one for the semantics.
Distilling the essence of the algebraic completeness proof of modal logic viaiseah-Tarski The-

orem, our second main contribution is Theorem 5.3 relating algebras on Ind and Pro-completions. It
yields strong completeness for a large class of Set-functors, see Example 8.3.

One of the main aspects of this work is that it makes use of the notion of the presentation of a functor in
order to separate syntax and semantics. The syntax is given by the presentation, the semantics in terms
of natural transformations between functors. This led to a syntax-independent proof of Theorem 8.1.

An important point is that we do not need the assumption Thad finitary. This assumption is
powerful when working withl'-algebras, but it is much less so fércoalgebras. Similarly, we do
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not need thafl" preserves weak pullbacks. Each of these assumptions would exclude fundamental
examples.

Further, we find it important not to restrict our attention to Set-coalgebras. In all of domain theory,
the systems are based on topological spaces. In fact, in any situation where one wants to incorporate
a notion of admissible or observable subset, one is quickly led to a topological setting.

Future work Our approach can be extended to cover, on the semantic side, coalgebras over presheaves,
and on the algebraic side, many-sorted algebras. This will allow us to obtain results about logics for
name-passing calculi.

Can our characterisation theorem be extended to treat infinitary logics?

If Alg(L) is a variety, doed. : A — A then preserve sifted colimits (converse of Theorem 3.1)? It is
true for A = Set but the proof in [8, 111.4.9] does not generalise.

The reason for getting strong completeness is that in a Stone duality any algebra can be represented
by a space (see eg Theorem 8.1). For completeness, it is enough if free algebras can be represented.
An example for this situation is propositional logic with countable conjunctions where strong com-
pleteness fails. Algebraically, this means that only the free countably complete Boolean algebras can
be represented as algebras of subsets [18]. It will be interesting to extend our approach to settings like
these.
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