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Abstract. Positive modal logic was introduced in an influential 1995
paper of Dunn as the positive fragment of standard modal logic. His
completeness result consists of an axiomatization that derives all modal
formulas that are valid on all Kripke frames and are built only from
atomic propositions, conjunction, disjunction, box and diamond.
In this paper, we provide a coalgebraic analysis of this theorem, which
not only gives a conceptual proof based on duality theory, but also gen-
eralizes Dunn’s result from Kripke frames to coalgebras of weak-pullback
preserving functors.
For possible application to fixed-point logics, it is note-worthy that the
positive coalgebraic logic of a functor is given not by all predicate-liftings
but by all monotone predicate liftings.
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1 Introduction

Consider modal logic as given by atomic propositions, Boolean operations, and
a unary box, together with its usual axiomatisation stating that box preserves
finite meets. In [10], Dunn answered the question of an axiomatisation of the
positive fragment of this logic, where the positive fragment is given by atomic
propositions, lattice operations, and unary box and diamond.

Here we seek to generalize this result from Kripke frames to coalgebras for
a weak pullback preserving functor. Whereas Dunn had no need to justify that
the positive fragment actually adds a modal operator (the diamond), the general
situation requires a conceptual clarification of this step. And, as it turns out,
what looks innocent enough in the familiar case is at the heart of the general
construction.

In the general case, we start with a functor T : Set → Set. From T we
can obtain by duality a functor L : BA → BA on the category BA of Boolean
algebras, so that the free L-algebras are exactly the Lindenbaum algebras of the
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modal logic. We are going to take the functor L itself as the category theoretic
counterpart of the corresponding modal logic, a move that is similar in spirit to
the one which takes monads as counterpart of equational theories. How should
we construct the positive T -logic? Dunn gives us a hint in that he notes that
in the same way as standard modal logic is given by algebras over BA, positive
modal logic is given by algebras over the category DL of (bounded) distributive
lattices. It follows that the positive fragment of (the logic corresponding to) L
should be a functor L′ : DL → DL which, in turn, by duality, should arise from
a functor T ′ : Pos→ Pos on the category Pos of posets and monotone maps.

The centre-piece of our construction is now the observation that any (finitary)
functor T : Set → Set has a canonical extension to a functor T ′ : Pos → Pos.
Theorem 4.10 then shows that this construction T 7→ T ′ 7→ L′ indeed gives the
positive fragment of L and so generalizes Dunn’s theorem.

An important observation about the positive fragment is the following: given
any Boolean formula, we can rewrite it as a positive formula with negation only
appearing on atomic propositions. In other words, the translation β from positive
logic to Boolean logic given by

β(♦φ) = ¬�¬β(φ) (1)

β(�φ) = �β(φ) (2)

induces a bijection (on equivalence classes of formulas taken up to logical equiv-
alence). More algebraically, we can formulate this as follows.

Given a Boolean algebra B ∈ BA, let LB be the free Boolean algebra gener-
ated by {�b | b ∈ B} modulo the axioms of modal logic. Given a distributive lat-
tice A, let L′A be the free distributive lattice generated by {�a : a ∈ A}∪ {♦a |
a ∈ A} modulo the axioms of positive modal logic. Further, let us denote by
W : BA → DL the forgetful functor. Then the above observation that every
modal formula can be written, up to logical equivalence, as a positive modal
formula with negations pushed to atoms, can be condensed into the statement
that the (natural) distributive lattice homomorphism

βB : L′WB →WLB (3)

induced by (1), (2) is an isomorphism.
Our main results are the following. If T ′ is an extension of T and L,L′ are

the induced logics, then β : L′W → WL exists. If, moreover, T ′ is the induced
extension (posetification) of T and T preserves weak pullbacks, then β is an
isomorphism. Furthermore, in the same way as the induced logic L can be seen
as the logic of all predicate liftings of T , the induced logic L′ is the logic of all
monotone predicate liftings of T . These results depend crucially on the fact that
the posetification T ′ of T arises from the inclusion Set → Pos being dense, a
result which only holds if we move to enriched category theory. On the algebraic
side the move to Pos-enriched colimits guarantees that the modal operators are
monotone. Accordingly, and recalling [19, Theorem 4.7] stating that a functor
L′ : DL→ DL preserves ordinary sifted colimits if and only if it has a presentation
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by operations and equations, we show here that L′ : DL→ DL preserves enriched
sifted colimits if and only if it has a presentation by monotone operations and
equations. To see the relevance of a presentation result specific to monotone
operations, observe that in the example of positive modal logic it is indeed the
case that both � and ♦ are monotone.

2 On coalgebras and coalgebraic logic

I. Coalgebras. A Kripke model (W,R, v) with R ⊆W×W and v : W → 2AtProp

can also be described as a coalgebra W → PW × 2AtProp, where PW stands for
the powerset of W . This point of view suggests to generalize modal logic from
Kripke frames to coalgebras

ξ : X → TX

where T may now be any functor T : Set→ Set. We get back Kripke models by
putting TX = PX × 2AtProp. We also get the so-called bounded morphisms or
p-morphisms as coalgebras morphisms, that is, as maps f : X → X ′ such that
Tf ◦ ξ = ξ′ ◦ f .

II. Coalgebras and algebras. More generally, for any category C and functor
T : C → C, we have the category Coalg(T ) of T -coalgebras with objects and

morphisms as above. Dually, Alg(T ) is the category where the objects TX
α→ X

are arrows in C and where the morphisms f : (X,α) → (X ′, α′) are arrows
f : X → X ′ in C such that f ◦α = α′ ◦ Tf . It is worth noting that T -coalgebras
over C are dual to T op-algebras over Cop .

III. Duality of Boolean algebras and sets. The abstract duality between al-
gebras and coalgebras becomes particularly interesting if we put it on top of
a concrete duality, such as the dual adjunction between the category Set of
sets and functions and the category BA of Boolean algebras. We denote by
P : Setop → BA the functor taking powersets and by S : BA → Setop the func-
tor taking ultrafilters. Alternatively, we can describe these functors by PX =
Set(X, 2) and SA = BA(A,2), which also determines their action on arrows (here
2 denotes the two-element Boolean algebra). P and S are adjoint, satisfying
Set(X,SA) ∼= BA(A,PX). Restricting P and S to finite Boolean algebras/sets,
this adjunction becomes a dual equivalence.

IV. Boolean logics for coalgebras, syntax. What now are logics for coalgebras?
We follow a well-established methodology in modal logic ([6]) and study modal
logics via the associated category of modal algebras. More formally, given a
modal logic L extending Boolean propositional logic and with associated cate-
gory A of modal algebras, we describe L by a functor

L : BA→ BA

so that the category Alg(L) of algebras for the functor L coincides with A. In
particular, the Lindenbaum algebra of L will be the initial L-algebra.
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Example 2.1. Let T = P be the powerset functor and L : BA → BA be the
functor mapping an algebra A to the algebra LA generated by �a, a ∈ A, and
quotiented by the relation stipulating that � preserves finite meets, that is,

�> = > �(a ∧ b) = �a ∧�b (4)

Alg(L) is the category of modal algebras (Boolean algebras with operators), a
result which appears to be explicitly stated first in [1].

V. Boolean logics for coalgebras, semantics. The semantics of such a logic is
described by a natural transformation

δ : LP → PT op

Intuitively, each modal operator in LPX is assigned its meaning as a sub-
set of TX. More formally, δ allows us to lift P : Setop → BA to a functor
P ] : Coalg(T ) → Alg(L), and if we take a formula φ to be an element of the
initial L-algebra (the Lindenbaum algebra of the logic), then the semantics of φ
as a subset of a coalgebra (X, ξ) is given by the unique arrow from that initial
algebra to P ](X, ξ).

Example 2.2. We define the semantics δX : LPX → PPopX by, for a ∈ PX,

�a 7→ {b ∈ PX | b ⊆ a}. (5)

It is an old result in domain theory that δX is an isomorphism for finite X ([1]).
This implies completeness of the axioms (4) with respect to Kripke semantics.

VI. Functors having presentations by operations and equations. One might ask
when a functor L : BA → BA can legitimately be considered to give rise to a
modal logic. For us, in this paper, a minimal requirement on L is that Alg(L) is a
variety in the sense of universal algebra, that is, that Alg(L) can be described by
operations and equations, the operations then corresponding to modal operators
and the equations to axioms. This happens if L is determined by its action on
finitely generated free algebras (see [19]). These functors are also characterized
as functors having presentations by operations and equations, or as functors
preserving sifted colimits. Most succinctly, they are precisely those functors that
arise as left Kan-extensions along the inclusion functor of the full subcategory
of BA consisting of free algebras on finitely many generators.

VII. The (finitary, Boolean) coalgebraic logic of a Set-functor. The general
considerations laid out above suggest to define the finitary (Boolean) coalgebraic
logic associated to a given functor T : Set→ Set as

LFn = PT opSFn (6)

where Fn denotes the free Boolean algebra over n generators, for n ranging over
natural numbers. The semantics δ is given by observing that natural transfor-
mations δ : LP → PT are in bijection with natural transformations

δ̂ : L→ PT opS (7)
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so that we can define δ̂ to be the identity on finitely generated free algebras.
More explicitly, LA can be represented as the free BA over {σ(a1, . . . an) |

σ ∈ PT opSFn, ai ∈ A,n < ω} modulo appropriate axioms, with δX : LPX →
PT opX given by δσ(a1, . . . an) = PT op(â)(σ) where â : X → SFn is the adjoint
transpose of (a1, . . . an) : n → UPX, with the forgetful functor U : BA → Set
being right adjoint of F . 4 Of course, in concrete examples one is often able to
obtain much more succinct presentations:

Proposition 2.3. With T = P, the functor L defined by (6) is isomorphic to
the functor L of Example 2.1.

VIII. Positive coalgebraic logic. It is evident that, at least for some of the de-
velopments above, not only the functor T , but also the categories Set and BA
can be considered parameters. Accordingly, one expects that positive coalge-
braic logic takes place over the category DL of (bounded) distributive lattices
which in turn, is part of an adjunction P ′ : Posop → DL, taking upsets, and
S′ : DL → Posop , taking prime filters, or, equivalently, P ′X = Pos(X,2) and
S′A = DL(A,2) where 2 is, as before, the two-chain (possibly considered as a
distributive lattice). Consequently, the ‘natural semantics’ of positive logics is
‘ordered Kripke frames’. That is, we may define a logic for T ′-coalgebras, with
T ′ : Pos→ Pos, to be given by a natural transformation

δ′ : L′P ′ → P ′T ′op (8)

where

L′F ′n = P ′T ′opS′F ′n (9)

is a functor determined by its action on finitely generated free distributive lattices
and δ′ is given by its transpose in the same way as (7).

Example 2.4. Let T ′ be the convex powerset functor P ′ and L′ : DL→ DL be the
functor mapping a distributive lattice A to the distributive lattice L′A generated
by �a and ♦a for all a ∈ A, and quotiented by the relations stipulating that �
preserves finite meets, ♦ preserves finite joins, and

�a ∧ ♦b ≤ ♦(a ∧ b) �(a ∨ b) ≤ ♦a ∨�b (10)

The natural transformation δ′X : L′P ′X → P ′P ′op
X is defined by, for a ∈ P ′X,

♦a 7→ {b ∈ PX | b ∩ a 6= ∅}, (11)

the clause for �a being the same as in (5).

4 Since elements in PTSFn are in one-to-one correspondence with natural transfor-
mations Set(−, 2n) → Set(T−, 2), also known as predicate liftings [25], we see that
the logic L coincides with the logic of all predicate liftings of [27], with the difference
that L also incorporates axioms. The axioms are important to us as otherwise the
natural transformation β mentioned in the introduction might not exist.
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Remark 2.5. Alg(L′) is the category of positive modal algebras of Dunn [10] and
we will show that it is isomorphic to Alg(L′) in Corollary 3.6. Again we have
that for finite X, δ′X is an isomorphism, a representation first stated in [12,13],
the connection with modal logic being given by [30,26,1] and investigated from
a coalgebraic point of view in [24].

3 On Pos and Pos-enriched categories

I. The category Pos of posets and monotone maps. Pos is complete and co-
complete (even locally finitely presentable [3]), limits being computed as in Set,
while for colimits one has to quotient the corresponding colimits obtained in the
category of preordered sets and monotone maps (however, directed colimits are
computed as in Set, see [3]). Pos is also cartesian closed, with the internal hom
[X,Y ] being the poset of monotone maps from X to Y , ordered pointwise.

This paper will consider categories enriched in Pos because this automatically
takes care of the algebraic operations being monotone. Therefore when we say
category, functor, natural transformation in what follows, we always mean the
enriched concept. Thus a category has ordered homsets and functors are locally
monotone, that is, they preserve the order on the homsets.

When we want to deal with non-enriched concepts, we always call them ordi-
nary . Thus, for example, the category Pos has its underlying ordinary category
Poso. Everything below with the subscript o is the underlying ordinary thing of
the Pos-enriched thing.

In particular, we consider Set as discretely enriched over Pos. Then D :
Set → Pos, the discrete functor, is trivially Pos-enriched. There are two more
Pos-categories appearing in this paper, namely BA and DL. The first one is
considered discretely enriched, while in DL the enrichment is a consequence of
the natural order induced by operations.

II. Sifted weights and sifted (co)limits. The theory of (locally monotone) Pos-
functors and their logics of monotone modal operators naturally leads to the
world of ordered varieties. Since the details are only needed for the proofs (which
had to be omitted for reasons of space) we note here only that our arguments
are based on [21,8,22,17].

In the non-enriched setting, a functor on a variety preserves ordinary sifted
colimits iff it preserves filtered colimits and reflexive coequalizers. In the Pos-
enriched setting, a functor on an ordered variety preserves (enriched) sifted col-
imits iff it preserves filtered colimits and reflexive coinserters. We recall that the

coinserter ([16]) of a parallel pair of arrows X
f
//

g
// Y in a Pos-category con-

sists of an object coins(f, g) and of an arrow π : Y → coins(f, g) with πf ≤ πg,
with the following universal property: for any q : Y → Z with qf ≤ qg, there is a
unique h : coins(f, g)→ Z with hπ = q. Moreover, this assignment is monotone,
in the sense that given q, q′ : Y → Z with q ≤ q′, qf ≤ qg and q′f ≤ q′g, the
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corresponding unique arrows h, h′ : coins(f, g) → Z satisfy h ≤ h′. The coin-
serter is called reflexive if f and g have a common right inverse. By switching
the arrows, one obtain the dual notion of a (coreflexive) inserter.

III. Functors preserving sifted colimits and their equational presentation. De-
note by Setf the category of finite sets and maps and by ι the composite

Setf ↪→ Set
D→ Pos. Then Pos is the free cocompletion of Setf under (enriched)

sifted colimits [21].
A functor T : Pos → Pos is called strongly finitary if one of the equivalent

conditions below holds: (i) T is isomorphic to the left Kan extension along ι of
its restriction, that is T ∼= Lanι(T ι); (ii) T preserves sifted colimits.

Recall that there are monadic (enriched) adjunctions F a U : BA → Set,
F ′ a U ′ : DL → Pos, where U and U ′ are the corresponding forgetful functors.
We denote by J : BAff → BA and J′ : DLff → DL the inclusion functors of
the full subcategories spanned by the algebras which are free on finite (discrete
po)sets.

Lemma 3.1. J and J′ exhibit BA, respectively DL, as the free cocompletions
under sifted colimits of BAff and DLff . In particular, these functors are dense.

Corollary 3.2. A functor L : BA→ BA has the form LanJ(LJ) iff it preserves
(ordinary) sifted colimits. A functor L′ : DL→ DL has the form LanJ′(L′J′) iff
it preserves sifted colimits.

Theorem 3.3. Suppose L : BA → BA and L′ : DL → DL preserve sifted colim-
its. Then they both have an equational presentation.

Remark 3.4. The (proof of the) above theorem actually shows that every functor
L′ : DLff → DL (i.e., every L′ preserving sifted colimits) has a presentation in
the form of a coequalizer

ĤΓ
//
// ĤΣ

// L′

for some strongly finitary signatures Γ and Σ, i.e. some locally monotone func-
tors Γ,Σ : |Setf | → Pos, where |Setf | is the skeleton of the category of finite

sets. Here, ĤΣ is defined as follows: given Σ : |Setf | → Pos, HΣ : Setf → Pos is
the polynomial strongly finitary functor

HΣn =
∐

k∈|Setf |

Setf (k, n) •Σk

and it extends to a strongly finitary HΣ : Pos → Pos by sifted colimits. In the
above formula,

∐
and • refers to the coproduct, respectively copower in the

category Pos. The resulting ĤΣ : DLff → DL is thus given, at a free distributive
lattice with finite discrete set of generators, by

ĤΣ(F ′Dn) = F ′HΣU
′(F ′Dn)

(see Remark 3.16 of [28]) and, again, it is extended to an endofunctor on DL by
means of sifted colimits.
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We say that a functor DL→ DL has a presentation by monotone operations
and equations if it has a presentation by operations and equations in the sense
of [7], such that, moreover, all operations are monotone. We then obtain the
following enriched version of [19, Theorem 4.7], characterizing enriched sifted
colimits preserving functors in terms of presentations with monotone operations.

Corollary 3.5. A functor L′ : DL→ DL has a presentation by monotone oper-
ations and equations if and only if L′ is the Pos-enriched left Kan extension of
its restriction to finitely generated free distributive lattices.

As in Proposition 2.3, we now obtain that

Corollary 3.6. If T ′ is the the convex powerset functor, then the functor L′

of Example 2.4 is isomorphic to the sifted colimits preserving functor L′ whose
restriction to DLff is P ′T ′opS′ as in (8).

IV. The Pos-extension of a Set-functor. In order to relate Set and Pos-functors,
we recall from [4] the following

Definition 3.7. Let T be an endofunctor on Set. A Pos-endofunctor T ′ is said
to be a Pos-extension of T if it is locally monotone and if the square

Pos
T ′
// Pos

Set
T
//

D

OO

Set

D

OO

↖α (12)

commutes up to an isomorphism α : DT → T ′D.
A Pos-extension T ′ is called the posetification of T if the above square exhibits

T ′ as LanDDT (in the Pos-enriched sense), having α as its unit.

If T is finitary, then its posetification does exist. This can be seen by express-
ing LanD(DT ) as a coend

LanD(DT )X =

∫ S∈Set

[DS,X] •DTS (13)

and taking into account that T is determined by its action on finite sets: explic-
itly, the coend becomes

LanD(DT )X =

∫ n∈Setf

[Dn,X] •DTn (14)

which in turn is the following Pos-coequalizer∐
m,n<ω

Set(m,n)× Tm× [Dn,X] //
// ∐
n<ω

Tn× [Dn,X]
π //LanD(DT )X (15)
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In formulae above, [−,−] denotes the internal hom in Pos and × refers to the
(cartesian) product of posets, ordered component-wise.

Posetifications of (finitary) Set-functors are immediate examples of strongly
finitary Pos-functors. Briefly, one can say that a Pos-functor is a posetification
if it has a presentation by monotone operations and discrete arities. In fact, we
can be much more precise: a functor T ′ : Pos → Pos is the posetification of a
finitary Set-functor if it is strongly finitary and preserves discrete sets.

Example 3.8. 1. Let T = Id on Set. Then the discrete connected components
functor and the upper-sets-functor are both extensions of T , while
Id : Pos → Pos is the posetification (recall that the discrete functor D is
dense, see [9]).

2. If we take T = Pf to be the (finite) power-set functor, then its posetification
is the (finitely generated) convex power-set functor, with the Egli-Milner
order ([4,28]).

3. The collection of (finitary) Kripke polynomial Set-functors is inductively
defined as follows: T ::= Id | TX0

| T0 + T1 | T0 × T1 | TA | Pf , where TX0

denotes the constant functor to the set X0; T0 +T1 is the coproduct functor
X 7→ T0X+T1X; T0×T1 the product functor; and TA denotes the exponent
functor X 7→ (TX)A, with A finite.
We have just seen above that the posetification of the identity functor is
again the identity, while for the constant functor TX0

is an easy exercise
to check that the posetification is again a constant functor, this time to the
discrete poset DX0; the posetification of the coproduct functor T0+T1 maps
a poset X to the coproduct (in the category of posets) T ′

0X + T ′
1X, where

T ′
0 and T ′

1 denote the posetifications of T0, respectively T1; and similarly for
the product and exponent functors.

4. The finitary distribution functor is given by DX = {d : X → [0, 1] |∑
x∈X d(x) = 1, supp(d) < ∞}, where supp(d) = {x ∈ X | d(x) 6= 0}.

For function f : X → Y , we have D(f)(d)(y) =
∑
y = f(x)d(x). Recall that

D preserves weak pulbacks ([29]), thus the posetification D′ can be described
using the relation lifting ([4]). Explicitly, for a poset (X,≤), D′(X,≤) has un-
derlying set DX, where for d, d′ ∈ D, the partial order reads d ≤ d′ iff there
is some ω ∈ D(X ×X) such that ω(x, y) > 0⇒ x ≤ y,

∑
y∈X ω(x, y) = d(x)

and
∑
x∈X ω(x, y) = d′(y).

V. Morphisms of logical connections. We recall the (enriched) logical connec-
tions (dual adjunctions, see [20]) between sets and Boolean algebras, and between
posets and distributive lattices. Both should be seen as Pos-enriched, where for
the first logical connection the enrichment is discrete. They are related as follows:

Setop ⊥
P

33

Dop

��

BA
S

rr

W

��

Posop ⊥

P ′

33 DL
S′

rr

(16)
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In the top row of the above diagram, recall again that P is the contravariant
powerset functor, while S maps a Boolean algebra to its set of ultrafilters. The
bottom row has P ′ mapping a poset to the distributive lattice of its upper-sets,
and S′ associating to each distributive lattice the poset of its prime filters. About
the pair of functors connecting the two logical connections: D was introduced
earlier as the discrete functor, while W is the functor associating to each Boolean
algebra its underlying distributive lattice.

It is easy to see that the pair (Dop ,W ) is a morphism of adjunctions in the
sense of [23]. This means that the equalities

P ′Dop = WP, DopS = S′W, ε′Dop = Dopε (17)

hold, where ε and ε′ are the counits of S a P and S′ a P ′, respectively.

4 Positive coalgebraic logic

We now expand the propositional logics BA and DL by modal operators. We start
with a Set-endofunctor T in the top left-hand corner of (16). We are mostly inter-
ested in the case where T ′ : Pos→ Pos is the posetification of T (Definition 3.7)
and L : BA → BA and L′ : DL → DL are (the functors of) the associated logics
as in (6) and (9), in which case we denote the logics by boldface letters L and
L′.

But some of the following holds under the weaker assumptions that T ′ is
some extension of T and that L and L′ are some logics for, respectively, T and
T ′. We therefore let T be a Set-endofunctor and T ′ be an extension of T to Pos
as in (12). Logics for T, T ′ are given by functors L : BA→ BA and L′ : DL→ DL
and natural transformations

δ : LP → PT op δ′ : L′P ′ → P ′T ′op
.

Intuitively, δ and δ′ assign to the syntax given by (presentations of) L and L′

the corresponding semantics in subsets or upper sets. To compare L and L′ we
need the isomorphism α : DT → T ′D saying that T ′ extends T , and also the
relation WP = P ′D from (17) (which formalizes the trivial observation that
taking upsets of a discrete set is the same as taking all subsets). Referring back
to the introduction, we now make the following

Definition 4.1. We say that a logic (L′, δ′) for T ′ is a positive fragment of
the logic (L, δ) for T , if there is a natural transformation β : L′W → WL with
Wδ ◦ βP = P ′αop ◦ δ′Dop, or, in diagrams

Setop P //

T op

��

BA
W //

L

��

↙δ

DL

L′

��

↙β =

Setop Dop
//

T op

��

Posop P ′
//

T ′op

��

↙αop

DL

L′

��

↙δ′

Setop

P
// BA

W
// DL Setop

Dop
// Posop

P ′
// DL

(18)

We call (L′, δ′) the (maximal) positive fragment of (L, δ) if β is an isomorphism.
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Recall that we defined the logics L,L′ induced by T and an extension T ′

as L = PTS and L′ = P ′T ′opS′ on finitely generated free objects. Our desired
result is to prove that a certain canonically given β : L′W → WL is an iso-
morphism. The difficulty, as well as the need for the proviso that T preserves
weak pullbacks, stems from the fact that in DL (as opposed to BA) the class of
functors determined on finitely generated free algebras is strictly smaller than
the class of functors determined on finitely presentable (=finite) algebras. As
stepping stones, therefore, we first investigate what happens in the cases where
the functors L,L′ are determined on all algebras and on finitely presentable alge-
bras, before we turn to the situation of functors determined on strongly finitely
presentable (=finitely generated free) algebras.

I. The case of L′ = P ′T ′opS′ on all algebras. We shall associate to any exten-
sion α : DT → T ′D the pairs (L, δ) and (L′, δ′) corresponding to T and T ′ re-
spectively, with L = PT opS and δ = PT opε : PT opSP → PT op , L′ = P ′T ′op

S′

and δ′ being defined analogously. Now the following is a consequence of (Dop ,W )
being a morphism of adjunctions (see (17)). We then immediately obtain an iso-
morphism β:

Proposition 4.2. Given an extension α : DT → T ′D, the isomorphism

BA
S //

W

��

Setop

Dop

��

T op
// Setop

Dop

��

P // BA
��

L

W

��

DL
S′
// Posop

T ′op
// Posop

P ′
//

↗αop

DLOO

L′

exhibits L′ = P ′T ′op
S′ as the maximal positive fragment of L = PT opS.

II. The case of L̄′ = P ′T ′opS′ on finitely presentable algebras. A similar result
holds if we define logics via PT opSA for finitely presentable A, as we are going
to show now. To this end, we use the subscript (−)f to denote the restriction
to finite5 objects as e. g. when writing the dense inclusions I : Setf → Set,
I ′ : Posf → Pos, J : BAf → BA and J ′ : DLf → DL. Note that we have the
following commuting diagram

Sf a Pf
(Dop

f ,Wf )
//

(Iop ,J)

��

S′
f a P ′

f

(I′op ,J′)

��

S a P
(Dop ,W )

// S′ a P ′

(19)

5 As Pos is locally finitely presentable as closed category, and ordinary categories
Seto,DLo,BAo are also locally finitely presentable, it follows that the finitely pre-
sentable objects in all the above categories are precisely the same as in the ordinary
case, i.e. the ones for which the underlying set is finite.



12 Adriana Balan, Alexander Kurz, and Jǐŕı Velebil

in the category of transformations of adjoints.
Define (L̄, δ̄) for T as L̄ = LanJ(PT opSJ) and δ̄ = L̄P → PT op as the

adjoint transpose of L̄ → PT opS arising from the universal property of the
left Kan extension L̄. By construction, L̄ is finitary and is given by PT opS on
finite(ly presentable) Boolean algebras. Similarly, obtain (L̄′, δ̄′) for T ′.

Since W is left adjoint,6 LanJ(PT opSJ) is preserved by W . Thus, to define
an (iso)morphism β̄ : L̄′W = LanJ′(P ′T ′opS′J ′)W → WL̄ = LanJ(PT opSJ)W ,
it suffices to take the restriction along J of the isomorphism of Proposition 4.2,
namely β̄f : L′J ′Wf = P ′T ′op

S′J ′Wf
∼= WPT opSJ,

Recall the definition of L from (6). Since every finitely presentable non-trivial
Boolean algebra is a retract of a finitely generated free algebra, we can take L = L̄
(see eg [19, Prop 3.4]. To summarize, we have

Proposition 4.3. The isomorphism β̄ exhibits L̄′ = P ′T ′opS′J ′ as the maximal
positive fragment of (L, δ).

The proposition does not yet give us the desired result, as L̄′ is not necessarily
determined by its action on finitely generated free algebras and, therefore, need
not give rise to a variety of modal algebras. Paragraph III. will investigate when
L̄′ does actually have this additional property.

III. The case of L′ = P ′T ′opS′ on finitely generated free algebras. Recall that
we denoted by J : BAff → BA and J′ : DLff → DL the inclusion functors of
the full subcategories spanned by the algebras which are free on finite discrete
posets.

Definition 4.4. Let T ′ be a Pos-endofunctor. We define the logic for T ′ to be
the pair (L′, δ′), where:

– L′ : DL → DL is a Pos-functor preserving sifted colimits, whose restriction
to free finitely generated distributive lattices is P ′T ′opS′J′, that is, L′ =
LanJ′(P ′T ′op

S′J′).
– δ′ : L′P ′ → P ′T ′op

is the adjoint transpose of L′ → P ′T ′op
S′ given by the

universal property of the left Kan extension L′.

Remark 4.5. By the above definition, L′ preserves sifted colimits. Thus, by
Corollary 3.5, L′ has an equational presentation by monotone operations, which
in turn gives rise to a positive modal logic concretely given in terms of modal
operators and axioms.

Recall that L̄′ = P ′T ′opS′ on finitely presentable (=finite) algebras and that
L′ = P ′T ′opS′ on finitely generated free algebras.

Theorem 4.6. Let T be a Set-endofunctor and T ′ a Pos-extension of T which
preserves coreflexive inserters. Then (L̄′, δ̄′) and (L′, δ′) coincide. In particular,
it follows that L′ is the maximal positive fragment of L.

6 The (enriched) right adjoint of W sends a distributive lattice A to the Boolean
algebra of complemented elements in A (also known as the center of A).
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Remark 4.7. The isomorphism (L̄, δ̄) ∼= (L, δ) of the corresponding Boolean logic
for Set-functors was established in [19]. (Recall that L was introduced in (6),
while L̄ appeared in Paragraph II. above.)

Proposition 4.8. If T ′ is a Pos-endofunctor (thus locally monotone) which pre-
serves exact squares, then it preserves embeddings and coreflexive inserters.

The reader should think of an exact square as being the Pos-enriched analogue
of a weak pullback (see [11], [5] or [4] for the precise definition).

Proposition 4.9 ([4]). Let T be any finitary Set-functor and T ′ its posetifica-
tion. Then T preserves weak pullbacks if and only if T ′ preserves exact squares.

As a consequence of all the results of this section, we obtain

Theorem 4.10. Let T : Set→ Set be a finitary weak-pullback preserving functor
and T ′ : Pos → Pos its posetification. Let (L, δ) and (L′, δ′) be the associated
logics of T and T ′, that is L = LanJ(PT opSJ) and L′ = LanJ′(P ′T ′opS′J′).
Then (L′, δ′) is the maximal positive fragment of (L, δ).

Example 4.11. For T = Id, the corresponding finitary logics is L = Id on BA,
with trivial semantics δ : LP → PT op . It allows the extension T ′ = DC,
the discrete connected components functor. Notice that T ′ does not preserve
embeddings, neither coreflexive inserters. The corresponding logic L′ is given by
the constant functor to the distributive lattice 2. Thus β : L′W → WL fails to
be an isomorphism (it is just the unique morphism from the initial object).

Our introductory example of positive modal logic is now regained as an in-
stance of this theorem.7 It can also easily be adapted to Kripke polynomial
functors. More interesting is the case of the probability distribution functor. We
know from the theorem above that it has a maximal positive fragment, but an
explicit description still needs to be worked out.

5 Monotone predicate liftings

In this section we show that the logic of the posetification T ′ of T coincides with
the logic of all monotone predicate liftings of T .

Recall that a predicate lifting [25,27] of arity n for T is an ordinary natural
transformation ♥ : Seto(−, 2n) → Seto(T−, 2),8 or, using the ordinary adjunc-
tion Do a V : Poso → Set, an ordinary natural transformation

♥ : Poso(Do−, [n,2])→ Poso(DoT−,2)

7 A minor issue here is that modal logic usually takes as semantics coalgebras for the
(non-finitary) powerset, whereas for the posetification to exist we sofar assumed T
to be finitary. There are two solutions to this. One is to note that going from T
to its finitary coreflection Tω and then to its posetification T ′

ω does not change the
functors L,L′ on the algebraic side. The second is to prove that the posetification
exists despite the functor not being accessible.

8 Equivalently, it can be described as an element ♥ ∈ Set(T (2n), 2).
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It is called monotone if it lifts to a natural transformation

♥ : Pos(D−, [Dn,2])→ Pos(DT−,2)

By identifying a predicate lifting with an map ♥ : T (2n) → 2, the above says
that ♥ is monotone if for all a1 ≤ a2 : DoX → [Don,2], we have that ♥ ◦ Ta1 ≤
♥ ◦ Ta2, where f : DoX → Y denotes the adjoint transpose of f : X → V Y .

Consider now a Pos-functor T ′ (locally monotone!) and a finite poset p. By
mimicking the above, we define a predicate lifting for T ′ of arity p as being a
natural transformation9

♥ : Pos(−, [p,2])→ Pos(T ′−,2)

Proposition 5.1. Let T be a Set-functor and T ′ : Pos → Pos an extension.
Then:

1. There is an injection from the set of predicate liftings of T ′ of arity p into
the set of monotone predicate liftings of T of arity V p.
In particular, the set of predicate liftings of T ′ of discrete arity n embeds
into the monotone predicate liftings of T .

2. In case T ′ is the posetification of T , the above mapping is a bijection.

As a corollary, we obtain

Corollary 5.2. Let T be a finitary Set-functor. If the posetification T ′ of T
preserves embeddings, then the logic of all monotone predicate liftings of T is
expressive.

Remark 5.3. We know from [4] that if T preserves weak pullbacks then T ′ pre-
serves embeddings. So the above theorem applies to weak-pullback preserving
functors. This result was obtained in [18, Cor 6.9] already in a different way.
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5. B́ılková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation Liftings on Preorders. In:
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27. Schröder, L.: Expressivity of Coalgebraic Modal Logic: The Limits and Beyond.

In: Sassone, V. (ed.) FoSSaCS 2005. LNCS 3441, pp. 440–454. Springer, Berlin
(2005)

28. Velebil, J., Kurz, A.: Equational Presentations of Functors and Monads. Math.
Struct. Comput. Sci. 21 (2011) 363–381

29. de Vink, E. P., Rutten, J. J. M. M.: Bisimulation for Probabilistic Transition
Systems: a Coalgebraic Approach, Theor. Comput. Sci. 221 (1999) 271–293

30. Winskel, G.: On Powerdomains and Modality. Theor. Comput. Sci. 36 (1985) 127–
137

http://www.cs.le.ac.uk/people/akurz/pos_ua.pdf
http://www.cs.le.ac.uk/people/akurz/pos_ua.pdf

	Positive Fragments of Coalgebraic Logics

