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Abstract

We argue that the category of Stone spaces forms an interesting base category for
coalgebras, in particular, if one considers the Vietoris functor as an analogue to the
power set functor on the category of sets.

We prove that the so-called descriptive general frames, which play a fundamental
role in the semantics of modal logics, can be seen as Stone coalgebras in a natural
way. This yields a duality between modal algebras and coalgebras for the Vietoris
functor.

Building on this idea, we introduce the notion of a Vietoris polynomial functor
over the category of Stone spaces. For each such functor T we provide an adjunction
between T -sorted Boolean algebras with operators and the Stone coalgebras for T .
We also identify the subcategory of algebras on which the adjunction restricts to an
equivalence and show that the final T -coalgebra is the dual of the initial T -BAO.
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1 Introduction

Every coalgebra is based on a carrier which is an object in the so-called base category.
Most of the literature on coalgebras either focuses on Set as the base category, or takes
a very general perspective, allowing arbitrary base categories (possibly restricted by
some constraints). The aim of this paper is to argue that, besides Set, the category
Stone of Stone spaces is an interesting base category. We have a number of reasons for
believing that Stone coalgebras, that is, coalgebras based on Stone, are of relevance.

To start with, in Section 3 we discuss interesting examples of Stone coalgebras, namely
the ones that are associated with the Vietoris functor V : Stone → Stone, a topological
analogue of the power set functor on Set. V is a functorial extension of a well-known
topological construction which associates with a topology its Vietoris topology [12].
This construction preserves a number of nice topological properties; in particular, it
turns Stone spaces into Stone spaces [18]. As we will see further on, the category
Coalg(V) of coalgebras for the Vietoris functor is of interest because it is isomorphic to
the category DGF of descriptive general frames. This category in its turn is dual to that
of modal algebras, and hence, unlike Kripke frames, descriptive general frames form a
mathematically adequate semantics for modal logics [8].

The connection with modal logic thus forms a second reason as to why Stone coalgebras
are of interest. Since coalgebras can be seen as a very general model of state-based
dynamics, and modal logic as a logic for dynamic systems, the relation between modal
logic and coalgebras is rather tight. Starting with the work of Moss [25], this has
been an active research area [28,17,6,27,15,9]. The relation between modal logic and
coalgebras can be seen to dualise that between equational logic and algebra [20,19], an
important difference being that the relation with Set-based coalgebras works smoothly
only for modal languages that allow infinitary formulas. In the case of the Vietoris
functor however, it follows from the duality between Coalg(V) and the category MA of
modal algebras, that Coalg(V) provides an adequate semantics for finitary modal logics.
Although probably not widely known, this insight is in fact due to Abramsky [1].

In Sections 4 and 5 we further substantiate our case for Stone spaces as a coalgebraic
base category by considering so-called Vietoris polynomial functors as the Stone-based
analogues of Kripke polynomial functors over Set [28]. Transferring the work of Ja-
cobs [17] from the setting of Set-coalgebras to Stone-coalgebras, we establish, for each
such functor T , a link between the category BAOT of T -sorted Boolean algebras with
operators and the category Coalg(T ) of Stone coalgebras for T . In Section 4 we lay
the foundations of this work, introducing the notions of a Vietoris polynomial functor

1 Partially supported by NWO/British Council.
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(VPF), the algebraic and coalgebraic categories, and functors between these categories.
Section 5 shows that these functors form an adjunction between the categories BAOT

and Coalg(T ), for any VPF T . Although this adjunction is not a dual equivalence in
general, we will see that each coalgebra can be represented by an algebra, more pre-
cisely, Coalg(T )op is (isomorphic to) a full coreflective subcategory of BAOT . We identify
the full subcategory of BAOT on which the adjunction restricts to an equivalence and
show that the initial T -BAO is dual to the final T -coalgebra.

Let us add two more observations on Stone-coalgebras. First, the duality of descriptive
general frames and modal algebras shows that the (trivial) duality between the cate-
gories Coalg(T ) and Alg(T op) has non-trivial instances. Second, it might be interesting
to note that Stone provides a meaningful example of a base category for coalgebras
which is not locally finitely presentable.

Related Work The study of coalgebras over topological spaces is closely related
to existing work in denotational semantics. One of the main concerns of denotational
semantics is to find, for a given type constructor T : X → X , solutions to the equation
X ∼= TX. The typical situation is the following. X is a category of topological spaces
as, for example, domains (see e.g. [4]) or (ultra)metric spaces (see e.g. [11,32]), T is
a functor, and the favoured solution of X ∼= TX is the final T -coalgebra X → TX.
The Vietoris functor is known in domain theory as the Plotkin powerdomain and its
version on Stone has been considered in Abramsky [1]. The category of Stone spaces
with a countable base and their connection to SFP-domains have been investigated by
Alessi, Baldan, and Honsell [5]. Compared to Abramsky [2], our work might be seen as
a variation based on the use of Stone spaces instead of SFP-domains. Motivated by a
different perspective, coalgebras over Stone spaces have been considered recently also
by Davey and Galati [10].

Acknowledgements We would like to thank the participants of the ACG-meetings
at the Amsterdam Centrum voor Wiskunde en Informatica (CWI); we benefited in par-
ticular from discussions with Marcello Bonsangue, Alessandra Palmigiano, and Jan Rut-
ten. We also greatly appreciated the comments by Samson Abramsky. Special thanks
are due to one of the anonymous referees who provided us with very interesting com-
ments, some of which have been incorporated in the Remarks 4.5, 4.15 and 5.9.
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2 Preliminaries

We presuppose some familiarity with category theory, general topology, the (duality)
theory of Boolean algebras, and universal coalgebra. The main purpose of this section
is to fix our notation and terminology.

Definition 2.1 Let C be a category and T : C → C an endofunctor. Then a T -
coalgebra is a pair (X, ξ : X → TX) where X denotes an object of C and ξ a morphism
of C. A T -coalgebra morphism h : (X1, ξ1) → (X2, ξ2) is a C-morphism h : X1 → X2

satisfying ξ2 ◦ h = Th ◦ ξ1. The category Coalg(T ) has T -coalgebras as its objects and
T -coalgebra morphisms as arrows. Dually, we define a T -algebra to be a T op-coalgebra
and Alg(T ) = (Coalg(T op))op. �

Example 2.2 A Kripke frame is a structure F = (X,R) such thatR is a binary relation
on X. Kripke frames can be seen as coalgebras for the power set functor P over Set:
replace the binary relation R of a frame F = (X,R) with the map R[ ] : X → P(X)
given by R[s] := {t ∈ X | Rst}. In fact, Kripke frames (and models) form some of
the prime examples of coalgebras; in particular, bounded morphisms between Kripke
frames coincide with P-coalgebra morphisms.

Definition 2.3 A topological space X = (X, τ) is a Stone space if it is compact Haus-
dorff and has a basis of clopen sets. ClpX will denote the set of clopen subsets of X. The
category Stone has Stone spaces as objects and continuous functions as morphisms. �

We now turn to Stone duality.

Definition 2.4 The category of Boolean algebras and homomorphisms between them
is denoted as BA. The Stone space (Sp B, τB) corresponding to a Boolean algebra B is
given by the collection Sp B of ultrafilters of B and the topology τB generated by basic
opens of the form {u ∈ Sp B | b ∈ u} for any b in B. We let Sp denote the functor that
associates with a Boolean algebra its corresponding Stone space, and with a Boolean
homomorphism h : B1 → B2 the restriction of the inverse image function h−1 to Sp B2.
That is, Sp(h) : u 7→ {b ∈ B1 | h(b) ∈ u}.
Conversely, the functor mapping a Stone space X to the Boolean algebra ClpX of its
clopens, and a continuous morphism to its inverse image function, is denoted as Clp.

Furthermore, for any Boolean algebra B we define a map iB : B → Clp Sp B given
by iB(b) = b̂ := {u ∈ Sp B | b ∈ u}, and for any Stone space X we define a map
εX : X → Sp ClpX fixed by εX(x) := {U ∈ ClpX | x ∈ U}. �

Theorem 2.5 The families of morphisms (iB)B∈BA and (εX)X∈Stone are natural isomor-
phisms. Hence, the functors Sp : BA → Stoneop and Clp : Stoneop → BA induce a dual
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equivalence
BA ' Stoneop.

Definition 2.6 Let X = (X, τ) be a topological space. We let K(X) denote the col-
lection of all closed subsets of X. Define the operations [3], 〈3〉 : P(X) → P(K(X))
by

[3]U := {F ∈ K(X) | F ⊆ U} ,

〈3〉U := {F ∈ K(X) | F ∩ U 6= ∅} .
Given a subset Q ⊆ P(X), define

VQ := {[3]U | U ∈ Q} ∪ {〈3〉U | U ∈ Q} .

The Vietoris space V(X) associated with X is given by the topology υX on K(X) which
is generated by Vτ as subbasis. �

In case the original topology is compact, then we might as well have generated the
Vietoris topology in other ways. This has nice consequences for the case that the original
topology is a Stone space.

Lemma 2.7 Let X = (X, τ) be a compact topological space and let B be a basis of τ
that is closed under finite unions. Then the set VB forms a subbasis for υX. In particular,
if X is a Stone space, then the set VClpX forms a subbasis for υX.

The Vietoris construction preserves various nice topological properties; proofs of this
can be found in for instance [24].

Lemma 2.8 Let X = (X, τ) be a topological space.

(1) If X is compact then (K(X), υX) is compact.
(2) If X is compact and Hausdorff, then (K(X), υX) is compact and Hausdorff.
(3) If X is a Stone space, then so is (K(X), υX).

3 General frames as coalgebras

In this section we discuss what are probably the prime examples of Stone coalgebras,
namely those for the Vietoris functor V. As we will see, the importance of these struc-
tures lies in the fact that the category Coalg(V) is isomorphic to the category of so-called
descriptive general frames, and hence, dual to the category of modal algebras (all these
notions will be defined below). We hasten to remark that when it comes down to the
technicalities, this section contains little news; most of the results in this section can be
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obtained by exposing existing material from Esakia [13], Goldblatt [16], Johnstone [18],
and Sambin and Vaccaro [31] in a new coalgebraic light. Moreover, it will turn out that
the duality of descriptive general frames and modal algebras is an instance of the gen-
eral relationship between syntax and semantics as laid out by Abramsky in his domain
theory in logical form [3]. He was also the first to observe the duality of Coalg(V) and
modal algebras in [1].

Modal algebras and (descriptive) general frames play a crucial role in the theory of
modal logic, providing an important class of structures interpreting modal languages.
From a mathematical perspective they display much better behaviour than Kripke
frames, since the latter provide too poor a tool to make the required distinctions between
modal logics (in the technical sense, see for instance [8], Chapter 4). The algebraic
semantics for modal logic does not suffer from this fundamental incompleteness result:
every modal logic is determined by the class of modal algebras on which it is valid.

Definition 3.1 Let B and B′ be Boolean algebras; an operation g : B → B′ on their
carriers is said to preserve finite meets if g(>) = >′ and g(b1 ∧ b2) = g(b1) ∧′ g(b2). A
modal algebra is a structure A = (A,∧,−,⊥,>, g) such that the reduct (A,∧,−,⊥,>)
of A is a Boolean algebra, and g : A→ A preserves finite meets. The category of modal
algebras (with homomorphisms) is denoted by MA. �

The intended meaning of g is to provide an interpretation of the modal operator 2.
Thinking of a ∈ A as the interpretation of a modal formula ϕ, g(a) provides the
interpretation of 2ϕ.

Example 3.2 (1) If (X,R) is a Kripke frame then (PX,∩,−, ∅, X, [R]) is a modal
algebra where [R](a) = {x ∈ X | ∀y.Rxy ⇒ y ∈ a},

(2) Let Prop be a set of propositional variables and L(Prop) be the set of modal formu-
las over Prop quotiented by ϕ ≡ ψ ⇔ `K ϕ↔ ψ where `K denotes derivability
in the basic modal logic K (see eg [8]). Then L(Prop)—equipped with the obvious
operations—is a modal algebra. In fact, L(Prop) is the free modal algebra over
Prop and is called the Lindenbaum-Tarski algebra (over Prop).

Remark 3.3 Although not needed in the following, we indicate how modal formulas
are evaluated in modal algebras. Let ϕ be a modal formula taking propositional variables
from Prop and let A = (A,∧,−,⊥,>, g) be a modal algebra. Employing the freeness of
the modal algebra L(Prop) we can identify valuations of variables v : Prop → A with
algebra morphisms L(Prop) → A and define A |= ϕ if v([ϕ]≡) = > for all morphisms
v : L(Prop) → A.

Modal algebras are fairly abstract in nature and many modal logicians prefer the in-
tuitive, geometric appeal of Kripke frames. General frames, unifying the algebraic and
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the Kripke semantics in one structure, provide a nice compromise.

Definition 3.4 A general frame is a structure G = (G,R,A) such that (G,R) is a
Kripke frame and A is a collection of so-called admissible subsets of G that is closed
under the Boolean operations and under the operation 〈R〉 : P(G) → P(G) given by:
〈R〉X := {y ∈ G | Ryx for some x ∈ X}.
A general frame G = (G,R,A) is called differentiated if for all distinct s1, s2 ∈ G
there is a ‘witness’ a ∈ A such that s1 ∈ a while s2 6∈ a; tight if whenever t is not an
R-successor of s, then there is a ‘witness’ a ∈ A such that t ∈ a while s 6∈ 〈R〉a; and
compact if

⋂
A0 6= ∅ for every subset A0 of A which has the finite intersection property.

A general frame is descriptive if it is differentiated, tight and compact. �

The term ‘admissible’ subset is explained by the semantic restriction that allows only
those Kripke models on a general frame for which the extensions of the atomic formulae
are admissible sets.

Example 3.5 (1) Any Kripke frame (X,R) can be considered as a general frame
(X,R,PX).

(2) If A = (A,∧,−,⊥,>, g) is a modal algebra then (Sp A, R, Â) where R = {(u, v) |
a ∈ u ⇒ g(a) ∈ v} and Â = {{u ∈ Sp A | a ∈ u} | a ∈ A} is a descriptive general
frame, where the admissible sets are the clopen basis of Sp A.

(3) If G = (G,R,A) is a general frame then (A,∩,−, ∅, G, [R]) is a modal algebra
(where [R]X = {y ∈ G | Ryx ⇒ x ∈ X}).

The last two examples form the basis of the dual equivalence

MA ' DGFop

between the categories of modal algebras and descriptive general frames where the
latter category is defined as follows.

Definition 3.6 (GF, DGF) A morphism θ : (G,R,A) → (G′, R′, A′) is a function from
G to G′ such that (i) θ : (G,R) → (G′, R′) is a bounded morphism (see Example 2.2)
and (ii) θ−1(a′) ∈ A for all a′ ∈ A′. We let GF (DGF) denote the category with general
frames (descriptive general frames, respectively) as its objects, and the general frame
morphisms as the arrows. �

Since Kripke frames (and models) form prime examples of coalgebras, the question
naturally arises whether (descriptive) general frames can be seen as coalgebras as well.
Our positive answer to this question is based on two crucial observations. First, the
admissible sets of a descriptive frame form a basis for a Stone topology because de-
scriptive general frames are compact, differentiated and the admissible sets are closed
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under Boolean operations. Second, the tightness condition of descriptive general frames
can be reformulated as the requirement that the relation is point-closed ; that is, the
successor set of any point is closed in the Stone topology. This suggests that if we are
looking for a coalgebraic counterpart of a descriptive general frame G = (G,R,A), it
should be of the form R[ ] : (G, τ) → (K(G), τ?) where K(G) is the collection of closed
sets in the Stone topology τ on G and τ? is some suitable topology on K(G), which
turns K(G) again into a Stone space. A good candidate is the Vietoris topology: it
is based on the closed sets of τ and it yields a Stone space if we started from one.
Moreover, as we will see, choosing the Vietoris topology for τ?, continuity of the map
R[ ] corresponds to the admissible sets being closed under 〈R〉.

We will prove that the category of descriptive general frames and the category Coalg(V)
of coalgebras for the Vietoris functor are in fact isomorphic. We first note that [12,
Theorem 3.1.8] whenever f : X → X′ is a continuous map between compact Hausdorff
spaces, then the image map f [ ] sends closed sets to closed sets. This motivates defining
V(f) : K(X) → K(X′) by

V(f)(F ) := f [F ] (= {f(x) | x ∈ F}). (1)

Definition 3.7 The Vietoris functor on the category of Stone spaces is given on ob-
jects as in Definition 2.6 and on morphisms as in (1). �

We now turn to the isomorphism between the categories DGF and Coalg(V). It is
straightforward to verify that the following definition is correct, that is, it indeed defines
two functors.

Definition 3.8 We define the functor C : DGF → Coalg(V) via

(G,R,A) 7→ (G, σA)
R[ ]−→ V(G, σA)

Here σA denotes the Stone topology generated by taking A as a basis. Conversely, there
is a functor D : Coalg(V) → DGF given by

(X, γ) 7→ (X,Rγ,ClpX)

where Rγ is defined by Rγs1s2 iff s2 ∈ γ(s1). On morphisms both functors act as the
identity with respect to the underlying Set-functions. �

Theorem 3.9 The functors C and D form an isomorphism between the categories DGF
and Coalg(V).

Proof. The theorem can be easily proven by just spelling out the definitions. qed
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Remark 3.10 (Propositional Variables) For a set-coalgebra (X, ξ), a valuation
of propositional variables p ∈ Prop is a function X → ∏

Prop 2 where 2 is the two-
element set of truth-values. For a Stone-coalgebra (X, ξ), a valuation is a continuous
map v : X → ∏

Prop 2 where 2 is taken with the discrete topology. The continuity
of v is equivalent to the statement that the propositional variables take their values
in admissible sets. Indeed, writing πp :

∏
Prop 2 → 2 (p ∈ Prop) for the projections,

continuity of v is equivalent to v−1(π−1
p ({1})) clopen for all p ∈ Prop. Observing that

v−1(π−1
p ({1})) = {x ∈ X | v(x)p = 1} is the extension of p, the claim now follows from

the fact that the clopens coincide with the admissible sets.

Let us note two corollaries of Theorem 3.9. Using MA ' DGFop and (Coalg(V))op =
Alg(Vop), it follows that MA ' Alg(Vop). With Stoneop ' BA we obtain the following.

Corollary 3.11 There is a functor H : BA → BA such that the category of modal
algebras MA is equivalent to the category Alg(H) of algebras for the functor H.

Proof. Using Clp : Stone → BA and Sp : BA → Stone, we let H = ClpV Sp. The
claim now follows from the observation that Alg(H) is dual to Coalg(V): An algebra

HA
α−→ A corresponds to the coalgebra SpA

Sp α−→ SpHA ∼= V SpA and a coalgebra

X ξ−→ VX corresponds to the algebra HClpX ∼= ClpVX Clpξ−→ ClpX . qed

An explicit description of H not involving the Vietoris functor is given by the following
proposition.

Proposition 3.12 Let H : BA → BA be the functor that assigns to a Boolean algebra
the free Boolean algebra over its underlying meet-semilattice. Then Alg(H) is isomorphic
to the category of modal algebras MA.

Proof. We use the well-known fact that MA is isomorphic to the category MPF which
is defined as follows. An object of MPF is an endofunction A

m→ A on a Boolean algebra
A that preserves finite meets (i.e. binary meets and the top-element). A morphism

f : (A
m→ A) −→ (A′ m′

→ A′) is a Boolean algebra morphism f : A → A′ such that
m′ ◦ f = f ◦m. We also write BA∧ for the category with Boolean algebras as objects
and finite meet preserving functions as morphisms.
To prove that Alg(H) and MPF are isomorphic categories, we first show that BA(HA,A)
∼= BA∧(A,A), or slightly more general and precise, BA(HA,B) ∼= BA∧(IA, IB) where
I : BA ↪→ BA∧. (Here we denote, for a category C and objects A,B in C, the set
of morphisms between A and B by C(A,B).) Indeed, consider the forgetful functors
U : BA → SL, V : BA∧ → SL to the category SL of meet-semilattices with top element,
and the left adjoint F of U . Using our assumption H = FU , we calculate BA(HA,B) =
BA(FUA,B) ∼= SL(UA,UB) ∼= SL(V IA, V IB) ∼= BA∧(IA, IB). The isomorphisms
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ϕA : BA(HA,A) → BA∧(A,A), A ∈ BA, give us an isomorphism ϕ between the objects
of Alg(H) and MPF. On morphisms, we define ϕ to be the identity. This is well-defined
because the isomorphisms BA(HA,B) ∼= BA∧(IA, IB) are natural in A and B. qed

Remark 3.13 Detailing the construction of a free Boolean algebra over its underlying
meet-semilattice, we see that, given a Boolean algebra A = (A,∧,−,⊥,>), HA is the
free Boolean algebra generated by {2a | a ∈ A} (the insertion of generators being
2 : A → HA, a 7→ 2a) and satisfying the equations 2> = >, 2(a ∧ b) = 2a ∧ 2b.
That is, the functor H describes how to obtain modal logic by adding an operator to
Boolean logic. As observed above this functor is the Stone dual of the Vietoris functor.
This observation was made earlier by Abramsky in [1] and is an instance of the general
relationship between syntax and semantics as laid out in his domain theory in logical
form [3].

As another corollary to the duality we obtain that Coalg(V) has cofree coalgebras.

Corollary 3.14 The forgetful functor Coalg(V) → Stone has a right adjoint.

Proof. Consider the forgetful functors R : MA → BA, U : MA → Set, V : BA → Set.
Since U and V are monadic, R has a left adjoint. Hence, by duality, Coalg(V) → Stone
has a right adjoint. qed

Finally, let us see how arbitrary general general frames can be seen as coalgebras.

Remark 3.15 (General Frames as Coalgebras) Stone spaces provide a convenient
framework to study descriptive general frames since the admissible sets can be recovered
from the topology: each Stone space X = (X, τ) has a unique basis that is closed under
the Boolean operations. Making a generalisation to arbitrary general frames, we can
still work in a coalgebraic framework, but we have to make two adjustments.

First, we work directly with admissible sets instead of with topologies: the category
RBA (represented Boolean algebras) has objects (X,A) where X is a set and A a set of
subsets of X closed under Boolean operations. It has morphisms f : (X,A) → (Y,B)
where f is a function X → Y such that f−1(b) ∈ A for all b ∈ B.

And second, in the absence of tightness, the relation of the general frame will no longer
be point-closed. Hence, its coalgebraic version has the full power set as its codomain. For
X = (X,A) ∈ RBA let W(X) = (P(X), vX) where vX is the Boolean algebra generated
by {{F ∈ PX | F ∩ a 6= ∅} | a ∈ A}. On morphisms let W(f) = P(f). This clearly
defines an endofunctor on the category RBA, and the induced category Coalg(W) is the
coalgebraic version of general frames:

There is an isomorphism between GF and Coalg(W) (2)
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The crucial observation in the proof of (2) is that, for X = (X,A) ∈ RBA and R a
relation onX, we have that A is closed under 〈R〉 iff R[ ] : X → PX is a RBA-morphism
X → W(X). This follows from the fact that 〈R〉a = (R[ ])−1({F ∈ PX | F ∩ a 6= ∅}).

4 Vietoris Polynomial Functors: from coalgebras to algebras and back

In this section we introduce the notion of a Vietoris polynomial functor (VPF) as a
natural analogue for the category Stone of Stone spaces of the so-called Kripke poly-
nomial functors [28,17] on Set. This section can be therefore seen as a first application
of the observation that coalgebras over Stone can be used as semantics for (coalge-
braic) modal logics. Much of the work in this section consists of transferring the work
by Jacobs in [17] to the topological setting. After introducing the Vietoris polynomial
functors, we define, for each VPF, the category BAOT of T -sorted Boolean algebras
with operators and their morphisms. We then link the categories BAOT and Coalg(T )
by functors A : Coalg(T )op → BAOT and C : BAOT → Coalg(T )op.

Definition 4.1 The collection of Vietoris polynomial functors, in brief: VPFs, over
Stone is inductively defined as follows:

T ::= I | K | T1 + T2 | T1 × T2 | TD | VT.

Here I is the identity functor on the category Stone; K denotes a finite Stone space (that
is, the functor K is a constant functor); ‘+’ and ‘×’ denote disjoint union and binary
product, respectively; and, for an arbitrary set D, TD denotes the functor sending a
Stone space X to the D-fold product of T (X).

Associated with this we inductively define the notion of a path:

p ::= 〈〉 | π1 · p | π2 · p | κ1 · p | κ2 · p | ev(d) · p | V · p.

By induction on the complexity of paths we now define when two VPFs T1 and T2 are
related by a path p, notation: T1

p
; T2:

T
〈〉
; T

T1 × T2
πi·p
; T ′ if Ti

p
; T ′

T1 + T2
κi·p
; T ′ if Ti

p
; T ′

TD ev(d)·p
; T ′ if T

p
; T ′ and d ∈ D

VT V·p
; T ′ if T

p
; T ′.
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Finally, for a VPF T we define the category Ing(T ) of ingredients of T to be the category

with the set Ing(T ) := {S | ∃p.T p
; S} ∪ {I} as the set of objects and the paths as

morphisms between them. �

Remark 4.2 All of our results could have been generalised to a setting that allows
infinite constants and infinite topologised sums as in Gehrke [14]. We confine ourselves
to the functors of Definition 4.1 in order to stay as close as possible to existing work
on Kripke polynomial functors.

We will now define the Boolean algebras with operators associated with a VPF. The
definition of a so-called T -BAO may look slightly involved, but it is based on a simple
generalisation of the concept of a modal algebra. The generalisation is that instead of
dealing with a single Boolean algebra, we will be working with a family (Φ(S))S∈Ing(T )

of Boolean algebras. As before, we let BA∧ denote the category with Boolean algebras
as objects and finite-meet preserving functions as morphisms.

Definition 4.3 (T -BAO) Let T be a VPF. A T -sorted Boolean algebra with operators,
T -BAO, consists of a functor Φ : Ing(T )op −→ BA∧, together with an additional map
next : Φ(T ) → Φ(I) which preserves all Boolean operations. This functor is required
to meet the conditions (1) Φ(K) = ClpK, (2) the functions Φ(πi) and Φ(ev(d)) are
Boolean homomorphisms, and (3) the functions Φ(κi) induced by the injection paths
satisfy (3a) Φ(κ1)(⊥) = −Φ(κ2)(⊥) and (3b) −Φ(κi)(⊥) ≤ (Φ(κi)(−α) ↔ −Φ(κi)(α)).

Example 4.4 Let A = (A,∧,−,⊥,>, g) be a modal algebra, cf. Definition 3.1. This
algebra can be represented by two different VI-BAOs. Note that Ing(VI) = {I,VI} and

VI V
; I.

(1) Φ(I) := A , Φ(VI) := A, Φ(V) := g, and next = id .
(2) Φ′(I) := A, Φ′(VI) := HA (cf. Proposition 3.12), Φ′(V) : Φ′(I) ↪→ Φ′(VI) the

(meet-preserving) inclusion of generators, and next′ the unique Boolean algebra
morphism satisfying next′ ◦ Φ′(V) = g.

We will see that (Φ′, next′) is the VI-BAO obtained by considering the algebra (Φ, next)
from (1) as a VI-coalgebra and translating it back to an algebra, that is, in the notation
we are about to introduce, (Φ′, next′) = AC(Φ, next).

Remark 4.5 (T -BAOs as Many-Sorted Algebras) The definition of a T -BAO as a
functor Φ : Ing(T )op → BA∧ reminds one of Lawvere’s functorial semantics and, indeed,
as suggested by a referee, T -BAOs can be represented as many-sorted algebras (this
point of view will be applied in Remarks 4.10, 4.15, 5.9, 5.12). The following description
can be read as an unfolding of Definitions 4.3 and 4.1. The sorts are the ingredients S of
T . There are unary operation symbols [πi], [κi], [ev(d)], [V], next of type Si → S1 × S2,
Si → S1 + S2, S → SD, S → VS, T → I, respectively, constants q ∈ K, and Boolean
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operation symbols for each sort. The equations are: for the q ∈ K all equations that
hold in K; for the Boolean operations of each sort the equations of Boolean algebra;
equations forcing all unary operation symbols (apart from Boolean complementation)
to preserve finite meets; equations expressing that [πi], [ev(d)], next preserve all Boolean
structure; and finally, [κ1]⊥ = −[κ2]⊥ and −[κi]⊥ ≤ ([κi]−v ↔ −[κi]v), v a variable.

Remark 4.6 (Many-Sorted Coalgebraic Modal Logic) From the perspective of
modal logic, what we are dealing with here is a sorted modal language, the formulas
of which coincide with the set of terms described in the previous remark. Whereas the
T -BAOs can be seen to give the algebraic semantics for this language, we can also pro-
vide it with a more standard semantics (from the point of view of modal logic) in which
the intended general frames are derived from T -coalgebras. The idea is very simple: a
T -coalgebra (X, c) is represented as a sorted frame FT (X, c). This frame has a domain
FS = S(X) for each ingredient S of T , a point-closed relation (see page 8) Rp from

S1(X) to S2(X) for each path S1
p
; S2, and, finally, a point-closed relation Rnext from

X to T (X). These relations are determined by the path and the coalgebra: for instance,

for V(S)
V
; S, the relation RV is simply the converse membership relation, the relation

Rπi
is the graph of the i-th projection map, etc. Finally, the relation Rnext is the graph

of the coalgebra map c.
It is then a natural question how to axiomatise the logic corresponding to this se-
mantics, i.e. to generate the collection of formulas that are valid in the class of these
coalgebraic frames. The system MSMLτ of Jacobs [17, Definition 3.2] aims at precisely
this—for the set based coalgebras that is, but this makes no difference here. The link
between Jacobs’s logic and the equational theory described in Remark 4.5 is very tight:
the second is the algebraisation of the first one. This means, for instance, that as modal
axioms for Jacobs’s logic we can take the formulas ϕ ↔ ψ such that ϕ = ψ is one of
the equations given in the previous remark.
This modal perspective provides another way of understanding these equations. Basi-
cally they try to grasp as many properties of the just described accessibility relations as
is ‘modally possible’. For instance, requiring a modality to preserve all Boolean struc-
ture forces the accessibility relation to be functional. The axioms for the coproduct
modalities [κi] are modal/equational ways of saying that each point in the coproduct
has an Rκi

-successor for exactly one i, and that this successor is unique.

The following is the natural generalisation of the notion of a homomorphism between
modal algebras.

Definition 4.7 (BAOT ) A morphism between T -BAOs (Φ′, next′) → (Φ, next) is a
natural transformation t : Φ′ → Φ such that for each ingredient S of T the component
tS : Φ′(S) → Φ(S) preserves the Boolean structure, tK = idClpK for all constants K ∈
Ing(T ), and tI and tT satisfy next ◦ tT = tI ◦ next′. This yields the category BAOT . �
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It is not difficult to transform a T -coalgebra into a T -BAO; basically, we are dealing
with a sorted version of Stone duality, together with a path-indexed predicate lifting.
We omit the fairly straightforward proofs.

Definition 4.8 Let T be a VPF and let X = (X, τ) be a Stone space. Then the
following definition on the complexity of paths

α〈〉 := α

απ1·p := π−1
1 (αp)

απ2·p := π−1
2 (αp)

ακ1·p := κ1 (αp) ∪ κ2S2(X) for T2 = S1 + S2

ακ2·p := κ1S1(X) ∪ κ2 (αp) for T2 = S1 + S2

αev(d)·p := π−1
d (αp)

αV·p := {β | β ⊆ αp and β closed } (= [3]α)

provides, for any path T1
p
; T2, a so-called predicate lifting

( )p : ClpT2X → ClpT1X.

Lemma and Definition 4.9 (A) For each Vietoris polynomial functor T , each T -
coalgebra (X, c) gives rise to a T -BAO, namely, the ‘complex algebra’ functor A(X, c) :
Ing(T )op → BA∧ given by

S 7→ ClpS(X)(
S1

p
; S2

)
7→ (( )p : ClpS2(X) → ClpS1(X)) ,

accompanied by the map next : Clp(TX) → Clp(X) given by next := c−1.

Remark 4.10 (Semantics of Many-Sorted Coalgebraic Modal Logic) Note
that each path gives rise to a term for the many-sorted signature of Remark 4.5. In-
deed, let ( )∗ be the mapping from paths to terms defined by 〈〉∗ = v for a variable
v of appropriate type, (l · p)∗ = [l](p∗) for l ∈ {π1, π2, κ1, κ2, ev(d),V}. In the light of
Remark 4.6, the predicate lifting ( )p corresponds to the operation [Rp] defined from
the relation Rp as in Example 3.5(3). Dually, given a T -coalgebra (X, c) and a path

T1
p
; T2 between two ingredients of T , ( )p is nothing else but the interpretation of the

term p∗ in the dual algebra A(X, c).
Since the semantics of modal operators is given by predicate liftings (cf. [17, Definition
3.4]), it is now clear that the semantics of formulae ϕ of sort I in the coalgebraic frame
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semantics of Remark 4.6 amounts to

(X, c), x |= ϕ ⇔ x ∈ ϕA(X,c)

where x is an element of X and ϕA(X,c) is the interpretation of the term ϕ in the algebra
A(X, c). It follows (X, c) |= ϕ ⇔ A(X, c) |= ϕ = >. This is in line with the duality
theory of modal logics, see e.g. [8, Section 5.2]. The name ‘complex algebra’ stems from
this tradition.

Conversely, with each T -BAO Φ we want to associate a T -coalgebra C(Φ). Assume
that T has the identity functor as an ingredient; given our results in the previous
section, it seems fairly obvious that we should take the dual Stone space Sp Φ(I) as
the carrier of this dual coalgebra. It remains to define a T -coalgebra structure on this.
Applying duality theory to the Boolean algebras obtained from Φ only seems to provide
information on the spaces Sp Φ(S), whereas we need to work with S(Sp Φ(I)) in order
to define a T -coalgebra. Fortunately, in the next lemma and definition we show that
there exists a map r which produces the S-structure (see Remark 4.15 for an alternative
way). The definition of r is as in [17]; what we have to show is that it works also in the
topological setting.

Lemma and Definition 4.11 (rΦ) Let T be a VPF and let (Φ, next) be a T -BAO.
Then the following definition by induction on the structure of ingredient functors of T

rΦ(I)(U) :=U

rΦ(K)(U) := (εK)−1 (cf. Def. 2.4)

rΦ(S1 × S2)(U) :=
〈
rΦ(S1)(Φ(π1)

−1(U)), rΦ(S2)(Φ(π2)
−1(U))

〉
rΦ(S1 + S2)(U) :=

κ1rΦ(S1)(Φ(κ1)
−1(U)) if −Φ(κ1)(⊥) ∈ U

κ2rΦ(S2)(Φ(κ2)
−1(U)) if −Φ(κ2)(⊥) ∈ U

rΦ(SD)(U) :=λd ∈ D. rΦ(S)(Φ(ev(d))−1(U))

rΦ(VS)(U) :=
{
rΦ(S)(V ) | V ∈ Sp Φ(S) and Φ(V)−1(U) ⊆ V

}
defines, for every S ∈ Ing(T ) a continuous map

rΦ(S) : Sp(Φ(S)) −→ S(Sp(Φ(I))).

Furthermore, the inverse image map next−1 is a continuous map

next−1 : Sp(Φ(I)) −→ T (Sp(Φ(I))).
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Remark 4.12 Perhaps this definition makes somewhat more sense when seen from the
modal perspective of Remark 4.6. Suppose that we allow ‘non-standard’ T -coalgebras
in the semantics of our modal language. These would be many-sorted frames F as well,
with a Stone space FS for each ingredient functor S, point-closed relations Rp from FS1

to FS2 for each path S1
p
; S2, and a point-closed relation Rnext from FI to FT . Let us

agree to call such structures pseudo-coalgebras if they validate the (modal versions of
the) axioms of Definition 4.4. Note that we may extract such a pseudo-coalgebra from
every T -BAOs, simply by taking Stone duals ingredientwise, and defining point-closed
relations between the sorts as in Example 3.5(3).
It then follows from the standard modal theory of canonicity and correspondence,
that pseudo-coalgebras are rather similar to real coalgebraic frames; for instance, while
FS1×S2 need not be the product in Stone of FS1 and FS1 , it will certainly be the case
that each Rπi

is a functional relation between FS1×S2 and FSi
.

It is this pseudo-coalgebraic structure that allows the definition of the maps r(S) :
FS → S(X). For instance, suppose that r has been defined for S1 and S2; then we
define it for S1 × S2 by putting r(S1 × S2)(U) := (r(S1)(U1), r(S2)(U2)) where each Ui

is the unique element of FSi
such that Rπi

UUi. The family r of maps can thus be seen
as the natural attempt to link the pseudo-coalgebra to a proper coalgebra over FI.

Proof. Let S ∈ Ing(T ). Both claims (i.e. the one on well-definedness and the one on
the continuity of rΦ(S)) are proven simultaneously by induction on S.

We only consider the case of the Vietoris functor: assume that S = VS ′. In order to
show that rΦ(S) is well-defined, take an arbitrary U ∈ Sp Φ(VS ′) and consider the set
F := {V | V ∈ Sp Φ(S ′) and Φ(V)−1(U) ⊆ V }. F is closed in S ′(Sp Φ(I)), because for
any V ′ ∈ S ′(Sp Φ(I))\F there is an a ∈ Φ(V)−1(U) such that a 6∈ V ′, whence F ⊆ â and
V ′ 6∈ â: for every V ′ 6∈ F we can find an open set containing V ′ and disjoint from F . But
from F being closed and the inductive hypothesis on rΦ(S ′) it follows that rΦ(S ′)[F ] is
closed as well, so by definition, rΦ(S)(U) = rΦ(S ′)[F ] belongs to K(S ′(Sp Φ(I))). This
proves that rΦ(S) is well-defined.

We now turn to the continuity of rΦ(S). It suffices to show that for an arbitrary clopen
set O ⊆ S ′(Sp Φ(I)), all sets of the form rΦ(VS ′)−1([3](O)) and rΦ(VS ′)−1(〈3〉(O)) are
clopen. We only consider sets of the first kind:

rΦ(VS ′)−1([3](O)) = {U ∈ Sp Φ(VS ′) | rΦ(VS ′)(U) ∈ [3](O)}

= {U | {rΦ(S ′)(V ) | Φ(V)−1(U) ⊆ V } ⊆ O}

= {U | {V | Φ(V)−1(U) ⊆ V } ⊆ rΦ(S ′)−1(O)}

According to the induction hypothesis, rΦ(S ′)−1(O) is a clopen set, say with b ∈ Φ(S ′)
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such that rΦ(S ′)−1(O) = b̂. This leads us to

rΦ(VS ′)−1([3](O)) =
{
U | {V | Φ(V)−1(U) ⊆ V } ⊆ b̂

}
= {U | ∀V ∈ Sp Φ(S ′). (Φ(V)−1(U) ⊆ V → b ∈ V )}
(!)
= {U | Φ(V)(b) ∈ U}

which shows that rΦ(VS ′)−1([3](O)) is clopen. The proof of (!) is standard in the
representation theory of modal algebras.

Finally, the claim on the map next−1 is a simple consequence of Stone duality. qed

The above lemma allows us to define a T -coalgebra for a given T -BAO.

Definition 4.13 (C) Let T be a VPF and let (Φ, next) be a T -BAO. We define the
coalgebra C(Φ, next) as the structure (Sp(Φ(I)), rΦ(T ) ◦ Sp(next)). �

The maps A and C that allow us to move from a given T -BAO to a T -coalgebra and
vice versa, can be extended to functors. Fix a Vietoris polynomial functor T , and let f :
(X, c) → (X′, c′) be a Coalg(T )-morphism. Then we define A(f) : A(X′, c′) → A(X, c)
as follows. For each S ∈ Ing(T ) let A(f)(S) := Clp(S(f)). Naturality of A(f) can be
proven by induction on paths and the additional condition in Definition 4.7 concerning
the next functions is fulfilled because f is a T -coalgebra homomorphism.

Conversely, given a BAOT -morphism t : (Φ, next) → (Φ′, next′), define the map C(t) :
Sp(Φ′(I)) → Sp(Φ(I)) to be the inverse image map of tI : Φ(I) → Φ′(I). We leave it to
the reader to verify that C(t) is in fact a Coalg(T ) morphism between C(Φ, next) and
C(Φ′, next′) (cf. the proof of Proposition 5.3 in [17]).

Proposition 4.14 If we extend A and C as described above we obtain functors

A : Coalg(T )op → BAOT and C : BAOT → Coalg(T )op.

Remark 4.15 As pointed out by a referee, an alternative construction of the coalgebra
C(Φ) can be given which avoids reasoning element-wise about ultrafilters. It uses that
each of the type constructors ×,+, (−)D,V has a dual on Boolean algebras that can be
described by generators and relations, see Vickers [33]. For example, V∂A is generated
by symbols [V]a, a ∈ A, and relations expressing that the insertion of generators [V] :
A → V∂A preserves finite meets (V∂ is the H of Remark 3.13 where we write now [V]a
instead of 2a to emphasise the connection with Definition 4.1 and Remark 4.5); the
dual ×∂ of × is the coproduct of algebras, that is, A1 ×∂ A2 is generated by symbols
[πi]a, a ∈ Ai, i = 1, 2, and relations expressing that the insertion of generators [πi] :
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Ai → A1 ×∂ A2 are algebra morphisms; etc. For a VPF T , let T ∂ be the dual functor
constructed from ×∂,+∂, ((−)D)∂,V∂. From the presentation of a T -BAO Φ as a many-
sorted algebra (Remark 4.5) and the fact that each of the constructions V∂,×∂, . . . used
in T ∂ is a free algebra modulo equations satisfied by Φ we obtain, by induction on the
ingredients S of T , a family of morphisms

qΦ(S) : S∂(Φ(I)) → Φ(S).

qΦ allows us to transform T -BAOs Φ into T ∂-algebras T ∂(Φ(I)) qΦ(T )−→ Φ(T )
next−→ Φ(I)

whose dual then is C(Φ). 2 Conversely, to define the T -BAO Φ = A(X, c) as a many-
sorted algebra, we let Φ(S) = ClpS(X) and the interpretation of the operation symbols

is given by the insertion of generators, e.g. Φ(S) = ClpS(X)
[V]−→ V∂(ClpS(X)) ∼= Φ(VS)

is the interpretation of the operation symbol [V] in Φ.
Finally, note that the description of the dual type constructors ×∂,+∂, ((−)D)∂,V∂ by
generators and relations also offers an explanation of the notion of a T -BAO. Indeed, the
operations and equations defining T -BAOs in Remark 4.5 correspond to the generators
and relations describing the dual type constructors.

5 Vietoris Polynomial Functors: representation and duality theorems

In the previous section we encountered functors

A : Coalg(T )op → BAOT and C : BAOT → Coalg(T )op.

Here we will study these functors in more detail, and show that in fact they provide an
adjunction between the categories BAOT and Coalg(T ). We will define two families of
morphisms, αΦ : ACΦ → Φ in BAOT , and γ(X,c) : (X, c) → CA(X, c) in Coalg(T )op; and
prove that these are the unit and counit witnessing the fact that A is left adjoint to C.
Since the γ’s will turn out to be isomorphisms, this will then show that Coalg(T )op is
(isomorphic to) a full coreflective subcategory of BAOT .

In contrast to the classical case of the duality MA ' DGFop, we do not obtain a dual
equivalence between BAOT and Coalg(T ). This is due to the fact, which the reader
might have noticed already, that the axiomatic definition of T -BAOs does not force
a T -BAO Φ to respect T -structure. We take a closer look at this, characterising the
largest full subcategory of BAOT on which the adjunction restricts to an equivalence. By

2 The map rΦ which is used to construct C(Φ) in Definition 4.13 arises from the dual of qΦ

as rΦ(T ) = Sp(Φ(T ))
Sp(qΦ(T ))−→ SpT ∂(Φ(I)))

∼=−→ T Sp(Φ(I).
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showing that the initial algebra of BAOT is exact, that is, belongs to this subcategory,
we obtain the final T -coalgebra as its dual.

We start by proving that every T -coalgebra has an ‘ultrafilter representation’: it is
isomorphic to its double dual. Recall from Definition 2.4 that for a Stone space Y,
εY : Y → Sp ClpY denotes the homeomorphism fixed by εY(y) := {a ∈ ClpY | y ∈ a}.

Theorem 5.1 Let T be a Vietoris polynomial functor, and let (X, c) be a T -coalgebra.
Then the map εX : X → Sp(Clp(X)) is a Coalg(T )-isomorphism witnessing that

(X, c) ∼= C(A(X, c)).

Proof. We first show that for each sort S ∈ Ing(T ) the following diagram commutes:

SpA(X, c)(S)
rA(X,c)(S)

S(SpA(X, c)(I))

SX

εSX
S(εX)

The proof is by induction on S. We will only treat the Vietoris functor, since all other
cases work exactly as in the proof of Lemma 5.6 in [17]. In order to prove the com-
mutativity of the above diagram for S = VS ′, take an arbitrary F ∈ VS ′(X). Then,
unravelling the definitions of r, A and of (·)V, we find

rA(X,c)(S)(εSX(F )) = rA(X,c)(S
′) [{V | A(X, c)(V)−1(εSX(F )) ⊆ V }]

= rA(X,c)(S
′)

[{
V | {α ∈ ClpS′X | (α)V ∈ εSX(F )} ⊆ V

}]
= rA(X,c)(S

′) [{V | {α ∈ ClpS′X | F ⊆ α} ⊆ V }]
(!)
= {S ′(εX)(u) | u ∈ F}

= S(εX)(F ).

It is left to prove (!). For (⊇), take an arbitrary u ∈ F , and define Vu := εS′X(u). Then for
all a ∈ ClpS′X it holds that F ⊆ a implies u ∈ a, which is equivalent to a ∈ εX(u) = Vu;
in other words,Vu satisfies the condition {α | F ⊆ α} ⊆ Vu. Also, by the inductive
hypothesis we have that S ′(εX)(u) = rA(X,c)(S

′)(εS1X(u)). Taking these observations
together we see that S ′(εX)(u) ∈ rA(c)(S

′) [{V | {α ∈ ClpS′X | F ⊆ α} ⊆ V }].
For (⊆), let V ∈ SpA(X, c)(S ′) be such that {α ∈ ClpS′X | F ⊆ α} ⊆ V . By Stone
duality we know that

⋂
α∈V α = {u} for exactly one u ∈ S ′X. This u must be an

element of F , because
⋂

α∈V α ⊆ ⋂{α | F ⊆ α} = F and we get εS′X(u) = V . By
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the induction hypothesis this is the same as saying rA(X,c)(S
′)(V ) = S ′(εX)(u), which

proves the inclusion.

Now we proceed to prove the theorem: we calculate

C(A(X, c)) ◦ εX = (rA(X,c)(T ) ◦ Sp Clp(c)) ◦ εX = rA(X,c)(T ) ◦ (Sp Clp(c) ◦ εX)

= rA(X,c)(T ) ◦ (εTX ◦ c) = (rA(X,c)(T ) ◦ εTX) ◦ c,

where the third step is by naturality of ε. Now by commutativity of the above diagram
for T we find that C(A(X, c)) ◦ εX = T (εX) ◦ c, which is nothing but stating that εX is a
coalgebra homomorphism. But then since εX is an isomorphism between Stone spaces
we may conclude that it is also an isomorphism between the two given coalgebras. qed

The functor C is not faithful in general; however, when it comes to morphisms having
a complex algebra A(X, c) as their domain, we can prove the following.

Proposition 5.2 Let (X, c) be a T -coalgebra and Φ be a T -BAO. Furthermore let v, v′ :
A(X, c) → Φ be morphisms in BAOT . Then C(v) = C(v′) implies v = v′.

Proof. Let (X, c), Φ, v and v′ be as in the statement of the Proposition, and assume
that C(v) = C(v′). Then it is clear that we have vI = v′I. With the help of Lemma 5.3
below we therefore get v = v′. qed

The following lemma, which forms the heart of the proof of Proposition 5.2, is stated
separately because we need it again further on.

Lemma 5.3 Let (X, c) be a T -coalgebra and Φ a T -BAO. Furthermore let v, v′ :
A(X, c) → Φ be natural transformations whose components preserve all the Boolean
structure, vI = v′I and vK = v′K for all constants K ∈ Ing(T ). Then v = v′.

Proof. Assume that we have two natural transformations v, v′ : A(X, c) → Φ as re-
quired in the lemma. In order to prove that v = v′, it suffices to show that

vS = v′S for all S ∈ Ing(T ). (3)

We will prove (3) by induction on S. In the base case (S = I or S = K for some constant
functor K), it follows immediately that vS = v′S.

For the inductive step of the proof, we confine ourselves to a rough sketch of the proof
idea. In each case, in order to show that vS(U) = vS′(U) for every clopen U of SX, we
try and find a clopen subbasis B such that vS(W ) = v′S(W ) for all subbasic W . For
instance, in the case that S = VS ′, put

B :=
{
W | W ∈ ( )V[ClpS′X]

}
∪

{
−W | W ∈ ( )V[ClpS′X]

}
,
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and let W ∈ B. Then one can easily check that we have vS(W ) = v′S(W ) for all W ∈ B
and by the fact that B is a clopen subbasis of the Vietoris topology one can use a
straightforward argument to show that vS = v′S. qed

We are now ready to show that the functors C : BAOT → Coalg(T )op and A :
Coalg(T )op → BAOT form a so-called dual representation. That is, C is right adjoint
to A and the unit of the adjunction is an isomorphism. We first define the unit γ and
the counit α of the adjunction. Recall that we proved in Theorem 5.1 that ε is an
isomorphism; for rΦ see Definition 4.11 and for iΦ(S) Definition 2.4.

Definition 5.4 (α, γ) For a T -BAO (Φ, next) and a S ∈ Ing(T ) we define

αΦ : AC(Φ) → Φ

via αΦ(S) := jΦ(S) ◦ Clp(rΦ(S)), where jΦ(S) denotes the inverse of the isomorphism
iΦ(S) : Φ(S) → Clp Sp Φ(S).

For a T -coalgebra (X, c), we define

γ(X,c) : (X, c) → CA(X, c) in Coalg(T )op

as the inverse γ(X,c) : CA(X, c) → (X, c) of the morphism ε(X,c) : (X, c) → CA(X, c) in
Coalg(T ). �

Intuitively, the next theorem establishes a duality between Coalg(T ) and BAOT in which
every coalgebra (X, c) can be represented in a canonical way by the algebra A(X, c).

Theorem 5.5 Let T be a VPF. Then A : Coalg(T )op → BAOT is a full embedding and
has C : BAOT → Coalg(T )op as a right adjoint with γ and α as unit and counit. That
is, Coalg(T )op is (isomorphic to) a full coreflective subcategory of BAOT .

Before we turn to the proof of this theorem, we first show that α is indeed a morphism
of T -BAOs.

Lemma 5.6 The family of maps αΦ( ) : ACΦ → Φ is a morphism of T -BAOs.

Proof. We have to show that αΦ( ) is a natural transformation and that αΦ( ) fulfils
an additional naturality condition with respect to the next-operator.

Concerning the first claim we must prove that for all S
p
; S ′ in Ing(T ) we have

Φ(p) ◦ αΦ(S′) = αΦ(S) ◦ ( )p.

It suffices to show, by a case distinction, that this equation holds for paths of length at
most one. As all of these proofs boil down to a tedious but straightforward unravelling
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of definitions, we confine ourselves to the case that p = V and S = VS1. Take an
arbitrary U ∈ ClpS1 SpΦ(I) and let a ∈ Φ(S1) be such that Clp(rΦ(S1))(U) = â. Then

αΦ(S)((U)V) = (jΦ(S) ◦ Clp(rΦ(S)))((U)V)

= (jΦ(S) ◦ r−1
Φ(S))({β ⊆ U | β ⊆ S1 Sp Φ(I) closed})

= jΦ(S)

({
u ∈ Sp Φ(S) | rΦ(S)(u) ⊆ U

})
= jΦ(S)

({
u ∈ Sp Φ(S) | {rΦ(S1)(v) | Φ(V)−1(u) ⊆ v} ⊆ U

})
= jΦ(S)

({
u ∈ Sp Φ(S) | {v | Φ(V)−1(u) ⊆ v} ⊆ Clp(rΦ(S1))(U)

})
= jΦ(S) ({u ∈ Sp Φ(S) | {v | Φ(V)−1(u) ⊆ v} ⊆ â})

= jΦ(S) ({u ∈ Sp Φ(S) | Φ(V)−1(u) ⊆ v ⇒ a ∈ v})

= jΦ(S) ({u ∈ Sp Φ(S) | Φ(V)(a) ∈ u})

= Φ(V)(a)

= Φ(V)
(
jΦ(S1) ◦ Clp(rΦ(S1))(U)

)
= (Φ(V) ◦ αΦ(S1)) (U)

and we get αΦ(S) ◦ ( )V = Φ(V) ◦ αΦ(S1), as required.

Now we turn to the second claim. The ‘additional naturality condition with respect to
the next-operator’ is the following: next ◦ αΦ(T ) = αΦ(I) ◦Clp(rΦ(T ) ◦ Sp next). This is
easily shown to hold (the second identity being due the naturality of j).

αΦ(I) ◦ Clp(rΦ(T ) ◦ Sp(next)) = jΦ(I) ◦ Clp(Sp(next)) ◦ Clp(rΦ(T ))

= next ◦ jΦ(T ) ◦ Clp(rΦ(T ))

= next ◦ αΦ(T ). qed

Proof of Theorem 5.5. For the adjunction it suffices to show ([23], p. 81) that for
all (X, c) ∈ Stone and for all u : C(Φ) → (X, c) there is a unique v : A(X, c) → Φ such
that the following diagram in Coalg(T ) commutes:

CA(X, c) γX (X, c)

CΦ

C(v) u
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Indeed, defining v = αΦ ◦ A(u), we calculate

γX ◦ C(αΦ ◦ A(u)) = γX ◦ Sp (αΦ(I) ◦ A(u)(I))

= γX ◦ Sp(jΦ(I) ◦ rΦ(I) ◦ Clp(u))

= γX ◦ Sp(Clp(u)) ◦ Sp(jΦ(I))

= u ◦ γSp(Φ(I)) ◦ Sp(jΦ(I))

= u

The last two steps use the fact that Sp and Clp are adjoint with (co)units j and γ,
see Definitions 2.4 and 5.4. Uniqueness of v is Proposition 5.2. To conclude the proof,
recall that a left-adjoint is full and faithful iff the unit is an isomorphism ([23], p. 88).
Hence A is full and faithful by Theorem 5.1. qed

We now turn to a characterisation of the largest subcategory of BAOT on which the
adjunction from Theorem 5.5 restricts to a dual equivalence. The reader might have
noticed already that our adjunction is not a dual equivalence since the definition of
T -BAOs does not force a T -BAO Φ to respect T -structure. For example, if S1 × S2 is
an ingredient of T then it may well be that Φ(S1 × S2) 6= Φ(S1) + Φ(S2).

Definition 5.7 Let S be a functor Stone → Stone. Then

Ŝ := Clp ◦ S ◦ Sp .

defines a corresponding functor Ŝ on the category BA. �

The following definition introduces exact T -BAOs, that is, those T -BAOs which do
respect T -structure.

Definition 5.8 (Exact T -BAO) A T -BAO Φ is called exact if there is a family of
isomorphisms

τS : Ŝ(Φ(I)) → Φ(S)

with the following properties:

• τ : (̂ )(Φ(I)) → Φ is a natural transformation, where (̂ )(Φ(I)) : Ing(T )op → BA∧ is

defined on objects as in Definition 5.7 and on paths p : S1
p
; S2 as ( )p in Definition

4.8 (with X here being Φ(I)).
• τI = jΦ(I), where again jΦ(I) denotes the inverse of the isomorphism iΦ(I) : Φ(I) →

Clp Sp Φ(I)
• τK = idClpK for every constant K ∈ Ing(T ).

BAOe
T is the full subcategory of BAOT consisting of the exact T -BAOs. �
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Remark 5.9 In terms of Remark 4.5, as noted by a referee, the exact T -BAOs are those
that are freely generated by Φ(I). Indeed, comparing, on the one hand, the definition
of T -BAOs via operations and equations (Remark 4.5) and, on the other hand, the
definition of the dual functors S∂ by generators and relations (Remark 4.15), we see
that a T -BAO Φ is freely generated by Φ(I) iff Φ(S) ∼= S∂(Φ(I)). It remains to notice
S∂ ∼= Ŝ.

We will now see that exact T -BAOs are precisely those T -BAOs Φ for which the com-
ponent αΦ of the counit of the adjunction is an isomorphism.

Theorem 5.10 Let T be a VPF. The category BAOe
T is the largest subcategory of BAOT

on which the adjunction of Theorem 5.5 restricts to a dual equivalence to Coalg(T ).

Proof. Let B be the largest subcategory of BAOT on which the adjunction A a C
restricts to an equivalence. Then for any Φ ∈ B the map αΦ : ACΦ → Φ consists of a
family of isomorphisms going from ACΦ(S) = Ŝ(Φ)(I) to Φ(S). Therefore we can define
a family of isomorphisms τS : Ŝ(Φ)(I) → Φ(S) by letting τ = αΦ. It is straightforward
to check that this family satisfies the conditions in Definition 5.8. Hence Φ ∈ BAOe

T .

Now let Φ ∈ BAOe
T . We have to show that the counit αΦ is an isomorphism. As

Φ ∈ BAOe
T there is a family of isomorphisms

τS : (ACΦ)(S) → Φ(S).

which is natural in S and for which we have τI = jΦ(I) = αΦ(I) and τK = idClpK = αΦ(K)
for all constants K ∈ Ing(T ). Using Lemma 5.3 one can therefore show that τS = αS

for all S ∈ Ing(T ). But this means in particular that αΦ is an isomorphism. qed

We now show that the final object in Coalg(T ) is obtained as the dual of the initial
object in BAOT . This is a direct consequence of Theorem 5.5 and a special case of
the more general fact that the right adjoint C preserves colimits of diagrams that take
values in the A-image of Coalg(T )op.

Theorem 5.11 Let T be a VPF and LT be the initial object in BAOT . Then CLT is
final in Coalg(T ).

Proof. We prove the theorem by showing that αLT
is an isomorphism, i.e. LT ∈ BAOe

T .
Finality of CLT follows then immediately from the duality between Coalg(T ) and BAOe

T .

Since LT is initial there is a morphism m : LT → ACLT . Since idLT
is the unique

morphism LT → LT it follows that αLT
◦m = idLT

. We want to show that m ◦ αLT
:

ACLT → ACLT is in fact the identity on ACLT . Since A is full (cf. Theorem 5.5) there
is f : CLT → CLT in Coalg(T ) such that A(f) = m ◦ αLT

. We obtain αLT
◦ A(f) =

αLT
◦m ◦ αLT

= αLT
= αLT

◦ A(idCLT
) and the universal property of the coreflection
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tells us that f = idCLT
, hence, idACLT

= m ◦ αLT
and αLT

is iso. qed

Remark 5.12 (Completeness of Many-Sorted Coalgebraic Modal Logic) We
can now use the standard Stone duality approach to prove soundness and complete-
ness of Jacobs’s logic MSMLT (Remark 4.6) with respect to the coalgebraic semantics.
Soundness is immediate. To show completeness, assume that /̀ ϕ in L, i.e. ϕ 6= > in
the initial T -BAO LT , i.e. LT /|= ϕ = >. Since LT

∼= AC(LT ) by the theorem, it follows
from C(LT ) |= ϕ ⇔ AC(LT ) |= ϕ = > (Remark 4.10) that C(LT ) /|= ϕ.
To conclude this remark, let us note that completeness w.r.t. set coalgebras as in Ja-
cobs [17] is an immediate consequence of completeness w.r.t. Stone coalgebras, since ev-
ery Stone coalgebra is a set coalgebra (for example, V-coalgebras are also P-coalgebras).
Moreover, for Stone coalgebras, as a further consequence of Stone duality, we also get
an expressiveness result: If two states of two Stone coalgebras are not bisimilar then
they can be separated by some formula.

Remark 5.13 In [17], Jacobs states a similar final coalgebra theorem for set-based
Kripke polynomial functors. Unfortunately, there is a defect in his proof. The problem
involves his functor CJ : BAOTJ

→ Coalg(TJ)op. Note that Jacobs’s functor TJ is the
set-based analogue of our T . (To obtain TJ from ours, simply replace all occurrences of
the Vietoris functor with the power set functor P , and interpret all polynomial functors
occurring in T in the standard way.) Thus Jacobs studies the relation between TJ -BAOs
and set-based TJ -coalgebras. However, as mentioned already, on the algebraic side, we
may identify TJ -BAOs with T -BAOs. Thus we may compare Jacobs’s way of relating
BAOT with the Set-based Coalg(TJ) to our way of relating BAOT to the Stone-based
Coalg(T ).
Jacobs assigns a modal logic MSMLT to each Kripke polynomial functor (Remark 4.6)
and he proves that the coalgebras for these functors form a sound and complete se-
mantics for these logics. In order to obtain the final coalgebra for a so-called finite
KPF T , that is, a KPF that may only contain the finite-power set functor, he maps the
Lindenbaum-Tarski algebra LT to its corresponding coalgebra CJ(LT ), using the above-
mentioned functor CJ . This construction works when CJ maps T -BAOs to T -coalgebras.
This is, however, only the case for functors T not containing the finite power set functor
Pω (since a (PωI)-BAO is mapped to a P-coalgebra and not to a Pω-coalgebra).
This means that Jacobs’s construction of final objects in Coalg(T ) works only for Kripke
polynomial functors that do not contain the power set functor or its finitary version.
Moving from the category of sets to Stone enables us to repair this defect.
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6 Conclusions

What we have done so far can be viewed from various perspectives. Here we summarise
some of these, indicating possible future research directions.

Stone Coalgebras and Modal Logic Research on the relation between coalgebras
and modal logic started with Moss [25] although earlier work, e.g. by Rutten [29] already
showed that Kripke frames and models are instances of coalgebras. [20,19] showed that
modal logic for coalgebras dualises equational logic for algebras, the idea being that
equations describe quotients of free algebras and modal formulae describe subsets of
final (or cofree) coalgebras. Another account of the duality has been given in [22] where
it was shown that modalities dualise algebraic operations. But whereas, usually, any
quotient of a free algebra can be defined by a set of ordinary equations, one needs infini-
tary modal formulae to define all subsets of a final coalgebra. As a consequence, while
we have a satisfactory description of the coalgebraic semantics of infinitary modal log-
ics, we do not completely understand the relationship between coalgebras and finitary
modal logic. The results in this paper show that Stone coalgebras provide a natural and
adequate semantics for finitary modal logics, but there is ample room for clarification
here.

Another approach to a coalgebraic semantics for finitary modal logics was given in [21].
There, the idea is to modify coalgebra morphisms in such a way that they capture not
bisimulation but only bisimulation up to rank ω. Since finitary modal logics capture
precisely bisimulation up to rank ω, the resulting category Behω provides a convenient
framework to study the coalgebraic semantics of finitary modal logic. So an important
next step is to understand the relation between both approaches.

Stone Coalgebras as Systems We investigated coalgebras over Stone spaces as
models for modal logic. But what is the significance of Stone-coalgebras from the point
of view of systems (that is, coalgebras over Set, cf. Rutten [30])? What is the relation-
ship between Set-coalgebras and Stone-coalgebras? An interesting observation is here
that their notions of behavioural equivalence coincide. Recall that two elements of two
coalgebras are behaviourally equivalent iff they can be identified by some coalgebra mor-
phisms. Since Stone-coalgebra morphisms have to be continuous, we expect that fewer
states are identified under Stone-behavioural equivalence than under Set-behavioural
equivalence. But the following holds.

Consider a Vietoris polynomial functor T : Stone → Stone and its corresponding
(Kripke polynomial) functor T̆ : Set → Set. There is an obvious functor F : Coalg(T ) →
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Coalg(T̆ ). Now let (X1, c1), (X2, c2) be two T -coalgebras and x1, x2 be two elements in
X1, X2, respectively. Then ((X1, c1), x1) and ((X2, c2), x2) are behaviourally equivalent
iff (F (X1, c1), x1) and (F (X2, c2), x2) are behavioural equivalent. — Proof: ‘only if’ is
immediate. The converse follows from the fact that the final T -coalgebra appears as
the ω-limit of the terminal sequence (see Worrell [34]) of T̆ .

Generalising Stone Coalgebras Coalgebras over Stone spaces can be generalised
in different ways. We have seen that replacing the topologies by represented Boolean
algebras leads to general frames. But it will also be of interest to consider other topo-
logical spaces as base categories.

From the point of view of modal logic, it will be interesting to investigate the Vietoris
functors on other base categories. For example, Palmigiano [26] shows that the Vietoris
functor can be defined on Priestley spaces, leading to an adequate semantics for positive
modal logic.

From the point of view of the theory of coalgebras, the value of the move from Set
to Stone as a base category can be explained as follows. For a functor on Set the
notion of behavioural equivalence is, in general, characterised by the whole terminal
sequence running through all ordinals. But often, one is interested only in finitary
approximations. In the examples considered in this paper, the move from a functor
on Set to its version on Stone has the consequence that the final coalgebra is the
limit of the finitary approximants of the terminal sequence (and, therefore, behavioural
equivalence is completely characterised by the finitary approximants of the terminal
sequence). We expect that this idea of topologising a functor T in order to tailor the
behaviour of T -coalgebras to meet a specific notion of observable behaviour will have
further applications to universal coalgebra.

Coalgebras and Duality Theory Whereas many, or most, common dualities are
induced by a schizophrenic object (see Johnstone [18], Section VI.4.1), the duality
of modal algebras and descriptive general frames is not. To see why this is so, write
K : MA → DGF, L : DGF → MA for the contravariant functors witnessing the dual-
ity and suppose, for a contradiction that there is a schizophrenic object S. That is,
assume that MA(A, S) ∼= UK(A) where U denotes the forgetful functor DGF → Set.
Then Set(1, UG) ∼= UG ∼= UKLG ∼= MA(LG, S) ∼= DGF(KS,KLG) ∼= DGF(KS,G),
showing that KS is a free object over one generator in DGF. But since DGF-morphisms
are also bisimulations it is not hard to see that such an object cannot exist.

On the other hand, this duality is an instance of the duality Alg(T op) ∼= Coalg(T )op

of algebras and coalgebras, with the Vietoris functor V as the functor T . It seems

27



therefore of interest to explore which dualities are instances of the algebra/coalgebra
duality. As a first step in this direction, Palmigiano [26] shows that the duality between
positive modal algebras and K+-spaces can be described in a similar way as in Section 3
(although the technical details are substantially more complicated).
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