
Pi-Calculus in Logical Form

M.M. Bonsangue ∗

LIACS - Leiden University
The Netherlands

marcello@liacs.nl

A. Kurz †

Department of Computer Science
University of Leicester

United Kingdom
kurz@mcs.le.ac.uk

Abstract

Abramsky’s logical formulation of domain theory is ex-
tended to encompass the domain theoretic model for pi-
calculus processes of Stark and of Fiore, Moggi and San-
giorgi. This is done by defining a logical counterpart of
categorical constructions including dynamic name alloca-
tion and name exponentiation, and showing that they are
dual to standard constructs in functor categories. We show
that initial algebras of functors defined in terms of these
constructs give rise to a logic that is sound, complete, and
characterises bisimilarity. The approach is modular, and
we apply it to derive a logical formulation of pi-calculus.
The resulting logic is a modal calculus with primitives for
input, free output and bound output.

1. Introduction

The π-calculus [12, 17] is a process algebra for express-
ing processes that interact by exchanging channel names
via shared channels. Fiore, Moggi and Sangiorgi [7] and
Stark [18] show that π-calculus processes can be considered
as the elements of the final coalgebra for a functor T on a
suitable category X . The category in question allows pro-
cesses with local names to depend on the finite set of names
which can be used for communication, while the functor T
is a variation of the one used in [1] to model CCS.

In this paper we build on Abramsky’s domain theory in
logical form [2], to obtain a logic for π-calculus by consid-
ering the Stone-dual category A of X and the dual functor
L of T

XT
(())

Ajj L
vv

More generally, in any such situation, the initial L-algebra

∗The research of Dr. Bonsangue has been made possible by a fellowship
of the Royal Netherlands Academy of Arts and Sciences

†Partially supported by NWO/British Council and EPSRC
EP/C014014/1.

describes a logic for T -processes that characterises T -
bisimilarity. Moreover, by presenting the functor L by oper-
ations and equations [5], we obtain a complete calculus for
the logic.

Our main result consists in the formulation of two sound
and complete proof systems: one for assertions on the uni-
versal domain where the π-calculus is interpreted, and an-
other for assigning processes to formulas. The first proof
system can be used to reason about syntax-free transition
systems (i.e. coalgebras) in the style of more traditional
modal logics while the second one is tailored for reasoning
about syntactically given π-calculus terms, including recur-
sive ones. In both logics, process specifications are given
in an extension of standard modal logic, extended by prim-
itives for name input and output, taking into account in a
uniform way the possibility of communication of a fresh
name.

We now give an outline of the remainder of the paper.
In Section 2 we recall the language of the π-calculus. Var-
ious coalgebraic and algebraic concepts needed to derive
the logic are reviewed in Section 3, whereas the general
framework for deriving logics for coalgebras is discussed
in Section 4. In order to derive a logic for the π-calculus
we give in Section 5 a presentation of each type constructor
involved in the denotational model Pi of π-calculus. This
way we immediately obtain a logic for the class of all Pi -
coalgebras (Section 6), which is sound, complete, and char-
acterises strong late bisimilarity. In Section 7, we use the
fully abstract semantics of π-calculus processes in the final
Pi -coalgebra, and give a logic that can be used to reason in a
compositional manner about syntactically given π-calculus
terms. The paper ends with a brief comparison with other
logics for the π-calculus and outline of future research.

Finally, we would like to acknowledge our great debts
to Davide Sangiorgi who provided valuable suggestions
throughout the writing of the paper. We are grateful to
Marcelo Fiore for suggesting the topic and to Roy Crole
and Emilio Tuosto for discussions and valuable comments
on previous drafts.

2. The π-Calculus

We let a, b range over names; x over process variables; and
P ,Q over processes. The syntax of processes is as follows:

α :: = a(b) | ab | τ
P :: = 0 | x | α.P | [a = b]P | [a 6= b]P | P + P |

P |P | (νa)P | µx .P

The process constructs available in the calculus are the inac-
tion process, the process variable, action prefixing, match-
ing, mismatching, choice, parallel composition, restriction
and recursion. Actions can be inputs, output, and silent
move. Bound output a(b) is an extra action needed to de-
scribe the output of a private name b along a , and extending
the scope of b to the receiver.

Names can be bound by the restriction and input pre-
fix constructs, process variables by the recursion construct.
Free names (fn) and free variables (fv) of a process are de-
fined as expected.

We use a slightly different syntax than that of the origi-
nal π-calculus as introduced in [12]. Indeed, we allow pro-
cesses to contain process variables, and hence to be open.
A closed process is a process not containing free process
variables, but it may contain free names. We use process
variables for recursion. A standard alternative to recursion
is the use of replication. Replication !P can be encoded as
the process µx .(P |x).

We refer to [17] for a detailed description of the above
constructs, and in particular for their associated labelled
transition rules and derived notion ∼ of strong late bisim-
ilarity between π-calculus processes. Strong late bisimi-
larity is not a congruence relation, because it need not be
preserved by input prefixing; the induced congruence ∼c is
called strong late congruence.

3. Coalgebras, Algebras, Stone Duality

Given a locally small category C, its class of objects is de-
noted by |C| and the set of arrows from A to B by C(A,B).
The category of sets and functions is denoted by Set. Since
π-calculus processes are defined over a finite set of free
names available for interactions, we are particularly inter-
ested in functor categories CI, where I is the category of
finite sets i with injective maps ι:j → i . A functor X in
CI associates to each finite set (of names) an object in C.
Further, the action of X on an injection in I can be thought
of as a relabelling operator [7, 18]. We will make use of the
fact that, up to equivalence, (I, 0,+) is the strict monoidal
category with initial unit 0 freely generated from one ob-
ject 1. In order to describe the action of a functor in CI on
arrows in I, it is enough to say what it does on bijections
i ∼= j and on inclusions i ↪→ i + 1.

Coalgebras Coalgebras are simple mathematical structures
for describing dynamical systems like automata and transi-
tion systems [16]. Given an endofunctor T on a category C,
a T -coalgebra is an arrow ξ:X → TX in C. A morphism
f :ξ → ξ′ between coalgebras is an arrow f :X → X ′ such
that Tf ◦ ξ = ξ′ ◦ f . In this paper, the category C is always
a concrete category (like the categories Spec of spectral
topological spaces [11], or SFP of SFP domains [15]). It
makes therefore sense to speak of the elements x ∈ X , or
states, of an object X of C. We say that two states x , x ′ of
ξ:X → TX and ξ′:X ′ → TX ′ are bisimilar if there are
coalgebra morphisms f , f ′ with f (x) = f ′(x ′). For exam-
ple, for the functor PSet(A×−) on Set, where PSet is the
powerset, coalgebras are transition systems with labels in
A and bisimilarity coincides with the standard notion from
process algebra [16].

Algebras In this paper, we think of coalgebras as dynamic
systems and of algebras as logics. It is our aim to relate
the coalgebraic semantics of the π-calculus [7, 18] with a
suitable algebraic semantics.

Given an endofunctor L on a category A, an L-algebra
consists of an arrow α:LA → A. A morphism f :α → α′

between L-algebras is an arrow f :A→ A′ such that f ◦α =
α′ ◦ Lf .

From the point of view of universal algebra, a (Σ,E)-
algebra over an S -sorted signature Σ and equations E con-
sists of carrier sets As for each sort s ∈ S together with
a collection of operations on the carrier sets respecting the
equations in E . The category of S -sorted (Σ,E)-algebras
is defined as usual and denoted by Alg(Σ,E). We say that
a category A, equipped with a forgetful functor U :A →
SetS (here S is seen as a discrete category), has a presen-
tation if there exists a signature Σ and equations E such that
A is concretely1 isomorphic to Alg(Σ,E). If, in addition,
A has free algebras then U is monadic. For example, the
category DL of distributive lattices is monadic [11].

Each S -sorted signature Σ determines a functor
GΣ:SetS → SetS , with

GΣ(A)(s) =
∐

〈s1...sn〉∈S∗

G〈s1...sn〉 ×A(s1)× . . .×A(sn)

(1)
where G〈s1...sn〉 is the set of operations of sort s1, . . . sn →
s . We have Alg(Σ, ∅) ∼= Alg(GΣ).

Presheaves as many-sorted algebras Given a one-sorted
presentation A ∼= Alg(ΣA,EA) and a small category K,
the presentation AK ∼= Alg(ΣAK ,EAK) as a category of
|K|-sorted algebras extends the presentation of A by one
unary operator for each arrow in K and equations for func-
toriality:

1Concretely means that the isomorphism preserves the underlying car-
riers in SetS .

1. ΣAK has an operation op of sort k , . . . k → k for each
operation op in ΣA and k ∈ |K|, and an operation f of
sort h → k for each arrow f :h → k in K.

2. EAK has equations l = r for each equation l = r in
EA, id(x) = x for each identity arrow id :k → k in K
and equations h(x) = f (g(x)) for arrows h = f ◦ g in
K.

As it will become clear in the next section, our main interest
is in the presheaf category DLIop .

Example 3.1 DLIop is isomorphic to the category of many-
sorted algebras given by the following equational theory:

• its sorts are the objects of I. For each sort i we as-
sume pairwise disjoint sets Vi of variables of sort i .
We denote v ∈ Vi by v :i .

• for each sort i there are constants >:i , and ⊥:i , and
two binary operators ∧:i , i → i and ∨:i , i → i . They
obey the equational laws of a distributive lattice.

• for each morphism ι:j → i in I there is a unary oper-
ator [ι]:i → j . Its equational laws are

[ι]
∨

k∈K vk =
∨

k∈K [ι]vk
[ι]

∧
k∈K vk =

∧
k∈K [ι]vk

[idi]v = v ,

[ι ◦]v = [][ι]v for ι:j → i , :k → j .

where K is a finite index set and vk :i , v :i .

The equational laws of the above theory amount to saying
that an algebra A is a functor from the opposite category
of I to the category DL (of distributive lattices). From a
logical point of view, elements of a distributive lattice A(i)
are (equivalence classes of) formulas, the induced order is
the relation of logical entailment between formulas, and a
morphism A(ι):A(i) → A(j) is a restriction operator on
formulas.

The category DLIop inherits much of the structure from
DL. For example, limits and colimits in DLIop can be taken
pointwise. Further, because the forgetful functor DL →
Set is monadic, DLIop → Set|I| is monadic as well.

Stone duality SFP domains taken with the Scott topol-
ogy are spectral spaces (coherent spaces in [11]). Spectral
spaces are those compact sober topological spaces whose
compact opens are a basis and closed under finite inter-
sections. The category Spec of spectral spaces is dual to
DL [11, 3]. In detail, the spectral space pt(D) of a dis-
tributive lattice D is the set of prime filters over D taken
with the filter topology, while the distributive latticeKO(X)
of a spectral space X is given by the set of compact opens

of X ordered by subset inclusion. On morphisms, both KO
and pt are given by inverse image. 2

Spec
KO ++

DL
pt

ll (2)

The following features of the duality are important:

• for X ∈ Spec, x 6= y ∈ X there is o ∈ KO(X)
separating x and y ,

• for A ∈ DL, a 6≤ b ∈ A there is x ∈ pt(A) such that
a ∈ x and b /∈ x .

The first property will be responsible for expressiveness and
the second for completeness in Proposition 4.2.

The duality between Spec and DL restricts to a duality
between the categories SFP! and DDL where SFP! is the
category of SFP domains with strict functions3 and DDL
is its dual. An explicit description of DDL can be found in
[2, 3]. Furthermore, the duality between SFP! and DDL
lifts to a duality between the functor categories SFPI

! and
DDLIop , see Diagram (3) below.

4. Logics for Coalgebras

This section gives a brief summary—tailored to the needs of
the present paper—of Abramsky’s framework of a Domain
Theory in Logical Form [2] and extends [5] to the present
situation. It is shown how an initial L-algebra gives rise to
an adequate logic for T -coalgebras (Proposition 4.2) and
how a presentation of L by operations and equations gives
a complete proof calculus for this logic (Theorem 4.5). In
this section, we take a rather abstract point of view in or-
der to indicate that our approach is not restricted to the late
semantics of π-calculus.

The situation we consider is

Coalg(T)
fKO ,,

��

Alg(L)eptmm

��
SFPI

!

cKO --
DDLIop

bptll

(3)

with dual functors functors T : SFPI
! → SFPI

! and
L : DDLIop → DDLIop , ie there is an isomorphism

d : LK̂O → K̂OT . (4)
2The functors KO and pt are contravariant, but we find the diagrams

more readable if this is not made notationally explicit.
3The Abramsky powerdomain, which we use to interpret non-

determinism, is functorial only for strict functions. An alternative would
be to use the ordinary Plotkin powerdomain and require deadlock to be an
observable action. This would not change the theory of bisimulation as
deadlock processes are anyhow observably distinguishable from the rest of
the processes.

This isomorphism allows us to extend the equivalence
between SFPI

! and DDLIop to an equivalence between
Coalg(T) and Alg(L). Therefore, in the same way as DL
provides a logic for Spec, we consider Alg(L) as a logic
for Coalg(T):

Definition 4.1 The algebra of formulas is the initial L-
algebra.4 Given a formula φ and a coalgebra (X , ξ), the
semantics (|φ|)(X ,ξ) ⊆ X is the image of φ under the unique

morphism from the algebra of formulas to K̃O(X , ξ).

We write Coalg(T) |= (φ ≤ ψ) if (|φ|)(X ,ξ) ⊆ (|ψ|)(X ,ξ)

for all coalgebras.

Proposition 4.2 The logic for T -coalgebras given in the
previous definition

1. respects bisimilarity: formulas are invariant under
bisimilarity

2. is expressive: any two non-bisimilar states are distin-
guished by some formula

3. is sound and complete: Coalg(T) |= (φ ≤ ψ) iff in
the initial algebra φ ≤ ψ holds.

The proposition is an immediate consequence of Stone du-
ality and does not depend on the special situation considered
here. What it doesn’t give us yet is a proof calculus.

Presentations yield proof systems A presentation of
Alg(L) by operations and equations yields a many-sorted
equational logic as a logical calculus for T -coalgebras.
Our notion of a presentation by operations and equations
is slightly non-standard but convenient as it makes the con-
nection with the logics straightforward (see [5] for a full
discussion).

Theorem 4.5 is the basis of our results in the follow-
ing sections. It states that, in the situation of Diagram (3),
given an equational axiomatisation (ΣDL,EDL) of distribu-
tive lattices and a presentation 〈ΣL,EL〉 of L, one obtains a
complete axiomatisation (ΣDL+ΣL,EDL+EL) of Alg(L)
and hence Coalg(T). We will use this result but for this
paper the technical details do not matter so much and the
reader might wish to continue directly with Section 5.

Definition 4.3 Let F be the left adjoint of U :DLIop →
Set|I|, and 〈Σ,E 〉 consist of an |I|-sorted signature Σ (in-
ducing a functor GΣ as in (1)) and of a set of equations
E = (EV (i))V (i)∈ω, with EV (i) ⊆ (UFGΣUFV (i))2.
Here V is a functor (of sorted variables) in Set|I| with
V (i) ranging over finite cardinals for each sort i in |I|. A

4We consider here only formulas without propositional variables. But
everything extends smoothly to the algebra of formulas over variables X
as the free L-algebra over X .

functor L:DLIop → DLIop is presented by 〈Σ,E 〉 if there
exists a natural transformation FGΣU → L such that each
component FGΣUA→ LA is the joint coequaliser

FEV
// // FGΣUFV

FGΣUv// FGΣUA // LA (5)

where v ranges over natural transformations (valuations of
variables) in FV → A.

Remark 4.4 1. The definition captures the idea that the
presentation of LA is uniform in A. The format of the
equations ensures that the Lindenbaum algebra of the
equational logic (ΣDL+ΣL,EDL+EL) is isomorphic
to the initial L-algebra.

2. DLIop is monadic over Set|I| and each presentation
presents indeed a functor. This will be used in the next
section.

3. The notion extends to binary functors L:(DLIop)2 →
DLIop , which is useful to deal with (co)products.

4. To illustrate the format of the equations, consider the
equation �(v0 ∧ v1) =i �v0 ∧�v1 from the presenta-
tion of the powerdomain in the next section. Note that,
according to (5), the left-hand ∧ is interpreted in A(i)
and the right-hand ∧ in LA(i).

5. Abramsky’s logic [2] needs implications for the treat-
ment of coalesced sum and function space. However,
we will only use separated sum and a restricted form
of function space where equations are enough.

As the proof of Proposition 4.2 only involves the final T -
coalgebra and the initial L-algebra, we can apply the pre-
sentations over DLIop to coalgebras over SFPI

! , if we can
properly restrict L to the subcategory DDLIop .

Theorem 4.5 Let 〈ΣL,EL〉 be a presentation of a func-
tor L on DLIop such that: (1) L restricts to the subcat-
egory DDLIop of DLIop , (2) the initial L-algebra lies in
DDLIop , (3) L:DDLIop → DDLIop is dual to T . Then
the equational logic given by (ΣDL + ΣL,EDL + EL) is
sound and complete for T -coalgebras and characterises T -
bisimilarity.

5. Stone Duality for the π-Calculus

Based on [7, 18], we use coalgebras for modelling π-
calculus processes. In particular we consider the following
functor Pi on SFPI

!

P(−+ N × (N → −) + N × (N ×−) + N × δ−) . (6)

Intuitively, a coalgebra ξ:X → Pi(X) for this functor is a
transition system with ξi(x) describing the one-step transi-
tion of a process x ∈ X (i) with free names in i , the com-
ponents of the coproduct corresponding to silent transition,
input, free output, bound output, or termination. Here N
is the object of names, P is a powerdomain for modelling
non-determinism, + is the coproduct for selecting different
actions, N → X is an exponential for the input and δX is
for modelling dynamic allocation of names.

(6) is an example of a functor expression in the meta-
language

H :: = 1|Id |N |H ×H |H +H |H⊥|PH |N → H |δH (7)

We will first review the interpretation TH of a functor ex-
pression H in SFPI

! . Then we are going to give interpre-
tations LH in DLIop . The LH then, restricted to DDLIop ,
will be dual to the TH , allowing to apply Theorem 4.5.

5.1. Domain interpretation

Each functor expression H is interpreted as an endofunctor
TH on SFPI

! as follows. T1 denotes the constant functor
mapping to the final object and TN is the constant functor
of names defined as the inclusion of I into SFP (i.e. TN (i)
is the flat domain (i)⊥). All other functors are defined in
terms of a constructor in the category SFPI

! . For example,
TPH = P(TH). The constructors we need are products ×,
separated sum5 +, lifting (−)⊥, and the powerdomain P of
Abramsky [1]. They are all defined pointwise. Further, δ
is for modelling dynamic allocation of names, and its in-
terpretation is defined in terms of the monoidal structure
(I, 0,+):

δX (i) ∼= X (i + 1) . (8)

The exponential N → H models input of names. Due to
the structure of I, we have

(N → X)(i) ∼= X (i)i ×X (i + 1) (9)

On arrows ι, (N → X)(ι) maps (f , x) with f :i → X (i),
x ∈ X (i + 1) to one of

(X (ι) ◦ f ◦ ι−1 , X (ι+ 1)(x)) (10)
(f , x , X (ι+ 1)(x)) (11)

depending on whether ι is an isomorphism (10) or the in-
clusion i ↪→ i +1 (11). Informally, δX is determined by X
using one new name, while N → X uses all existing names
and a new one.

The final coalgebra of TH exists in SFPI
! . In particular,

the final coalgebra of the functor Pi (6) is the domain theo-
retic model for strong late bisimilarity of [7, 18] (strong late
bisimilarity coincides with coalgebraic bisimilarity (p.2)).

5Separated sum is a lifted disjoint union.

5.2. Logical interpretation

In this section we interpret functor expressions H as func-
tors on DLIop . We proceed by presenting each type con-
structor by generators and relations (or, operations and
equations, see Definition 4.3). Since terminal object 1,
product ×, separated sum +, lifting (−)⊥, and powerdo-
main P are all defined pointwise their presentation is eas-
ily derived from Abramsky’s description of SFP domains as
propositional theories [2]. We treat here Abramsky power-
domain [1] and separated sum. We then give the presenta-
tions for names, dynamic allocation, and input. In the fol-
lowing we will omit sort subscripts as in �i ,♦i . Further,
we assume i , j to range over objects of I and ι over arrows
j → i in I.

Abramsky powerdomain LP is presented by

operations: �,♦ : i → i for each i in I

equations: [ι]�v = �[ι]v [ι]♦v = ♦[ι]v

�(v0 ∧ v1) = �v0 ∧�v1

♦
∨

k∈K vk =
∨

k∈K ♦vk
�(v0 ∨ v1) ≤ �v0 ∨ ♦v1

�v0 ∧ ♦v1 ≤ ♦(v0 ∧ v1)

The difference with the presentation of the Plotkin power-
domain (i.e. the addition of the empty set as a coalesced sum
with a lifted one point space) is reflected by the ‘missing’
relation �> = >. Further, we use a ≤ b as a shorthand for
the equation a ∧ b = a .

Separated Sum L−+− is presented by

operations: l :i → i , r :i → i

equations: [ι]l(v) = l([ι]v) [ι]r(v) = r([ι]v)
l(v0) ∧ r(v1) = ⊥
l , r preserve binary meets and finite joins

That + is interpreted as separated sum is reflected in the
‘missing’ equation l(>) ∨ r(>) = >.

Names LN is presented by

operations: a:1→ i for each a ∈ i

equations: [ι]a = ⊥ if a not in the image of ι
[ι]ι(a) = a
a ∧ a ′ = ⊥ if a 6= a ′

In the domain interpretation, N maps a finite set of names
to the corresponding flat domain. The addition of this extra
least element is reflected by the ‘missing’ equation

∨
{a |

a ∈ i} = >. The operations a here have arity zero.

Product with names LN×− is presented by

operations: a − :i → i for each a ∈ i

equations: [ι]av = ⊥ if a not in the image of ι
[ι]ι(a)v = a[ι]v
av0 ∧ a ′v1 = ⊥ if a 6= a ′

a− preserves binary meets and finite joins

Dynamic allocation Lδ is presented by

operations: δ:i + 1→ i

equations: [ι]δ(v) = δ[ι+ 1](v)

δ(−) preserves finite joins and finite meets.

Recall (8). The presentation guarantees that the map A(i +
1) ∼= (LδA)(i), a 7→ δ(a), is an isomorphism.

Exponential LN→− is presented by

operations: n . (−) : i → i for all i , n ∈ i and
() . (−) : i + 1→ i for all i

equations: for all isomorphisms ι:j ∼= i
[ι](ι(n) . v) = n . [ι](v)
[ι](() . v) = () . [ι+ 1]v

for all inclusions ι:i ↪→ i + 1
[ι](n . v) = n . [ι](v) if n ∈ i
[ι](n . v) = () . v if n 6∈ i
[ι](() . v) = () . [ι+ 1]v

n . (−) and () . (−) preserve finite joins and
finite meets.

The dual of (9) is an (i + 1)-fold coproduct, with the co-
product injections corresponding to n . (−) and () . (−).
The equations reflect the non-pointwise nature of the func-
tion space: The first two equations describe (10), the next
three ones (11).

5.3. Duality of the two interpretations

Each of the presentations above defines a functor LH on
DLIop , see (7) and Definition 4.3. That the conditions of
Theorem 4.5 are satisfied is not hard to see in the case of
δ and follows from the work of Abramsky [2] for the other
constructors. We therefore obtain

Theorem 5.1 For every functor expression H , the functor
TH :SFPI

! → SFPI
! obtained by the domain interpretation

and the functor LH :DDLIop → DDLIop obtained from
the presentations are dual functors (see (4)). In particular,
there is an isomorphism η from the final coalgebra of TH

to the dual of the initial algebra of LH .

Since functors having a presentation are closed under com-
position [5], we have that all functors LH have a presen-
tation. Moreover, this presentation can be obtained in a
straightforward way from the presentations of the compo-
nents, see the next section for an example. Finally, Theo-
rem 4.5 shows that the logic obtained from this presentation
is sound and complete and characterises bisimilarity.

6. A Logic for Pi -coalgebras

Theorems 4.5 and 5.1 give us a logic for Pi -coalgebras (6).
In this section, we unwind the definitions and give an ex-
plicit description in terms of transition systems and modal
logic. As corollaries we obtain Theorem 6.4 and 6.5.

The functor Pi (6) can be decomposed into Pi = PH
where HX = X +N×(N → X)+N×(N×X)+N×δX .
Given a state x in X (i) of a coalgebra, a continuation, or ca-
pability, in HX (i) is chosen non-deterministically. We use
the following notation [8] (note that, as to be expected for
a late semantics, the continuation of the input-clause is an
abstraction):

x τ−→ x ′ iff x ′ ∈ ξi(x), x , x ′ ∈ X (i)

x
a(b)−→ 〈f ′, x ′〉 iff 〈a, f ′, x ′〉 ∈ ξi(x), x ∈ X (i), a ∈ i

b 6∈ i , f ′:i → X (i), x ′ ∈ X (i + {b})
x ab−→ x ′ iff 〈a, b, x ′〉 ∈ ξi(x), x , x ′ ∈ X (i),

a, b ∈ i

x
a(b)−→ x ′ iff 〈a, x ′〉 ∈ ξi(x), x ∈ X (i), a ∈ i ,

b 6∈ i , x ′ ∈ X (i + {b})

For x ∈ X (i), in the case ξi(x) = ⊥Pi we write ↑x . The
predicate ↑x expresses that the state x may diverge. Conver-
gence ↓x is defined as not ↑x [1]. For Pi -coalgebras, bisim-
ulation can be characterised as ordinary strong late bisimu-
lation (adapted with a divergence predicate).

Proposition 6.1 (based on [8]) Two convergent states
x , y ∈ X (i) of a Pi -coalgebra (X , ξ) are bisimi-
lar if and only if there exists a symmetric relation
R ⊆

∐
i∈|I | X (i) × X (i) with xRy and such that for all

x , y ∈
∐

i∈|I | X (i)

1. xRy and ι:i � j implies X (ι)(x)RX (ι)(y);

2. xRy implies

• if x τ−→ x ′ then there exists y ′ such that y τ−→ y ′

and x ′Ry ′;

• if x
a(b)−→ 〈f , x ′〉 then there exists 〈g , y ′〉 such that

y
a(b)−→ 〈g , y ′〉, x ′Ry ′, and f (c)Rg(c) for all c ∈

i ;

• if x ab−→ x ′ then there exists y ′ such that y ab−→ y ′

and x ′Ry ′;

• if x
a(b)−→ x ′ then there exists y ′ such that y

a(b)−→ y ′

and x ′Ry ′.

Syntax Corresponding to the decomposition Pi = PH ,
we use a two tiered logic: a tier κ for capabilities, and a tier
π for non-deterministic processes. For each i ∈ |I |, the sets
of capability and process formulas are defined inductively
as follows (K a finite set and σ ∈ {π, κ}):

{`σ ϕk :i}k∈K

`σ

∧
k∈K ϕk :i

{`σ ϕk :i}k∈K

`σ

∨
k∈K ϕk :i

ι:i → j `σ ϕ:j

`σ [ι]ϕ:i

`κ ψ:i

`π �ψ:i

`κ ψ:i

`π ♦ψ:i

`π φ:i

`κ τ.φ:i

a, b ∈ i `π φ:i

`κ ab . φ:i

a ∈ i b 6∈ i `π φ:i + {b}
`κ a(νb) . φ:i

a, b ∈ i `π φ:i

`κ ab / φ:i

a ∈ i b 6∈ i `π φ:i + {b}
`κ a(νb) / φ:i

We write>:i and⊥:i for the empty meet and join of formu-
las of sort i , respectively. The language is based on the pre-
sentations of Section 5.2 as follows. Meets and joins come
from the distributive lattices, � and ♦ from the powerdo-
main, input ab. and a(νb). from N × (N → −), output
ab/ from N × N × −, and bound output a(νb) / − from
N × δ− (the notation / is introduced here for readability).

For example, the formula

♦a(νb) . (�ba />):{a}

specifies a process that may receive a new name b along the
channel a , and after this it outputs the name a along the
channel newly received.

Semantics The semantics of process formulas is obtained
by interpreting formulas as elements of the initial algebra
for the dual of the functor Pi = PH as in Definition 4.1.
Eliding the clauses for con/disjunctions, we obtain:

x |=π [ι]φ:i iff X (ι)(x) |=π φ:j
x |=π �ψ:i iff ↓x and ∀c ∈ ξ(x).c |=κ ψ:i
x |=π ♦ψ:i iff ∃c ∈ C (x).c |=κ ψ:i

c |=κ [ι]φ:i iff H (ι)(c) |=κ φ:j
(τ, x) |=κ τ.φ:i iff x |=π φ:i
(a(b), 〈f , x 〉) |=κ ac . φ:i iff f (c) |=π φ:i
(a(b), 〈f , x 〉) |=κ a(νb) . φ:i iff x |=π φ:i + {b}
(ab, x) |=κ ab / φ:i iff x |=π φ:i
(a(b), x) |=κ a(νb) / φ:i iff x |=π φ:i + {b}

Example 6.2 Consider a Pi -coalgebra (X , ξ) that has
states x , y ∈ X ({a, b}) whose behaviour conforms to the
π-calculus expressions (taken from [17]) x ∼= a(c).0 +
a(c).ca.0 and y ∼= a(c).0 + a(c).ca.0 + a(c).[c =
b]ca.0. These two processes are early-bisimilar but not
late-bisimilar. They are distinguished by the formula ♦(ab.
♦> ∧ aa . �⊥) which is—due to the presence of the third
summand—satisfied by y but not by x .

Remark 6.3 The expressivity of our logic is the same as
of the logic of [13] (with the late quantifiers 〈a(c)〉L) be-
cause both logics characterise late-bisimilarity. The for-
mula 〈a(c)〉Lφ of [13] corresponds to our—assuming φ has
free variables in i + {c}—♦((

∧
b∈i ab . φb) ∧ a(νc) . φ)

where φb correspond to φ with b substituted for c. Con-
versely, for example, our ♦(ab . φ) corresponds to [13]’s
〈a(c)〉L[c = b]φ, which provides an explanation why the
equality predicate [c = b]φ is needed in [13].

Our logic is closely related to the modal fragment of the
logic in [6]. More precisely, [6]’s formulas 〈a〉(b → φ),
〈a〉(b ← φ), 〈a〉(νb → φ), 〈a〉(νb ← φ) correspond,
respectively, to our ♦(ab . φ), ♦(ab / φ), ♦(a(νb) . φ),
♦(a(νb) / φ).

Theorem 6.4 Two convergent states x , y ∈ X (i) of a
Pi -coalgebra (X , ξ) are bisimilar if and only if x |=π

φ:i iff y |=π φ:i for every process formula φ:i .

Proof system The presentations of Section 5.2 together
with Theorem 4.5 give us a complete equational axioma-
tisation for Pi -coalgebras. Using well-known techniques,
it is straightforward to transform this equational logic into
a more standard modal logic as follows. Working with dis-
tributive lattices (as opposed to boolean algebras), the order
in the lattice cannot be represented by an implication in the
logic. We therefore use sequents ϕ0 ≤ ϕ1 consisting of two
formulas. Axioms state that ≤ is reflexive and transitive;
moreover, there are congruence rules

`κ ψ1 ≤ ψ2

`π ∇ψ1 ≤ ∇ψ2

`π φ1 ≤ φ2

`κ ∆φ1 ≤ ∆φ2

`σ ϕ1 ≤ ϕ2

`σ [ι]ϕ1 ≤ [ι]ϕ2

where σ ranges over {κ, π}, ∇ over {�,♦} and ∆ over
{ab., a(νb)., ab/, a(νb)/}. Then we have those axioms
and rules which give the formulas the structure of an |I|-
sorted distributive lattice.

Furthermore, each equation ϕ1 = ϕ2 obtained from the
presentations in Section 5.2 gives rise to axiom schemes
`σ ϕ1 ≤ ϕ2 and `σ ϕ2 ≤ ϕ1. For example the last equa-
tion of the presentation of LP yields the axiom (scheme)
`π �ψ0 ∧ ♦ψ1 ≤ ♦(ψ0 ∧ ψ1). From now on we drop the
`σ from axioms and rules.

We treat the input capability as an example, the axioms
for the other capabilities being derived similarly. For bet-
ter readability, the logic uses the modalities ab . − and
a(νc) . −, which combine several types of operations: (1)
an injection for L−+−, (2) operations a− for LN×− and (3)
b . − and () . −, respectively, for LN→−. Since all these
operations preserve binary meets and finite joins, we obtain
(for K a finite set)

ab . (φ0 ∧ φ1) = ab . φ0 ∧ ab . φ1

ab . (
∨

k∈K φk) =
∨

k∈K ab . φk

and similarly for a(νc) . −. The 1st and 2nd equation of
the presentation of LN×− give rise to, respectively,

ι:i ↪→ i + {a}
[ι]ab . φ =i ⊥

ι:i ∼= j

[ι]ι(a)ι(b) . φ =i ab . [ι]φ

where i + {a} implies a /∈ i . The right-hand axiom also
includes the 1st equation of LN→−. Using the 2nd equation
instead, the analogous axioms for bound input become

ι:i ↪→ i + {a}
[ι]a(νb) . φ =i ⊥

ι:j ∼= i

[ι]ι(a)(νb) . φ =j a(νb) . [ι+ {b}]φ

The 3rd and 4th equation of LN→− give

ι:i ↪→ i + 1 a, b ∈ i

[ι]ab . φ =i ab . [ι]φ

ι:i ↪→ i + {b} a ∈ i

[ι]ab . φ =i a(νb) . φ

The left-hand one says that extending the set of free names i
has no effect on an input capability if both the subject a and
the object b of the input are already known. However (see
right-hand axiom) extending the set of free names i with a
new name b received has object of an input on a is the same
as a bound input on a .

Finally, the 2nd equation of L−+− and the 3rd equation
of LN×− give rise to ‘disjointness’ axioms stating that two
different capabilities cannot happen ‘simultaneously’. For
example, we have

τ.φ0 ∧ ab . φ1 = ⊥ ab . φ0 ∧ cd . φ1 = ⊥ (a 6= c)

The fact that we don’t have the proviso (b 6= d) for the right-
hand axiom reflects the lateness of input (eg for output we
have ab / φ0 ∧ cd / φ1 = ⊥ if a 6= c or b 6= d).

Theorem 6.5 For every Pi -coalgebra (X , ξ), and process
formulas φ1 and φ2, we have that x |=π φ1:i ⇒ x |=π φ2:i
if and only if `π φ1 ≤i φ2, that is the logic is sound and
complete.

7. A Logic for the π-Calculus

Of particular interest is the Pi -coalgebra obtained by the
interpretation of the π-calculus in the category SFPI that

is fully abstract with respect to strong late bisimilarity [7,
18]. In fact, for each set of names i , a π-calculus process P
can be assigned to an element of the final coalgebra of the
functor Pi by the natural transformation

(|P |)ρ:1→ ΩPi ,

where ρ is an environment mapping variables x to an el-
ement of the final coalgebra ΩPi of the functor Pi . We
write ((|P |)ρ)i for (|P |)ρ at stage i . This interpretation is
fully abstract in the sense that processes with free names
in i are identified iff the processes are strong late bisimi-
lar [7, 18] (the ((|P |)ρ)i corresponds to the closed interpre-
tation of [7]).

Using the machinery developed in the previous section
we can now construct a logic for the π-calculus that is
sound, complete, and characterises strong late bisimilarity.
The process judgement we use is of the form Γ `i,σ P ::ϕ,
where P is a π-calculus process, i is a finite set of names
including the free names of P , and ϕ:i is either a process
(σ = π) or a capability formula (σ = κ) as defined for Pi -
coalgebras. Further, Γ is a finite set of assumptions. We
write them in the form x 7→ φ with φ a process formula of
sort i , and assume that Γ contains at most one of these for
each variable.

Validity of Judgements We define Γ |=i
σ P ::ϕ to hold if for

all environments ρ

(for all x 7→ φ ∈ Γ . ρ(x)i |=π φ:i) ⇒ ((|P |)ρ)i |=σ ϕ:i

where P is a π-calculus process and ϕ:i a process or capa-
bility formula of sort i .

The Proof System for the π-calculus includes the proof sys-
tem for Pi -coalgebras to reason about distributive lattices,
non-determinism, and process capabilities. More precisely,
the latter is incorporated into the former by the following
structural rule of subsumption:

φ1 ≤i φ0 Γ, x 7→ φ0 `i,σ P ::ϕ0 ϕ0 ≤i ϕ1

Γ, x 7→ φ1 `i,σ P ::ϕ1

The structural rules for conjunction, disjunction, and weak-
ening are standard.

Furthermore, there are rules to do deal with the process
constructors. Examples of rules are:

Γ `i,κ P ::ψ

Γ `i,π P ::�ψ

Γ `i,κ P ::ψ

Γ `i,π P ::♦ψ

Γ `i,π P ::�ψ Γ `i,π Q ::�ψ

Γ `i,π P + Q ::�ψ
Γ `i,π P ::♦ψ

Γ `i,π P + Q ::♦ψ

Γ `i,π Q ::♦ψ

Γ `i,π P + Q ::♦ψ
.

Similar rules can be given for the parallel composition of
processes as it can be decomposed using the auxiliary oper-
ators of synchronisation (||) and left merge (T).

More interesting for us are the rules for input

Γ `i,π P{c/b}::φ b 6∈ i

Γ `i,κ a(b).P ::ac . φ

Γ `i+{b},π P ::φ b 6∈ i

Γ `i,κ a(b).P ::a(νb) . φ
.

The first rule is about selecting the right behaviour when re-
ceiving an old name c ∈ i , whereas the second rule handles
the reception of a new name (i.e. b 6∈ i). In both rules we
have a 6= b because a ∈ i by well-definedness of the for-
mulas, whereas b is assumed not to be in i . The rules for
output and silent prefixing are simpler:

Γ `i,π P ::φ

Γ `i,κ ab.P ::ab / φ

Γ `i,π P ::φ

Γ `i,κ τ.P ::τ.φ

Process restriction and synchronisation are defined by con-
sidering all possible actions performed by the processes.
We give two exemplary rules.

Γ `i,κ P ::bc . φ a 6∈ {b, c}
Γ `i,κ (νa)P ::bc . φ

Γ `i+{b},κ P ::ab / φ b 6∈ i

Γ `i,κ (νb)ab.P ::a(νb) / φ

We conclude with the rule for recursive processes:

Γ `i,π µx .P ::φ0 Γ[x 7→ φ0] `i,π P ::φ1

Γ `i,π µx .P ::φ1

.

This rules has to be applied finitely many time so to unfold
the recursive process µx .P as much as necessary.

The main result of our paper states the soundness and
completeness of the logic for π-calculus processes.

Theorem 7.1 For every process P with free names in i , fi-
nite set of assumptions Γ and process formula φ:i

Γ `i,π P ::φ if and only if Γ |=π P ::φ:i .

This result is proved in the same fashion as for Abramsky’s
endogenous logic of terms, using the isomorphism ηPi of
Theorem 5.1 between the final coalgebra of TPi and the
dual of the initial algebra of LPi . Indeed, for each environ-
ment ρ we have

η−1({[φ]= | Γ `i,pi P ::φ} = ((|P |)ρ)i .

In other words, the elements of the final coalgebra of TPi

given by the semantics of process P at each stage i are iden-
tified with the formulas we can prove to hold of P in our
logic.

As a consequence of Theorem 7.1 we have a similar
soundness and completeness result. Further, strong late
bisimilarity coincides with the logical equivalence.

Strong late congruence Strong late bisimilarity is not
closed under input prefix [17]: to obtain a congruence, pro-
cesses have to be bisimilar under all name substitutions.

Following Stark [18], for a set of names i , we write N i

for the functor I→ SFP obtained as the |i |-fold product of
N . This way, elements of N i

j are (not necessarily injective)
substitutions ς:i → j . For any process P with free names in
i and environment ρ mapping each variable x to an element
of the final coalgebra ΩPi of the functor Pi , we define a
morphism [[P]]iρ:N i → ΩPi by taking

([[P]]iρ)j (ς) = ((|Pς|)ρ)j ,

for any set of name j ∈ |I| and substitution ς ∈ N i
j , where

Pς is the process P with all free names a ∈ i substituted
by ς(a) (this corresponds to the open interpretation of [7]) .

From the logical point of view, for each i ∈ |I|we extend
the syntax of our logic for the functor Pi with another tier
’c’ for lifting processes formulas to morphisms. Its syntax
consists of the usual rules for conjunctions, disjunctions and
injective renaming plus the following rule

ς ∈ N i
j `π φ:j

`c ς → φ:i
.

These formulas are used in the process judgement for strong
late congruence. The latter is of the form Γ `ij ,c P ::θ,
where P is a π-calculus process with free names in i , θ:i
is a formula as described above, and Γ is a finite set of as-
sumptions, each of the form x 7→ φ ∈ Γ where φ is an
ordinary process formula of sort j .

The semantics of such a process judgement is obtained
by interpreting the extended formulas as a morphisms from
N i

j to the initial algebra for the dual of the functor Pi . In
particular, for any π-calculus process P with free names in
i , and extended process formula ς → φ:i with ς:i → j a
(not necessarily injective) substitution, we say

Γ |=i
j ,c P ::ς → φ

to hold if and only if, for all environments ρ

(for all x 7→ φ′ ∈ Γ . ρ(x)j |=π φ
′:j) ⇒ ([[P]]iρ)j (ς) |=π φ:j

The other cases of conjunctions, disjunctions and injective
renaming of extended formulas are treated as expected.

A sound and complete proof system for strong late con-
gruence is obtained by extending the judgment for strong
late bisimulation with the following rule:

Γ `j ,π Pς::φ

Γ `ij ,c P ::ς → φ
.

Further, the following axioms are needed for relating the
extended process formulas with the other logical operators:

ς →
∧

k∈K φk =
∧

k∈K (ς → φk)

ς →
∨

k∈K φk =
∨

k∈K (ς → φk)
ςk 6= ςk ′ k , k ′ ∈ K∨

k∈K (ςk → φ) = ⊥
ı:i → j ς ∈ N j

k

[ı]ς → φ = ς ◦ ı→ φ

ς ∈ N i
j :j → k

ς → []φ = ◦ ς → φ

For this system, strong late congruence coincides with the
logical equivalence.

8. Conclusion

We presented a case study of the Stone duality approach to
logics for coalgebras [4]. The originality of this paper is to
show that logics for process calculi with name-binding can
be obtained from a straightforward reuse of existing ingre-
dients, which are, in our example, the coalgebraic semantics
of late-bisimilarity [12, 17] and the domain theory in logical
form of [2]. The same method will allow us to treat other
process calculi and process equivalences and to build a uni-
form theory of their logics. Some immediate directions of
further work are pointed out below.

Remark 6.3 indicates a comparison with the logics of
Milner, Parrow, Walker [13] and Dam [6] on which we
briefly comment.

Milner, Parrow, and Walker [13] also gives a logical
characterisation of process equivalences, including strong
bisimulation. In contrast to our proposal, their logic is in-
finitary, it does not have logical connectives for name cre-
ation, and no proof system is given.

Dam [6] also studies a compositional proof system for
the π-calculus. Our logical connectives are similar, but his
logic also includes first-order quantifiers and fixed points.
A restricted subset, similar to ours, is equipped with a proof
system that is shown to be complete.

In favour of our approach, we would like to point out
that our logic directly reflects the denotational semantics
and that, therefore, the logic is modular. For example, the
proof that the logic is complete and characterises bisimi-
larity is done independently for each type constructor in-
volved. In our case, only the input constructor N → − re-
quired attention, the presentations of the other constructors
being known from the literature.

This inherent modularity will allow us to reuse the work
of the present paper in future developments. For example,
here we interpreted π-calculus processes on SFP domains
because we wanted to treat recursive terms with a finitary
logic. However, restricting the π-calculus to either finite
terms or guarded recursion will allow us to interpret pro-
cesses on sets or Stone spaces, respectively, giving rise to

process-logics with negation (and infinitary in the former
case). Moreover, variations of the functor Pi will allow us
to consider different process equivalences, including early
bisimulation and testing equivalences. Fully abstract mod-
els based on presheaves for these equivalences are studied
in [8, 9] and [10], respectively.

References

[1] S. Abramsky. A domain equation for bisimulation.
Inform. and Comput., 92, 1991.

[2] S. Abramsky. Domain theory in logical form. Annals
of Pure and Applied Logic, 51, 1991.

[3] S. Abramsky and A. Jung. Domain theory. In Hand-
book of Logic in Computer Science. OUP, 1994.

[4] M. Bonsangue and A. Kurz. Duality for logics of
transition systems. In FoSSaCS’05, 2005.

[5] M. Bonsangue and A. Kurz. Presenting functors by
operations and equations. In FoSSaCS’06, 2006.

[6] M. Dam. Proof systems for pi-calculus logics.
In Logic for Concurrency and Synchronisation.
Kluwer, 2003.

[7] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-
abstract model for the π-calculus. In LICS 96, 1996.

[8] M. Fiore and D. Turi. Semantics of name and value
passing. In LICS’01, 2001.

[9] M. Fiore and S. Staton. Comparing operational mod-
els of name-passing process calculi. Inform. and
Comput., 204, 2006.

[10] M. Hennessy. A fully abstract denotational seman-
tics for the π-calculus. Theoret. Comput. Sci., 278,
2002.

[11] P. Johnstone. Stone Spaces. CUP, 1982.
[12] R. Milner, J. Parrow, and D. Walker. A calculus of

mobile processes. Inform. and Comput., 100, 1992.
[13] R. Milner, J. Parrow, and D. Walker. Modal logics

for mobile processes. Theoret. Comput. Sci., 114,
1993.

[14] J. Parrow and D. Sangiorgi. Algebraic theories for
name-passing calculi. Inform. and Comput., 120,
1995.

[15] G. D. Plotkin. A powerdomain construction. SIAM
Journal of Computation, 5, 1976.

[16] J. Rutten. Universal coalgebra: A theory of systems.
Theoret. Comput. Sci., 249, 2000.

[17] D. Sangiorgi and D. Walker. The Pi-calculus: A The-
ory of Mobile Processes. CUP, 2001.

[18] I. Stark. A fully-abstract domain model for the π-
calculus. In LICS 96, 1996.

