
Approximation of Nested Fixpoints – A
Coalgebraic View of Parametric Dataypes
Alexander Kurz1, Alberto Pardo2, Daniela Petrişan3, Paula
Severi1, and Fer-Jan de Vries1

1 Department of Computer Science, University of Leicester, UK
2 Instituto de Computación, Universidad de la República, Uruguay
3 Radboud University, Netherlands

Abstract
The question addressed in this paper is how to correctly approximate infinite data given by
systems of simultaneous corecursive definitions. We devise a categorical framework for reasoning
about regular datatypes, that is, datatypes closed under products, coproducts and fixpoints.
We argue that the right methodology is on one hand coalgebraic (to deal with possible non-
termination and infinite data) and on the other hand 2-categorical (to deal with parameters in
a disciplined manner). We prove a coalgebraic version of Bekič lemma that allows us to reduce
simultaneous fixpoints to a single fix point. Thus a possibly infinite object of interest is regarded
as a final coalgebra of a many-sorted polynomial functor and can be seen as a limit of finite
approximants. As an application, we prove correctness of a generic function that calculates the
approximants on a large class of data types.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases coalgebra, Bekič lemma, infinite data, functional programming, type
theory

1 Introduction

As forcefully argued in [7], the initial algebra semantics underpins much of the theory of
functional programming languages, allowing for structured recursion over data structures.
As long as we restrict our attention to the fragment of Haskell programs that actually
terminate, this is indeed enough. But what happens if we want to take into account infinite
computations? Recursively defined datatypes in Haskell are inherently coinductive and, as
we shall see in this paper, further complications arise when several nested fixpoints are
involved.

Let us consider the parametrised datatype of streams and two functions on integers
const and matrix defined as follows.

data Stream a = Cons a (Stream a)

const :: Int -> Stream Int
const n = Cons n (const n)
matrix :: Int -> Stream (Stream Int)
matrix n = Cons (const n) (matrix (n+1))

The function const takes an integer n and evaluates to an infinite normal form, the constant
stream n:n:n... where we abbreviate Cons by a colon to improve readability. The function

© A. Kurz, A. Pardo, D. Petrişan, P. Severi and F-J. de Vries;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Approximating Nested Fixpoints

matrix evaluated at 0 also yields an infinite computation whose normal form is the stream
of streams

(0:0:0:...):(1:1:1:...):(2:2:2:...):...

This is obtained as the limit of the following reduction sequence:

matrix 0 → Cons (const0) (matrix 1)
→ Cons (Cons 0 (const 0)) (Cons (const1) (matrix 2))
→ . . .

With finite resources printing an infinite stream like (0:0...) is impossible. One could
try to see this stream as the limit of an ω long sequence of growing finite terms

0, 0:0, 0:0:0, ...

How would this work for the infinite normal form of matrix 0? Continuing in the same
manner as before would give a converging sequence of length ω2 of prefixes:

0 0:0 . . . (0:0:...)
(0:0:...):1 (0:0:...):1:1 . . . (0:0:...):(1:1:...)
...

Note that there is no clue that after 0:0:... the sequence will continue and indeed a naive
Haskell implementation would evaluate only the head of matrix 0 and thus would render
only a sequence of 0′s. In the above sequence of approximants we are missing any indication
where the terms are incomplete. A much better sequence of approximants would be

•, (0:•):•, (0:0:•):(1:•):•, (0:0:0:•):(1:1:•):(2:•):•, ...

Each of these truncations (or approximating terms) is finite and can in principle be
printed, as we show in Section 4. This raises interesting Haskell questions: given a nested
datatype T, how to define a generic datatype B T for such truncations and how to define
a generic function trunc of type Nat -> T -> B T that allows us to print these approxi-
mants. Moreover the above sequence of truncations is ω-long, suggesting that conceptually
we transformed the two nested fixpoints involved in the datatype Stream(Stream(Int)) into
a single fixpoint. Let us analyse this problem from a category theoretic perspective. Consider
a category C, assumed for simplicity complete and cocomplete. The datatype Stream(X)
depending on the parameter X in C can be regarded as the final coalgebra, i.e. the greatest
fixpoint νFX of a functor FX : C → C given by FXZ = X × Z. Therefore the datatype
Stream(Stream(X)) is isomorphic to a final coalgebra of FStream(X), that is,

νY.(νZ.X × Z)× Y. (1)

Performing ω reductions of matrix 0 following the leftmost strategy in the example above
is roughly the same as approximating this final coalgebra by iterating only on Z. But the
sequence obtained in this way does not converge to the infinite normal form. On the other
hand, iterating on Y alone does not work either because νZ.X×Z contains infinite streams
which are not printable. The solution is to iterate on Y and Z simultaneously. This can be
done by using a version of the Bekič lemma which states that the final coalgebra (1) can be
obtained as the first projection of the final coalgebra for the endofunctor on C2 given by(

Y

Z

)
7→
(
Z × Y
X × Z

)
.

A. Kurz, A. Pardo, D. Petrişan, P. Severi and F-J. de Vries 3

Since this is a polynomial functor, a final coalgebra can be obtained as a limit of the final
ω-chain in C2. Thus, the problem of obtaining an ω-long sequence of truncations for an
element of a datatype containing several nested fixpoints can be solved by approximating
instead elements of a final coalgebra for a polynomial functor on Cn for a positive integer n.

Another question is how to deal with parameters in a coherent manner. We saw that the
parametrised datatype Stream(X) can be obtained as the fixpoint νFX of a C-endofunctor.
But Stream is itself a functor, and this can be proved using the universal property of the
final coalgebra. One can define its action on arrows (the so called map function), using a
mediating coalgebra morphism arising from finality (the unfold map).

However, a more systematic approach to defining the parametrised datatype is to consider
families of fixpoints in one go. So instead of considering a C-endofunctor FX with a parameter
we consider the bifunctor F : C2 → C given by F (X,Y) = X × Y . This induces the
endofunctor F ◦ 〈1,−〉 on the category [C, C] of endofunctors on C, given by G 7→ F ◦ 〈1, G〉,
as in [21]. The functor Stream can be defined as the greatest fixpoint of the higher-order
functor F ◦ 〈1,−〉 : [C, C]→ [C, C], where we write 1 for identity functors.

C Stream //

〈1,Stream〉
**

unfold
��

C

C × C
F

OO

We have a canonical natural transformation unfold and for every X in C the morphism
unfoldX : Stream(X)→ X × Stream(X) is the structure map of the final FX -coalgebra.

Higher-order functors have been used in [8, 22] to obtain a categorical semantics for nested
datatypes, that is, parametrised datatypes defined inductively and in whose declarations
the type parameter changes. This approach – inherently 2-categorical – is essential for
formalising the relation between the different categories of coalgebras whose final objects
are considered.

It remains to understand what is the precise formulation of the Bekič rule that we can
apply. The result that allows to transform nested fixpoints into a single one is originally
due to Bekič, see [17], and was formulated in terms of least fixpoints of continuous maps
on cpo’s. Categorical fixpoints rules have been established by Lehmann and Smyth [21]
and, under the assumption of algebraic completeness, by Freyd [15] and Fiore [14]. Stronger
versions of Freyd’s results are given in [4]. We are also indebted to an unpublished note
of Pitts [23] which develops a 2-categorical calculus for fixpoints and covers, albeit without
proof, simultaneous least fixpoints.

The 2-categorical theory of nested initial algebra has been developed in [9, 13]. Of course
these results can be recast in the dual coalgebraic setting. In particular the dual of the Bekič
rule we consider in this paper is called the “pairing identity” in [9]. Nevertheless, our proof of
this identity (see Theorem 3 and Corollary 4) is rather different and relies on exhibiting some
adjunctions between categories of coalgebras (Lemma 5 and Lemma 6). The latter results
are interesting in their own right and can also be used for reducing multi-sorted coalgebras
to one-sorted ones. The paper is organised as follows. Section 2 establishes adjunctions
between several categories of coalgebras and as a consequence we obtain a 2-categorical
proof of the Bekič rule. Section 3 explains how to obtain truncations of elements of a final
coalgebra. Section 4 gives a generic implementation of the truncations as a function that
can operate on a large class of data types and applies the theory developed in the previous
sections to prove its correctness.

4 Approximating Nested Fixpoints

2 A coalgebraic treatment of the Bekič rule

As argued in the introduction, we need higher-order functors to deal with parametricity, and
thus our setting is 2-categorical. For the convenience of the reader we briefly recall basic
definitions, but we emphasise that very little of this theory is required to understand our
results. Moreover, the basic example of a 2-category is Cat – the category of small categories.
The reader unfamiliar with 2-categories is asked to instantiate 0-cell with category (or data
type), 1-cell with functor (or parametrised type) and 2-cell with natural transformation (or
polymorphic function). Formally, a 2-category C consists of the following data:

a class of objects or 0-cells, denoted A,B,C, . . .
for any 0-cells A,B a category C(A,B). Objects of C(A,B) are called 1-cells and are
denoted by f : A → B, while morphisms in C(A,B), usually denoted by α : f ⇒ g :
A→ B, or simply α : f ⇒ g, are called 2-cells. Composition in C(A,B) is denoted by ◦
and is called vertical composition. The identity arrow on f : A→ B will be denoted 1f ,
or sometimes just f .
for any 0-cells A,B,C a functor ∗ : C(A,B) × C(B,C) → C(A,C), called horizontal
composition. The horizontal composition of 2-cells α : f ⇒ f ′ : A→ B and β : g ⇒ g′ :
B → C is denoted by βα : gf ⇒ g′f ′ : A→ C.
for any 0-cell A an identity 1-cell 1A : A→ A, called the identity on A.

Furthermore, both horizontal and vertical composition are required to be associative and
unitary. The graphical representation of 2-cells is very useful since one can compose or
paste 2-cells in any order. This is sound because from the functoriality of the horizontal
composition we obtain the so called interchange law: (β′α′) ◦ (βα) = (β′ ◦ β)(α′ ◦α) for any
2-cells as in the diagram.

A f ′ //

f

!!�� α

==

f ′′

�� α′

B g′ //

g

!!�� β

==

g′′

�� β
′

C

To improve readability of diagrams and for consistency with the 2-category theoretical lit-
erature, we use small letters for 1-cells. But, when we instantiate C with a category of
categories, 1-cells correspond to functors, and will be denoted by capital letters.

In what follows we will consider a 2-category C that has 2-products. This implies the
existence of products at the level of 0-cells satisfying the usual universal property; so a pair
of 1-cells p : A→ B and q : A→ C yields a unique 1-cell 〈p, q〉 : A→ B×C. Moreover, any
2-cell of the form f ⇒ g : A→ B×C is essentially a pair 〈ξ, ζ〉 with ξ : π1f ⇒ π1g : A→ B

and ζ : π2f ⇒ π2g : A → C. For the exact definition, see [18]. We need 2-products to
incorporate parameters.

Given a 1-cell f : A × B → B we will consider, as motivated by the example given in
the introduction, the functor f〈1,−〉 : C(A,B)→ C(A,B), that maps a 1-cell u : A→ B to
the 1-cell f〈1A, u〉. To simplify the notation, we will denote the categories of coalgebras for
the C(A,B)-functor f〈1,−〉 by CoalgAB(f) and, we will call an f〈1,−〉-coalgebra simply an
f -coalgebra. Objects of this category are of the form (u, ξ) where u : A→ B is a 1-cell in C

A. Kurz, A. Pardo, D. Petrişan, P. Severi and F-J. de Vries 5

and ξ is a 2-cell as in the next figure.

A
u //

〈1,u〉
**

ξ

��

B

A×B
f

NN

A morphism between coalgebras (u, ξ) and (u′, ξ′) is a 2-cell α : u ⇒ u′ such that ξ′ ◦ α =
f〈1, α〉 ◦ ξ.

As an example, instantiate C to Cat, put A = B = Set and let the 1-cell f be the
bifunctor F : Set2 → Set mapping (X,Y) to X × Y . The final coalgebra in CoalgAB(f) in
this instance is the Stream functor described in the introduction.

A final object in the category CoalgAB(f), when it exists, will be denoted by (νf, ufld).
Notice that νf : A→ B is a 1-cell.

Aside form having 2-products, we require the 2-categories we consider to have a stability
of fixpoints property (2) that was also required in [23].

Stability of fixpoints. Consider 1-cells f : A × B → B and h : A′ → A. Using h we
obtain a 1-cell f(h× 1) : A′ ×B → B. This in turn gives rise to the endofunctor f〈h,−〉 on
C(A′, B), for which we consider the corresponding category of coalgebras CoalgA

′

B (f(h×1)).
Then we require that the final coalgebra ν(f(h× 1)) exists whenever the final coalgebra νf
does, and moreover

ν(f(h× 1)) = (νf)h (2)

I Remark 1. If for a 1-cell h : A′ → A the functor C(h,B) : C(A,B)→ C(A′, B) mapping
u : A→ B to uh : A′ → B has a left adjoint,1 then (2) is satisfied. Indeed, since C(h,B) ◦
(f〈1,−〉) ' (f〈h,−〉) ◦ C(h,B), the adjunction between C(A,B) and C(A′, B) lifts to an
adjunction between the corresponding categories of coalgebras:

CoalgAB(f)

��

44

ss

⊥ CoalgA
′

B (f(h× 1))

��

C(A,B)f〈1,−〉 !!

C(h,B)
44

tt

⊥ C(A′, B) f〈h,−〉}}

In particular, since right adjoints preserve all limits, and hence final objects, the final coal-
gebra ν(f(h× 1)) exists whenever νf does, and moreover (2) holds.

The situation we are interested in is the following. Assume we have two 1-cells

f : A×B × C → B g : A×B × C → C

such that there exists a final coalgebra in CoalgA×BC (g). We can ‘plug in’ the 1-cell νg :
A× B → C into f to obtain a 1-cell that we will denote by f C νg : A× B → B, which is

1 As an example, let C be the 2-category of locally finitely presentable categories. In this case, left Kan
extensions exist, so the functors C(h, B) have left adjoints. However, in general, the existence of left
Kan extensions is a stronger requirement than (2) and is not required in the proof of the Bekič rule.

6 Approximating Nested Fixpoints

formally defined as the composition f〈πA, πB , νg〉. The 1-cell of interest is the final coalgebra

ν(f〈πA, πB , νg〉) (3)

In Cat when we instantiate f and g to functors F : A×B × C → B and G : A×B × C → C,
the 1-cell in (3) actually gives a functor from A to B that for a parameter X in A computes
νY.F (X,Y, νZ.G(X,Y, Z)). The aim of the generalised Bekič rule is to establish that this
fixpoint is the first projection of the greatest fixpoint of the many-sorted functor given by(

Y

Z

)
7→
(
F (X,Y, Z)
G(X,Y, Z)

)
.

Coming back to the 2-categorical setting, we want to find the connection between
the final objects (when they exist) of the categories CoalgAB(f〈πA, πB , νg〉), respectively
CoalgAB×C(〈f, g〉).

I Notation 2. Consider 1-cells f : A × B × C → B and h : A × B → C. Let f C h

denote the composition f〈πA, πB , h〉 : A × B → B and, we abbreviate by 〈f, h〉 the pair
〈f, h〈πA, πB〉〉 : A × B × C → B × C. The natural way to obtain from f and h a 1-cell
with codomain B×C is to precompose h with projections and then use the standard product
pairing. Denoting this 1-cell by 〈f, h〉 is only a mild abuse of notation.

Using this notation, we study the diagram

CoalgAB(f C νg)

I

33
⊥

��

CoalgAB×C(〈f, νg〉)

L
ss

��

CoalgAB×C(〈f, g〉)
(−)†

oo

��

C(A,B) C(A,B × C)π1−oo C(A,B × C)Idoo

where the vertical arrows are forgetful functors and π1− denotes composition with the
projection π1 : B × C → B. The functors L and I are explained in Lemmas 5, while the
functor (−)† is introduced in Lemma 6. From these lemmas we obtain:

I Theorem 3. The diagram above commutes. Further, CoalgAB(f C νg) is a full reflective
subcategory of CoalgAB×C(〈f, νg〉) and (−)† creates final objects.

Before stating the two lemmas let us show how the Bekič rule follows.

I Corollary 4. Assume ν(f C νg) exists. Then ν〈f, g〉 also exists and we have

ν(f C νg) = π1ν〈f, g〉. (4)

Proof. If CoalgAB(f C νg) has a final object, then by Lemma 5, I preserves it, since as a
right adjoint it preserves all limits, see [10, Prop 3.2.2]. Moreover, L also preserves the final
coalgebra, since by Lemma 5 L is a reflector, and thus we can use [10, Prop 3.5.3]. By
Lemma 6 the functor (−)† creates final objects, so ν〈f, g〉 exists. We conclude that L ◦ (−)†
maps the final coalgebra in CoalgAB×C(〈f, g〉) to the final coalgebra in CoalgAB(f C νg). But
the composite L ◦ (−)† acts on the carrier 1-cells of the final coalgebras by composing with
the projection on the first component. Therefore we obtain (4). J

A. Kurz, A. Pardo, D. Petrişan, P. Severi and F-J. de Vries 7

I Lemma 5. Consider 1-cells f : A×B×C → B and h : A×B → C. Then CoalgAB(f C h)
is isomorphic to a full reflective subcategory of CoalgAB×C(〈f, h〉).

Sketch. We exhibit an adjunction L a I : CoalgAB(f C h) → CoalgAB×C(〈f, h〉) and show
that I is full and faithful. I acts on an f C h-coalgebra ξ by

A
u //

〈1,u〉 ,,

ξ
��

B

A×B fCh

NN

7→
A

〈u,h〈1,u〉〉
//

〈1,u,h〈1,u〉〉 ''

〈ξ,1〉
��

B × C

A×B × C 〈f,h〉

KK

A coalgebra homomorphism α : u ⇒ u′ : A → B in CoalgAB(f C h) is mapped by I

to 〈α, h〈1, α〉〉 and it is immediate to verify that this is indeed a coalgebra morphism in
CoalgAB×C(〈f, h〉).

The functor L acts on an 〈f, h〉-coalgebra 〈ξ, ζ〉 as follows. We use that f C h = f〈1, h〉.

A
〈u,v〉

//

〈1,〈u,v〉〉
''

〈ξ,ζ〉
��

B × C

A×B × C
〈f,h〉

II

7→

A
u //

〈1,u,v〉 ..
〈1,u〉

$$

ξ
��

B

〈1,1,ζ〉
��

A×B × C
f

KK

A×B 〈1,h〉

HH

fCh

MM

It is routine to check that when 〈α, β〉 is a morphism in CoalgAB×C(〈f, h〉) then α is a
morphism in CoalgAB(f C h). Moreover, one readily verifies that L is left adjoint to I. J

I Lemma 6. Consider 1-cells 〈f, g〉 : A × B × C → B × C. Then there exists a faithful
functor (−)† : CoalgAB×C(〈f, g〉)→ CoalgAB×C(〈f, νg〉) that creates final objects.

Sketch. Consider a coalgebra 〈ξ, ζ〉 in CoalgAB×C(〈f, g〉) as in the left diagram in (5). Then
ζ : v ⇒ g〈1, u, v〉 is a coalgebra in CoalgAC(g(〈1, u〉 × 1)). By the stability condition (2), the
final object in the latter category is isomorphic to

A
〈1,u〉

//

〈1,νg〈1,u〉〉
**

A×B
νg

//

〈1,νg〉

))

= ufld

��

C

A× C
〈1,u〉×1

// A×B × C
g

KK

Thus there exists a unique coalgebra morphism ζ† : v ⇒ νg〈1, u〉 such that

(ufld〈1, u〉) ◦ ζ† = (g(〈1, u〉 × 1)〈1, ζ†〉) ◦ ζ

We can now define the functor (−)† on objects by

A
〈u,v〉

//

〈1,〈u,v〉〉
''

〈ξ,ζ〉
��

B × C

A×B × C
〈f,g〉

II

7→

A
〈u,v〉

//

〈1,〈u,v〉〉
''

〈ξ,ζ†〉
��

B × C

A×B × C
〈f,νg〉

II

(5)

On arrows the functor (−)† is defined as identity. One can show that (−)† creates final
objects. J

8 Approximating Nested Fixpoints

1

i0

��

j0

��

F1p0oo . . . Fn1
jn

$$

in

��

. . . Fω1

pω
n

uu

i

{{

0 //

e0

��

(•+ F)0

��

. . . (•+ F)n0

��

// (•+ F)n+10

en+1

��

--
. . . (•+ F)ω0

e

��

1 (•+ F)1
q0
oo . . . (•+ F)n1 (•+ F)n+11qnoo . . . (•+ F)ω1

qω
n

jj

qω
n+1

qq

Figure 1 Approximating F ω1

3 Truncating elements of final coalgebras

Having eliminated fixpoints using the Bekič rule, the remaining problem is approximating
elements of the final F -coalgebra, for a polynomial F on Setn for some positive integer n.
Even though it is essential for us to allow Setn for n > 1 to account for nested fixpoints, the
following simple example is illustrative.

I Example 7. Let F : Set→ Set be given by FX = {a, b}×X×X. We want to approximate
infinite binary trees with nodes a, b, that is, elements of the final F -coalgebra, the carrier
of which we write as Fω1. As a data type of approximants we choose the initial ({•}+ F)-
algebra, the carrier of which we write as (•+ F)ω0. We then have injections i and e

Fω1 i // (•+ F)ω1 (•+ F)ω0eoo

In the following we will need the final sequence of F consisting of projections of elements
of Fω1 and the initial sequence of ({•}+F) consisting of the possible truncations of elements
of Fω1. Both sequences embed into the final sequence of ({•} + F), which will be used to
define the metric that allows us to capture the approximation of infinite elements of Fω1 by
truncations.

Writing • for {•}, this data is made visible in Fig. 1. We consider the horizontal arrows in
the middle row as inclusions and do not give them names. Similarly, we will often treat i and
e as inclusions and drop them from our notation. i0, p0, e0, q0 are uniquely determined by
their types and j0 maps the element of 1 to •. We put pn+1 = Fpn and for f ∈ {i, e, j, q} we
let fn+1 = inr◦Ffn, where inr is a right coprojection map. The pωn , qωn , and i are determined
by Fω1 and (•+ F)ω1 being limits.

I Proposition 8. In Fig.1, we have qn ◦ en+1 ◦ jn = in.

We call elements of (•+ F)n0 truncations (or approximations).
I Remark. Why do we use the (•+ F)n0 and not the Fn1 as the range of truncations? As
will become clear in Section 4, in our code we need a datatype for truncations in order to
print them. To this end we need to use a constructor, which, in our code, is given by •. As
far as the implementation is concerned, it is indisputable that we need •. The only question
that remains is how to interpret the • in the code from a semantic perspective. In particular,

A. Kurz, A. Pardo, D. Petrişan, P. Severi and F-J. de Vries 9

why don’t we interpret the • of the program as the element of 1 in
∐
Fn1? There are two

reasons for this.

1. It is true that the final sequence suggests considering truncations as elements of
∐
Fn1.

However, truncations are required to be finite terms, so from a conceptual point of view,
it is natural to regard them as elements of an initial algebra or an inductively defined
type. Since the initial algebra of F may be empty, as in the case of streams, we are using
the initial algebra of • + F . This section carries out the indispensable analysis of the
relation between the initial sequence of •+ F and the final sequence of F .

A benefit of this analysis is that we solve a question raised by Barr’s theorem, namely
how to approximate a final coalgebra by an initial algebra if the initial algebra sequence
is empty (due to F0 = 0). To replace F by • + F is an obvious idea, but one needs to
deal with the fact that bullets can appear now at all levels and that is what we do in
this section.

2. Our methodology of proving the productivity of programs in Section 4 should be able to
support correctness proofs of any implementation of printing. It is true that there always
is an implementation that prints the • exactly where the final sequence has a ? (if ? ∈ 1 is
the element of 1 in the final sequence Fn1). But there are many other implementations.
This becomes particularly important in the case of nested fixpoints. The implementation
corresponding to the final sequence corresponds to a quite particular strategy of when
each fixpoint is unfolded.

To reinforce this point, let us consider an as an example streams of streams of Int.
After applying Bekič, we get the equations

T = S × T
S = Int× S

telling us that S is the type of streams over Int and T is the type of streams over S. Let
us develop the final sequence for the functor

F (T, S) = (S × T, Int× S).

We use “o” for the 1 of type T and $ for the 1 of type S. And we write “,” for product.
The first four elements of the sequence Fn1 are of the following types, with the first line
referring to the first component (the T -component) and the second line referring to the
second component (the S-component):

o ($, o) (Int, $), ($, o) (Int, Int, $), (Int, $), ($, o)

$ (Int, $) (Int, Int, $) (Int, Int, Int, $)

(6)

This corresponds to an implementation that prints n elements of the first stream, n− 1
elements of the second stream and so on. But there are many other ways of printing
streams of streams. For example, we may want to say that “we want to see more of early
streams” and implement printing 2n elements of the first stream, 2(n−1) elements of the
second stream, etc. So we need truncations of type ((Int, Int, Int, Int, $), (Int, Int, $), ($, o))
which are not in any Fn1, that is, they dont appear in the upper row of Diagram (6).

I Example 9. Let FX = {a, b} × X × X. Then (7) shows a truncation that cannot be

10 Approximating Nested Fixpoints

obtained from any of the Fn1.

a

||
��

b

����

•

• •

(7)

The set of truncations, that is, (•+ F)ω0, carries a metric induced by the embedding
e : (•+ F)ω0→ (•+ F)ω1 and the final sequence (•+ F)n1 as in Barr [5, Proposition 3.1].
Explicitly, for t, s ∈ (•+ F)ω1 let d(t, s) = 0 if t = s and else d(t, s) = 2−n where n is the
largest natural number such that qωn (t) = qωn (s).

Consequently, we have a notion of convergence and Cauchy sequence we can apply to
sequences of truncations. For an example consider some t ∈ Fω1 and its canonical sequence
of truncations jn(pωn(t))n<ω:

I Proposition 10. For all t ∈ Fω1 the sequence jn(pωn(t))n<ω converges to t.

Not all converging sequences of truncations converge to an element in Fω1:

I Example 11. Let FX = {0, 1} ×X ×X. Then the following is a converging sequence of
truncations that does not converge to an element of Fω1:

• ,

0

��

// •

•
,

0

��

// 0

��

// •

• •
,

0

��

// 0

��

// 0

��

// •

• • •
, . . .

The following definition captures the intuition that a productive sequence is a sequence
in which all bullets get eventually eliminated (because jn(tn) has no bullets below level n):

I Definition 12. A sequence (ak)k<ω is called productive if it is Cauchy in (•+ F)ω0 and
if for all n there is tn ∈ Fn1 and k < ω such that qωn (e(ak)) = in(tn).

We read qωn (e(ak)) = in(tn) as tn ‘is below’ ak. Observe that the tn in the definition
necessarily converge to the same limit as the ak. For an example note that for any t ∈ Fω1
the canonical sequence converging to t introduced Proposition 10 is productive (the proof
uses Proposition 8).

I Corollary 13. If (ak)k<ω is ‘a productive sequence of truncations of t’, that is, if for all
n there is k such that qωn (e(ak)) = in(pωn(t)), then lim ak = t.

This shows that all elements of Fω1 are approximated by a productive sequence. A stronger
statement is:

I Proposition 14. Let (ak)k<ω be a sequence in (•+ F)ω0. Then, lim ak ∈ Fω1 iff (ak)k<ω
is productive.

Proof. If lim an = t ∈ Fω1, then for all n there is k such that qωn (e(ak)) = in(tn) as required
by Def. 12. Conversely, if ak is productive, then it converges against the same limit as the
tn from Def. 12. Now qωn (e(ak)) = in(tn) implies that there is t ∈ Fω1 such that lim tn = t,
hence lim ak = t. J

A. Kurz, A. Pardo, D. Petrişan, P. Severi and F-J. de Vries 11

Our analysis improves somewhat over Barr’s original result as we do not have to as-
sume that F0 6= 0 (which excludes e.g. streams). This comes at the cost that (•+ F)ω1
has ‘spurious elements’ that are not in Fω1. The following summarises two satisfactory
characterisations of Fω1 as a subset of (•+ F)ω1.

I Theorem 15. Let F : Setn → Setn be a many-sorted polyomial functor. An element of
(•+ F)ω1 is in Fω1 iff it is approximated by a productive sequence iff it is bullet-free.2

Proof. The first ‘iff’ is Proposition 14. The second ‘only if’ is obvious. For the other
direction, we show by induction that if an element in (•+ F)n1 is bullet-free then it is
already in Fn1, or, in other words, that the image of in contains all bullet-free elements of
(•+ F)n1. J

4 Implementing truncations in Haskell

We apply the theory developed in the previous sections to prove correctness of an effective
procedure for printing infinite objects in Haskell. A naive attempt to printing the infinite
normal form of the stream of streams (matrix 0) only shows an infinite stream of 0’s and
we never see the other streams. Our solution is to print the sequence of truncations of a
term. The truncation of a term at depth n is obtained from the tree representation of the
term by replacing the subterms at depth n by •. Printing the sequence of all truncations is
a faithful way of printing infinite data if we prove the following two correctness properties:

the truncations are always finite (and hence, printable in a finite amount of time) and
the sequence of truncations has length ω and converges to the infinite normal form of
the program at issue.

To this end, we assume that our programs are infinitary normalising (productive). For
example, we exclude programs that do not have infinite normal form at all such as (novalue
0) defined as follows.

loop = loop novalue n = Cons loop (matrix n)

The set of (potentially infinite) normal forms can be seen as the carrier of a final coalgebra
of the form Fω1. Section 4.2 gives the correctness proof of our implementation and relies
on the results of Section 3. The full implementation is available at [19].

We give the type declaration of a class Trunc introducing a new data type

B :: * -> Nat -> *

used for implementing the truncations. The truncation of a term of type a at level n will
have type B a n. The dependency of (B a n) on n :: Nat ensures that inhabitants of this
data type are finite, and thus amenable to printing.

data Nat = Zero | Succ Nat class Trunc (a :: *) where
data SNat n where data B :: * -> Nat -> *

SZ :: SNat Zero trunc :: SNat n -> a -> B a n
SS :: SNat n -> SNat (Succ n)

2 A tree is bullet-free if it contains no occurrence of •.

12 Approximating Nested Fixpoints

Note that we fake dependent types in Haskell using data promotion and singletons [26, 12].
The data type Nat is promoted to kinds. The singleton type (SNat n) can be thought of as
having one inhabitant, intuitively, the natural number n.

To illustrate how the function trunc works we first present non-generic implementations.
We make the parametric datatype (Stream a) an instance of the class Trunc provided the
parameter a is also an instance of the class Trunc.

data B (Stream a) n where
Bullet :: B (Stream a) Zero
ConsS :: B a n -> B (Stream a) n -> B (Stream a) (Succ n)

trunc SZ _ = Bullet
trunc (SS n) (Cons x xs) = ConsS (trunc n x) (trunc n xs)

We also consider the data type for rose trees which is a multi-way tree structure in which
each node may have an arbitrary number of children [6].

data RoseTree a = RoseTree a [RoseTree a]

The definition of trunc needs more care, the following would be wrong:
trunc SZ x = BulletRose
trunc (SS n) (RoseTree x xs) = RoseTreeB (trunc n x) (map (trunc n) xs)

because (map (trunc n) xs) is infinite if xs is infinite. In order to truncate rosetrees
correctly, we replace the second line in the above code by the following:

trunc (SS n) (RoseTree x xs) = RoseTreeB (trunc n x) (trunc n xs)

where the last truncation is applied to the list xs. The theoretical foundation behind this
solution is the Bekič rule on datatypes as explained in Section 2, which allows us to rewrite
the definition of rose trees νX.A× (νY.1 +X × Y) as Π1(ν(X,Y).(A× Y, 1 +X × Y)). In
other words, (Rosetree a) is written as the solution of two mutually corecursive equations:

X = A× Y
Y = 1 +X × Y (8)

After applying the Bekič rule, the many-sorted functor associated to rosetrees is(
X

Y

)
FRTA−→

(
A× Y

1 +X × Y

)
.

In our implementation, since we are using overloading polymorphism we do not see that we
actually have two different versions of the function trunc, one for each recursive equation
(assuming A is a basic type).

4.1 A generic implementation of truncations
In this section, we give a uniform implementation of truncation for a wide class of data types.
The data types should have the form T1(T2(. . . Tn(Int) . . .)) where Ti(X) = νY.Fi(X,Y) and
Fi is a polynomial functor3. The view of data types as fixpoints of functors is implemented
through a type class called Rep similar to the class Regular but for bifunctors instead of
functors [2, 25]. Associated to this class there is a type family FunctorRep.

3 Actually, Int could be replaced by any basic data type.

A. Kurz, A. Pardo, D. Petrişan, P. Severi and F-J. de Vries 13

type family FunctorRep (t :: * -> *) :: * -> * -> *

This type family can be seen as a function that given a parametric datatype T , it gives a poly-
nomial bifunctor F such that T (X) = νY.F (X,Y). Polynomial bifunctors are represented
by the following type constructors which are all made instances of the class BiFunctor:

U for constant,
P1 for first projection,
P2 for second projection,
:**: for product and :++: for sum.

class Bifunctor f where
bimap :: (a -> c) -> (b -> d) -> (f a b -> f c d)

For our applications, we restrict the type a in the constant functor U a to be a basic type
whose elements are all finitely normalising (i.e. printable in a finite amount of time) such
as Int. We can now associate Stream to the functor FStream by means of the type family
FunctorRep as follows.

type instance FunctorRep Stream = FStream
type FStream = P1 :**: P2

The class Rep has two methods that witness the isomorphism in the fixpoint equation T (A) ∼=
F (A, T (A)).

class Rep t where
getRep :: t a -> (FunctorRep t) a (t a)
fromRep :: FunctorRep t a (t a) -> t a

We make Stream an instance of the class Rep as follows.

getRep (Cons x xs) = P1 x :**: P2 xs
fromRep (P1 x :**: P2 xs) = Cons x xs

Figure 2 illustrates the correspondence between our generic Haskell implementation of
truncations and the semantic view given in the previous sections. In our code we have the
following definition for the function trunc, which we explain below and in Figure 2 step by
step.

trunc SZ x = Bullet
trunc (SS n) x = NextStep (bimap (trunc n) (trunc n) (getRep x))

In the second case we define the truncation at level n+1 of a term x of type t a. Semantically,
this is a coinductive type T (A) = νY.F (A, Y) obtained as the greatest fixpoint of a functor
F , which syntactically is given by FunctorRep t.

To compute the truncation of x at level n+1, first we “unfold” x via the function getRep.
Then we truncate at level n the terms obtained from the unfolding, and we apply F . In our
code the application of a bifunctor F to two morphisms is done using the function bimap.
To be able to use bimap in this case, we should require that FunctorRep t belongs to the
class Bifunctor.

The type B (t a) n of the truncation is defined as a data type with two constructors
Bullet and NextStep as follows.

14 Approximating Nested Fixpoints

t a

getRep

��

T (A) = νY.F (A, Y)

αF

��

FunctorRep t a (t a)

bimap (trunc n) (trunc n)

��

F (A, T (A))

F ((trunc n),(trunc n))

��

FunctorRep t (B a n) (B (t a) n)

NextStep

��

F (B(A,n), B(T (A), n))

B (t a) (Succ n) B(T (A), n+ 1)

Figure 2 Generic definition of truncations in Haskell

data B (t a) n where
Bullet :: B (t a) Zero
NextStep :: FunctorRep t (B a n) (B (t a) n) -> B(t a)(Succ n)

At a semantic level, B(T (A), n) is defined inductively as follows. For the base type Int we
have

B(Int, 0) = {•} B(Int, n+ 1) = Int

while for a coinductive type T (A) = νY.F (A, Y) we have

B(T (A), 0) = {•} B(T (A), n+ 1) = F (B(A,n), B(T (A), n))

This generic definition of trunc does not work if F itself contains a fixpoint. For example, in
the case of rosetrees where F (A,X) = A×(νY.1+X×Y) lists are not truncated but remain
infinite. We explain briefly how to extend this generic implementation to include data types
of the form T1(T2(. . . Tn(Int))) where Ti(X) = νY.Fi(X,Y) and Fi contains a fixed point.
As opposed to polynomial Fi, if the functors Fi contain fixpoints, we need to make use of
the Bekič rule in the implementation (as well as in the proof of its correctness). This makes
it necessary to deal with mutually recursive equations, something that our implementation
in terms of the Rep class is not able to manipulate at the moment. There exists a Haskell
package that deals with mutually recursive equations generically [24]. We would need to
extend this package to include parametric data types.

4.2 Correctness of the implementation

For every natural number n the truncation (trunc n p) has a finite normal form vn in-
dependently of whether the normal form v to which p evaluates is finite or not. This is
proved by induction on n. Assume that the program p has type T1(T2(..Tm(Int))) where
Ti(X) = νYi.Fi(X,Yi) and Fi is a polynomial functor for all 1 ≤ i ≤ m. To complete the
correctness proof we need to show:

v = lim
n→∞

vn .

A. Kurz, A. Pardo, D. Petrişan, P. Severi and F-J. de Vries 15

Using Bekič rule (Corollary 4), we have that

T1(T2(..Tn(Int))) = Π1 ◦ ν

Y1
Y2
...
Ym

 .

F1(Y2, Y1)
F2(Y3, Y2)

...
Fm(Int, Ym)

 .

Let F (Y1, . . . , Ym) = (F1(Y2, Y1), F2(Y3, Y2), . . . Fm(Int, Ym)). We also consider the vector
−−−−−→trunc n = (trunc n, . . . , trunc n) of length m. Then, it is not difficult to show by induction
on n and using the definition of trunc given in Section 4.1 that trunc satisfies the following:
−−−−−→
trunc 0 t = (•, . . . , •)
−−−−−−−−−−→
trunc (n + 1) = F (−−−−−→trunc n) ◦ αF

From the above, it is easy to prove by induction on n that −−−−−→trunc n t is equal to the canonical
sequence jn ◦ pωn(t) of truncations as defined in Section 3. By Proposition 10, the sequence
−−−−−→trunc n t converges to t. It is enough to take a t whose first component is v where v is the
infinite normal form of our original program p of type T1(T2(. . . Tn(Int))).

5 Conclusion

Whereas some of the techniques we used are well known, there are original theoretical con-
tributions (Theorems 3 and 15) as well as a novel solution to the problem of printing infinite
datatypes in Haskell. Hutton and Gibbons generalised the approximation lemma from [6] to
a certain class of datatypes that includes the polynomial ones [16]. Their definition of ap-
proximant does not cover the case of parametric datatypes. Danielsson et al. implemented
their notion of approximant in the ChasingBottoms package [1], which is implemented using
a style of generic programming called Scrap Your Boilerplate [20]. Our approach is different,
as we use the class Regular which views datatypes as fixed points of functors [25].

It will be interesting to compare our work with [3, 11]. It is currently not clear to us
whether their recursion schemes are strong enough to define truncations of rose trees.

Of course, printing can be seen as an illustrative example only and others, such as the
incremental sending of infinite data over a channel, will be pursued in the future. Moreover,
there are many topics we didn’t touch upon, such as nested datatypes in the sense of [8],
higher order functors, or dependent types, as well as other functional programming languages
such as Agda or Coq. It will also be of interest to investigate type theories with an explicit
Bekič rule.

Acknowledgements The fourth author would like to acknowledge a Daphne Jackson fel-
lowship sponsored by EPSRC and the University of Leicester.

References
1 Chasing bottoms package: For testing partial and infinite values. hackage.haskell.org/

package/ChasingBottoms. Online: accessed March 2015.
2 Regular: Generic programming library for regular datatypes. hackage.haskell.org/

package/regular. Online accessed March 2015.
3 R. Atkey and C. McBride. Productive coprogramming with guarded recursion. In ACM

SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA,
USA - September 25 - 27, 2013, pages 197–208, 2013.

hackage.haskell.org/package/ChasingBottoms
hackage.haskell.org/package/ChasingBottoms
hackage.haskell.org/package/regular
hackage.haskell.org/package/regular

16 Approximating Nested Fixpoints

4 R.C. Backhouse, M. Bijsterveld, R. van Geldrop, and J. van der Woude. Categorical fixed
point calculus. In Category Theory and Computer Science, 1995.

5 M. Barr. Terminal coalgebras for endofunctors on sets. Theoretical Computer Science,
114(2):299–315, 1999.

6 R. S. Bird. Introduction to Functional Programming using Haskell (second edition). Prentice
Hall, 1998.

7 R. S. Bird and O. de Moor. Algebra of programming. Prentice Hall, 1997.
8 R. S. Bird and R. Paterson. Generalised folds for nested datatypes. Formal Asp. Comput.,

11(2), 1999.
9 S.L. Bloom, Z. Ésik, A. Labella, and E.G. Manes. Iteration 2-theories. Applied Categorical

Structures, 9(2):173–216, 2001.
10 F. Borceux. Handbook of Categorical Algebra I. Cambridge University Press, 1994.
11 A. Cave, F. Ferreira, P. Panangaden, and B. Pientka. Fair reactive programming. In The

41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 361–372, 2014.

12 R. A. Eisenberg and S. Weirich. Dependently typed programming with singletons. In
Proceedings of the 5th ACM SIGPLAN Symposium on Haskell, Copenhagen, pages 117–
130, 2012.

13 Z. Ésik and A. Labella. Equational properties of iteration in algebraically complete cate-
gories. Theoretical Computer Science, 195(1):61 – 89, 1998.

14 M. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. PhD thesis, University
of Edinburgh, 1994.

15 P. Freyd. Remarks on algebraically compact categories. In Applications of Categories in
Computer Science, volume 77 of London Math. Soc. Lecture Notes Series, pages 95—-106.
Cambridge University Press, 1992.

16 G. Hutton and J. Gibbons. The generic approximation lemma. Inf. Process. Lett.,
79(4):197–201, 2001.

17 C.B. Jones, editor. Programming Languages and Their Definition - Hans Bekic (1936-
1982), LNCS 177. Springer, 1984.

18 G.M. Kelly and R. Street. Review of the elements of 2-categories. In Category Seminar
(Proc. Sem. Sydney 1972/73), LNM 420, pages 75–103. Springer, 1974.

19 A. Kurz, D. Petrişan, A. Pardo, P. Severi, and F.-J. de Vries. Haskell code for this paper.
http://www.cs.le.ac.uk/people/ps56/code.xml, 2015.

20 R. Lämmel and S.L. Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. In TLDI’03, 2003.

21 D.J. Lehmann and M.B. Smyth. Algebraic specification of data types: A synthetic ap-
proach. Mathematical Systems Theory, 14:97–139, 1981.

22 C.E. Martin, J. Gibbons, and I. Bayley. Disciplined, efficient, generalised folds for nested
datatypes. Formal Asp. Comput., 16(1):19–35, 2004.

23 A. Pitts. An elementary calculus of approximations. Unpublished note.
24 A. Rodriguez, S. Holdermans, A. Löh, and J. Jeuring. Generic programming with fixed

points for mutually recursive datatypes. In ICFP, 2009.
25 T. van Noort, A. Rodriguez Yakushev, S. Holdermans, J. Jeuring, B. Heeren, and J.P.

Magalhães. A lightweight approach to datatype-generic rewriting. J. Funct. Program.,
20(3-4):375–413, 2010.

26 B.A. Yorgey, S. Weirich, J. Cretin, S.L. Peyton Jones, D. Vytiniotis, and J.P. Magalhães.
Giving Haskell a promotion. In TLDI 2012, pages 53–66, 2012.

http://www.cs.le.ac.uk/people/ps56/code.xml

	Introduction
	A coalgebraic treatment of the Bekic rule
	Truncating elements of final coalgebras
	Implementing truncations in Haskell
	A generic implementation of truncations
	Correctness of the implementation

	Conclusion

