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Abstract

This paper studies several applications of the notion of a presentation of a functor by
operations and equations. We show that the technically straightforward generalisation
of this notion from the one-sorted to the many-sorted case has several interesting
consequences. First, it can be applied to give equational logic for the binding algebras
modelling abstract syntax. Second, it provides a categorical approach to algebraic
semantics of first-order logic. Third, this notion links the uniform treatment of logics
for coalgebras of an arbitrary type T with concrete syntax and proof systems. Analysing
the many-sorted case is essential for modular completeness proofs of coalgebraic logics.
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1 Introduction

This paper describes several applications of finitary presentations of functors on many-sorted
varieties. The notion of finitary presentations for functors on one-sorted varieties was intro-
duced by [10]. It generalises, from the category of sets, the fact that any finitary functor
L : Set→ Set is a quotient ∐

n∈N

Ln×Xn � LX (1)

of a polynomial functor where n is the set {1, . . . , n}, and a pair (σ, f) is mapped to Lf(σ)
(f can be thought of as a map from n to X). This is a quotient because L, as a filtered
colimit preserving functor, is determined by its values on finite sets. The elements of Ln can
be regarded as the n-ary operations presenting L, satisfying the equations corresponding to
the kernel of the above map (for a full account see Adámek and Trnková [5, III.4.9]). To
summarise, (1) gives us a presentation (ΣL, EL) by operations ΣL and equations EL and,
therefore, an equational logic for L-algebras: The category of L-algebras is isomorphic to the
category of algebras for the signature ΣL and equations EL.

To generalise (1) from Set to an arbitrary variety, one can replace finite sets by finitely
generated free algebras. But then, L should be determined by its values on finitely generated
free algebras, that is, L should preserve sifted colimits [4]. As shown in [30], it is indeed the
case that a functor L on a variety A has a presentation by operations and equations if and
only if L preserves sifted colimits. Although not as well known as filtered colimits, sifted
colimits are the right concept when working with varieties (as opposed to locally finitely
presentable categories): Each variety A is the free cocompletion by sifted colimits of the
dual of the Lawvere theory of A. The reason is that algebras for a Lawvere theory are
set-valued product-preserving functors and sifted colimits are precisely those colimits that
commute in Set with finite products.

Here we continue this line of research. We start by generalising the results on functors on
varieties from the one-sorted to the many-sorted case (Section 3). We show that, if A and
L : A → A have presentation (ΣA, EA) and (ΣL,AL), respectively, then the category of L-
algebras has presentation (ΣA+ΣL, EA+EL). Moreover, L has a presentation iff it preserves
sifted colimits. This generalisation of results from [10, 30] is not difficult, but makes possible
several applications, three of which we are going to discuss in detail.

The first, maybe somewhat unexpected, is that it provides an equational logic for higher order
abstract syntax. There are several mathematical models for abstract syntax with variable
binding [14, 15, 21]. In particular, [14] showed that syntax can be specified by an algebraic
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signature even in the presence of binding constructors. However, this cannot be achieved in
the usual way, via a Set-functor. Instead, they work with certain functors L : A → A where
A = SetF is the category of presheaves over the category F of finite sets. In Section 4, we
give an equational logic for the corresponding binding algebras by giving presentations of
SetF and the functors L.

Secondly, Halmos’ polyadic algebras – introduced as an algebraic semantics for first-order
logic – are characterised as algebras for a functor on the category BAF of Boolean algebra
valued presheaves over F (Section 5). The second part of this section dualises the algebraic
semantics to a coalgebraic semantics of first-order logic, which opens further interesting lines
of research. It also allows us to view first-order logic as a particular case of a logic for
coalgebras, which is the topic of our next application.

Thirdly, we give a modular completeness theorem for functorial coalgebraic logic. Functorial
coalgebraic logic started with [8, 24], which argued that logics for T -coalgebras (where T is
an endofunctor on Set) are suitably described by endofunctors L on the category of Boolean
algebras or some other suitable category of algebras. Syntactically, L specifies an extension
of Boolean propositional logic by modal operators and axioms. [30] gave a uniform strong
completeness result by generalising the Jónsson-Tarski representation theorem for Boolean
algebras with operators. As this required some assumptions on T , we show here that for
completeness as opposed to strong completeness no condition on T is required. We then show
how to extend completeness of basic logics in a modular way to large classes of inductively
defined functors.

Acknowledgements We would like to thank Rick Thomas for pointing out a very useful
reference [6]; and Tadeusz Litak and Antonino Salibra for discussions on polyadic algebras.

2 Some preliminaries

For an endofunctor L on a category A, we consider the category of L-algebras, denoted by
Alg(L), whose objects are defined as pairs (A,α) such that α : LA → A is a morphism in
A. A morphism of L-algebras f : (A,α) → (A′, α′) is a morphism f : A → A′ of A such
that f ◦ α = α′ ◦ Lf . Dually, for an endofunctor T : A → A we consider the category of
T -coalgebras, denoted by Coalg(T ), whose objects are pairs (A, γ), such that γ : A → TA.
A morphism of T -coalgebras f : (A, γ) → (A′, γ′) is an arrow f : A → A′ of A such that
Tf ◦ γ = γ′ ◦ f .

Let S be a set (of sorts). A signature Σ is a set of operation symbols together with an arity
map a : Σ→ S∗ × S which assigns to each element σ ∈ Σ a pair (s1, . . . , sn; s) consisting of
a finite word in the alphabet S indicating the sort of the arguments of σ and an element of
S indicating the sort of the result of σ. To each signature we can associate an endofunctor
on SetS, which will be denoted for simplicity with the same symbol Σ:

(ΣX)s = (
∐
k∈ωS

f

Σk,s ×Xk)s
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Here, by ωSf we denote the set of functions from S to ω which have finite support (i.e.

which vanish everywhere except for a finite set) and by Xk the set of presheaf morphisms
SetS(k,X). In detail, if k ∈ ωSf has support {s1, ..., sn} then Σk,s is a set of operations of arity

(s1...sn; s) and Xk is isomorphic in Set with the finite product Xs1 × · · · ×Xsn . Conversely,
to each polynomial endofunctor on SetS given as above corresponds a signature

∐
k∈ωS

f

Σk,s.

Throughout this paper we will make no notational difference between the signature and the
corresponding functor, and it will be clear from the context when we refer to the set of
operation symbols or to a SetS endofunctor. The algebras for a signature Σ are precisely the
algebras for the corresponding endofunctor, and form the category denoted by Alg(Σ). The
terms over an S-sorted set of variables X are defined in the standard manner and form an
S-sorted set denoted by TermΣ(X), in fact this is the underlying set of the free Σ-algebra
generated by X. An equation consists of a pair (τ1, τ2) of terms of the same sort, usually
denoted τ1 = τ2. A Σ-algebra A satisfies this equation if and only if, for any interpretation of
the variables of X, we obtain equality in A. A full subcategory A of Alg(Σ) is called a variety
or an equational class if there exists a set of equations E such that an algebra lies in A if
and only if it satisfies all the equations of E. In this case, the variety A will be denoted by
Alg(Σ, E). The forgetful functor U : Alg(Σ, E) → SetS preserves filtered colimits and has a
left adjoint F . The variety Alg(Σ, E) is isomorphic to the Eilenberg-Moore category (SetS)T

for the finitary monad T = UF (see [3, Theorem 3.18]). In fact, the forgetful functor U
preserves a wider class of colimits, namely sifted colimits, [4]. A sifted category D is a small
category such that colimits over D commute in Set with finite products. A sifted colimit
in a category C is a colimit over D. The most important examples of sifted colimits are
filtered colimits and reflexive coequalizers. An object in a category is called strongly finitely
presentable if its hom-functor preserves sifted colimits. It is shown in [4] that any object in a
variety is a sifted colimit of strongly finitely presentable algebras, which in a variety are the
retracts of finitely generated free algebras. An important observation is that sifted colimit
preserving functors on varieties are determined by their action on free algebras.

An important example of a (finitary) variety of algebras is the functor category SetC for any
small category C. The sorts are the objects of C, the operations symbols are the morphisms
of C (all of them with arity 1), and the equations are given by the commutative diagrams in
C.

Endofunctors may appear via composition of functors between different varieties. Therefore,
it is useful to consider a slight generalisation of the notion of signature. If S1 and S2 are sets
of sorts we will consider operations with arguments of sorts in S1 and returning a result of
a sort in S2, encompassed in the signature functor Σ : SetS1 → SetS2

ΣX = (
∐
k∈ωS1

f

Σk,s ×Xk)s∈S2 (2)
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3 Presenting algebras and functors

Before going into technicalities, we discuss a motivating example. It is relevant to Sections 5
and 6, but not to Section 4.

Motivation from Modal Logic The general idea is as follows. Just as coalgebras are
given wrt a functor T on, say, Set, so are logics for coalgebras given by a functor L on, say,
Boolean algebras. The following example shows how logics for coalgebras given in a more
conventional style give rise to a functor on the category BA of Boolean algebras.

Example 3.1. Let T = P be the covariant powerset functor. The modal logic K associated
to P-coalgebras (=Kripke frames) can be described by the functor L which maps a Boolean
algebra A to the Boolean algebra LA freely generated by {2a | a ∈ A} modulo the relations
2> = > and 2(a ∧ b) = 2a ∧ 2b. We see that the modal operators appear as generators
and the modal axioms as relations. Of course, from a logical point of view, we want the
generators to be operations and the relations to be universally quantified equations. In other
words, we need that the description of LA in terms of generators and relations is uniform in
A. This is exactly captured by Definition 3.3 below.

The category Alg(L) of algebras for the functor L is isomorphic to the category of Boolean
algebras with operators, which constitute the standard algebraic semantics of K in modal
logic (see eg [7]). In particular, the initial L-algebra is the Lindenbaum-Tarski algebra of the
modal logic K.

To simply replace a concrete modal logic by the corresponding functor is a powerful ab-
straction that makes a number of category theoretic methods available to modal logic. This
section makes sure that the move from logics to functors is not an over-generalisation: Every
suitable functor L will come from a modal logic in exactly the same way as in the example
above. The reader who wants to know more about the relationship between T -coalgebras
and L-algebras before reading this section might want to skip ahead to Section 6.2 or consult
an introduction such as [26].

Presenting Algebras and Functors The notion of a finitary presentation by operations
and equations for a functor was introduced in [10]. It generalises the notion of a presentation
for an algebra, in the usual sense of universal algebra. An algebraA in a varietyA is presented
by a set of generators G and a set of equations E, if A is isomorphic to the free algebra on
G, quotiented by the equations E. In a similar fashion, an endofunctor L on A is presented
by operations Σ and equations E, if for each object A of A, LA is isomorphic to the free
algebra over ΣUA quotiented by the equations E. Below we extend this notion to the case
of functors between possibly different many-sorted varieties.

A presentation for a (many-sorted) algebra in a variety A can be regarded as a coequalizer,
as in the next definition. This category theoretical perspective will allow us to generalise
this notion to functors.
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Definition 3.2. Let A be a many-sorted algebra in a variety A. We say that (G,E) is a
presentation for A if G is an S-sorted set of generators and E = (Es)s∈S, Es ⊆ (UFG)s ×
(UFG)s is an S sorted set of equations such that qA is the coequalizer of the following
diagram:

FE FG A
π]

1 //

π]
2

//
qA// (3)

The maps π]1, π
]
2 are induced, via the adjunction, by the projections π1, π2 of E on UFG.

Next we want to define a presentation for a functor L : A1 → A2 between many-sorted
varieties. For i ∈ {1, 2}, denote by Si the set of sorts for Ai respectively, by Ui : Ai → SetS

i

the corresponding forgetful functor, and by Fi its left adjoint. We will do this in the same
fashion as in [30] and [10], keeping in mind that we need to extend (3) uniformly: this means
that the generators and equations for each LA will depend functorially on A. Suppose A
is a many-sorted algebra in A1. The generators ΣU1A for the algebra LA will be given by
a signature functor Σ : SetS1 → SetS2 as in (2). The equations that we will consider are of
rank 1, meaning that in the terms involved every variable is under the scope of precisely one
operation symbol in Σ, and are given by an S2-sorted set E. In detail, for each sort s ∈ S2

and each S1-sorted set of variables V with the property that
⋃
t∈S1

Vt is finite, we consider

a set EV,s of equations over the set V , of terms of sort s, which is defined as a subset of
(U2F2ΣU1F1V )2

s. Now take EV = (EV,s)s∈S2 and E =
⋃

V ∈ωS1
f

EV .

Definition 3.3. Let S1, S2 be sets of sorts, A1 be an S1-sorted variety and A2 be an S2-
sorted variety. A presentation for a functor L : A1 → A2 is a pair (Σ, E) defined as above.
A functor L : A1 → A2 is presented by (Σ, E), if

(i) for every algebra A ∈ A1, there exists a morphism qA : F2ΣU1A → LA that is the
joint coequalizer of the next diagram

F2EV F2ΣU1F1V F2ΣU1A LA
π]

1 //

π]
2

//
F2ΣU1v]

// qA // (4)

taken after all finite sets of S1-sorted variables V and all valuations v : V → U1A. Here v]

denotes the adjoint transpose of a valuation v.
(ii) for all morphisms f : A→ B the diagram commutes:

F2ΣU1A LA

F2ΣU1B LB

F2ΣU1f

��

qA //

Lf

��qB //

(5)

6



The Equational Logic Induced by a Presentation of L If A = Alg(ΣA, EA) is an
S-sorted variety and the endofunctor L : A → A has a finitary presentation (ΣL, EL), we can
obtain an equational calculus for Alg(L), regarding the equations EA and EL as equations
containing terms in TermΣA+ΣL

. First remark that formally, for an arbitrary set of variables
V , EL,V is a subset of the S-sorted set (UFΣLUFV )2. But for each set X, UFX is a quotient
of TermΣAX modulo the equations. Thus, if we choose a representative for each equivalence
class in UFΣLUFV , we can obtain a set of equations in TermΣAΣLTermΣAV . Using the
natural map from TermΣAΣLTermΣAV to TermΣA+ΣL

V , we obtain a set of equations on
terms TermΣA+ΣL

V . By abuse of notation we will denote this set with EL as well.

Theorem 3.4. Let A = Alg(ΣA, EA) be an S-sorted variety and let L : A → A be a functor
presented by operations ΣL and equations EL. Then Alg(L) ∼= Alg(ΣA + ΣL, EA + EL).

Proof. We define a functor H : Alg(L) → Alg(ΣA + ΣL, EA + EL). Suppose α : LA → A
is an L-algebra. Then the underlying set of HA is defined to be UA. HA inherits the
algebraic structure of A: the interpretation of the operation symbols of ΣA is the same as in
the algebra A and it satisfies the equations EA. As far as the operation symbols of ΣL are
concerned, their interpretation is given by the composition:

FΣLUA LA A
qA // α // (6)

Explicitly, the interpretation of an operation symbol σ of arity (s1 . . . sn; s) is the morphism
σA : As1 × · · · × Asn → As defined by

σA(x1, . . . , xn) = α(qA((σ, x1, . . . , xn)))

Now it is clear that the equations EL are satisfied in HA, because qA is a coequalizer as in
(4). If f is a morphism of L-algebras, we define Hf = f and we only have to check that
f(σ(a1, . . . , ak)) = σ(f(a1), . . . , f(ak)) for all σ ∈ ΣL. But this follows from the fact the
definition of the interpretation of the operations, the commutativity of diagram (5) and the
fact that f is an L-algebra morphism.

Conversely, we define a functor J : Alg(ΣA + ΣL, EA + EL) → Alg(L). Suppose A is an
algebra in Alg(ΣA + ΣL, EA + EL). The map ρA : ΣLUA→ UA defined by:

(σ(s1...sn;s), xi1 , . . . , xin) 7→ σ(s1...sn;s)(xi1 , . . . , xin)

induces a map ρ]A : FΣLUA → A. The fact that equations EL are satisfied implies that
ρ]A ◦ FΣLUv

] ◦ π]1 = ρ]A ◦ FΣLUv
] ◦ π]2 as depicted in (7). But qA is a coequalizer in

Alg(ΣA, EA), therefore there exists a morphism αA : LA → A such that αA ◦ qA = ρ]A. We
define JA to be the L-algebra αA. For any morphism f : A→ B in Alg(ΣA + ΣL, EA +EL)
we define Jf = U0f , where U0 : Alg(ΣA + ΣL, EA + EL) → Alg(ΣA, EA) is the forgetful
functor. This is well defined and we can check this easily by proving that the rightmost
square of diagram (7) is commutative:
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FEL FΣLUFV

FΣLUA

FΣLUB

LA

LB

A

B

π]
1 //

π]
2

//

ρ]
A

((

ρ]
B

66

FΣUv]
1

55lllllll

FΣUv]
2

))RRRRRRR
FΣUf

��

Lf

��

f

��

qA //

qB //

αA //____

αB //____

(7)

Now it is straightforward to check that J ◦H and H ◦ J are the identities. 2

The Characterisation Theorem The characterisation theorem of endofunctors having
finitary presentation was given in [30] for monadic categories over Set and it can be easily
extended if we replace Set with the presheaf category SetS. The result holds even if we work
with functors between different varieties.

Theorem 3.5. Let S1, S2 be sets of sorts, A1 be an S1-sorted variety and A2 be an S2-sorted
variety. For a functor L : A1 → A2 the following conditions are equivalent:

(i) L has a finitary presentation by operations and equations;
(ii) L preserves sifted colimits.

Proof. (i) ⇒ (ii). Assume L has a finitary presentation (Σ, E). Let D be a sifted category
and ai : Ai → A be a sifted colimit in A1. Let di : LAi → B be an arbitrary cocone.
As we have seen in the preliminaries, the corresponding forgetful functors and their left
adjoints U1, U2, F1, F2 preserve sifted colimits. Σ shares the same property because sifted
colimits are computed point-wise and commute with finite products. Therefore we obtain
that F2ΣU1ai : F2ΣU1Ai → F2ΣU1A is a colimiting cocone in A2, hence there exists a map
d : F2ΣU1A→ B such that d ◦ F2ΣU1ai = di ◦ qAi

for all i in D.

Choose an arbitrary S1-sorted set of variables V = (Vs)s∈S1 such that
⋃
s∈S1

Vs is finite and a

morphism v : V → U1A. Since V is strongly finitely presented in the category SetS1 , and U1

preserves sifted colimits, we have that SetS1(V, U1A) is the sifted colimit of SetS1(V, U1Ai).
In particular there exists an index i and a morphism vi : V → U1Ai such that v = U1ai ◦ vi.
From the fact that qAi

is a joint coequalizer, it follows that d makes the bottom line of
diagram (8) commutative.

F2EV F2ΣU1F1V F2ΣU1A B

F2ΣU1Ai

π]
1 //

π]
2

//
F2ΣU1v]

// d //

F2ΣU1v
]
i

::ttttttttttttttt

F2ΣU1ai

��

di◦qAi

$$JJJJJJJJJJJJJJJJ

(8)
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Using that qA is a joint coequalizer, we obtain b : LA → B such that b ◦ qA = d. Now
it is immediate to check that diagram (9) is commutative, and this shows that the cocone
Lai : LAi → LA is universal.

F2ΣU1Ai

F2ΣU1A LA

LAi

B

qAi //

qA //

F2ΣU1ai

��
Lai

��

d

**UUUUUUUUUUUUUUUUUUUUUUUU
b

%%LLLLLLLLLLLLL
di

��:
::

::
::

::
::

::
::

::
::

(9)

(ii) ⇒ (i) Being a sifted colimit preserving functor, L is determined by its values on
finitely generated free algebras. Given k ∈ ωS1

f with support {s1, . . . , sn} and given s ∈ S2

we can view the elements of the set (U2LF1k)s as operations symbols which take k(si)
arguments of sort si for all 1 ≤ i ≤ n and return a result of sort s. More explicitly we can
consider for all algebras A the map rA given component-wise by:∐

k∈ωS
f

(U2LF1k)s × (U1A)k
rA,s−−−−−−→ (U2LA)s (10)

(σ, x) 7→ (U2LεA ◦ U2LF1x)s(σ)

where εA : F1U1A→ A is the counit of the adjunction. In the definition of the map rA,s we
have interpreted x as a morphism in SetS1(k, U1A). Now the operations that we will consider
are encompassed in the functor Σ : SetS1 → SetS2 defined by

ΣX = (
∐
k∈ωS1

f

(U2LF1k)s ×Xk)s∈S2 (11)

Note that r is a natural transformation from ΣU1 to U2L.

For an arbitrary S1-sorted set of variables V , the equations are induced by the map rF1V :
ΣU1F1V → U2LF1V as in (10), more precisely EV is defined to be the kernel pair of the
map Ur]F1V

: U2F2ΣU1F1V → U2LF1V . We will prove that L is presented by (Σ, E). For all

k ∈ ωS1
f the following diagram is a split coequalizer because Ek is a kernel pair.

Ek U2F2ΣU1F1k U2LF1k
π1 //
π2

//

t

gg

U2r
]
F1k //

s

kk (12)

One can check that it follows that

U2F2Ek U2F2ΣU1F1k U2LF1k
U2π

]
1 //

U2π
]
2

//

U2F2t ◦ ηU2F2ΣU1F1k

hh

U2r
]
F1k //

s

kk (13)
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is again a split coequalizer. U2 is a monadic functor, hence it creates split coequalizers, and
we obtain that

F2Ek F2ΣU1F1k LF1k
π]

1 //

π]
2

//
r]
F1k // (14)

is a coequalizer. Now it is straightforward to show that

F2EV F2ΣU1F1V F2ΣU1F1k LF1k
π]

1 //

π]
2

//
F2ΣU1v]

//
r]
F1k// (15)

is a joint coequalizer. This proves that L coincides on finitely generated algebras with
the functor presented by the finitary presentation (Σ, E), and therefore it is presented by
(Σ, E). 2

4 Equational logic for higher-order abstract syntax

Syntax with variable binders cannot be captured as an initial algebra in the usual way. But
Fiore, Plotkin and Turi [14] (see also Hofmann [21] and Gabbay and Pitts [15]) showed that
this is possible if one moves from algebras for a functor on Set to algebras for a functor on
a suitable presheaf category. In particular, they showed that λ-terms up to α-equivalence
form an initial algebra for a functor. These functors generalise the notion of a signature, but
a notion of equational theory for these algebras is missing in [14] (but see the more recent
work [13]).

This section starts from the observation that a category of presheaves is a many-sorted
variety. From Theorem 3.5 we know that a large class of functors on presheaf categories
have a presentation. To illustrate an application of Theorem 3.4 we give an equational
presentation of the variety of ‘λ-algebras’ of [14]. Canonical representatives for λ-terms up
to α-equivalence can be obtained in different ways, for example, using the method of de
Bruijn levels or the method of de Bruijn indices. Using the method of de Bruijn levels,
normal forms up to α-equivalence are obtained by specifying well-formedness rules for λ-
terms within a context:

1 ≤ i ≤ n

x1, . . . , xn ` xi
,
x1, . . . , xn, xn+1 ` t
x1, . . . , xn ` λxn+1.t

,
x1, . . . , xn ` t1 x1, . . . , xn ` t2

x1, . . . , xn ` t1t2
(16)

The appropriate notion to encompass contexts and the operations allowed on them is the
full subcategory F of Set with objects n = {1, . . . , n} and 0 = ∅. The equivalence classes of
λ-terms over a countable set of variables V = {x1, x2, . . . } form a presheaf in SetF, which we
will denote by ΛVα. Explicitly ΛVα(n) is defined as the set of equivalence classes of λ-terms
with the free variables contained in the set {x1, . . . , xn}. For any morphism ρ : n → m,
ΛVα(ρ) acts on an equivalence class of a term by substituting the free variables xi with xρ(i).
More generally we can work with an arbitrary presheaf of variables V and again we can see
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that the λ-terms over V form a presheaf in SetF. Contexts, which correspond to natural
numbers, stratify λ-terms up to α-equivalence, and we can capture this by regarding them
as the set of sorts. As we have seen in Section 2, A = SetF is a many-sorted unary variety,
the sorts being the set of objects of F, which is isomorphic to the set of non-negative integers
N. For this many-sorted variety we denote by U : A → SetN the forgetful functor and by
F : SetN → A its left adjoint.

We endow F with the coproduct structure:

n n+ 1

1

i //
new�� (17)

where i is the inclusion and new(1) = n+ 1. The type constructor for context extension can
be defined as a functor δ : A → A given by δA(n) = A(n+ 1) and

δ(A)(f) = A(f + id1) (18)

for all A ∈ A and for all maps f in F . Let L : A → A be the functor given by

LX = δX +X ×X (19)

If V is a presheaf (of variables), then an immediate consequence of Theorem 2.1 of [14] states
that ΛVα is the free L-algebra over V . We obtain the algebraic structure of ΛVα by giving
an equational presentation for Alg(L), arising from a finitary presentation of the functor L
and an equational presentation of the variety A.

4.1 An equational presentation for A = SetF

An exhaustive presentation of A can be obtained if we take an operation symbol for each
morphism in F and if we consider all the equations induced by the composition of morphisms.
We can find a more elegant presentation of A with countably many operations and equations,
if we can find a countable set of functions which generate all the functions of F and a countable
set of equations, large enough to prove that any two representations of a function in terms
of the generators are equivalent via these equations. Formally, the set of sorts will consist of
the non-negative integers. We will consider a signature consisting only of unary operation
symbols, whose arity is specified below:

σ
(i)
n : n→ n 1 ≤ i < n n > 1
wn : n→ n+ 1 n ≥ 0
cn : n+ 1→ n n > 0
σ0 : 0→ 0

(20)

The intended interpretation is the following: σ
(i)
n corresponds to the transposition σ

(i)
n =

(i, i + 1) of the set n, cn corresponds to the contraction cn : n+ 1→ n defined by cn(i) = i

11



for i ≤ n and cn(n + 1) = n, and wn to the inclusion wn of n into n+ 1. σ0 corresponds
to the empty map on ∅. In what follows, we will use the same notation for the operation
symbols and for the corresponding morphisms in F, and it should be clear from the context
which one we refer to.

Firstly, we consider the equations coming from the presentation of the symmetric group, see
for example [36]:

(σ
(i)
n )2 = idn 1 ≤ i < n

σ
(i)
n σ

(j)
n = σ

(j)
n σ

(i)
n j 6= i± 1; 1 ≤ i, j < n (E1)

(σ
(i)
n σ

(i+1)
n )3 = idn 1 ≤ i < n− 1

Each permutation of the set n can be written as a composition of transpositions σ
(i)
n and we

choose for each permutation such a representation. The permutations that will appear in
equation (E9) below, should be regarded as abbreviations of their representation in terms of

the corresponding σ
(i)
n .

Secondly, we use the next set of equations:

cnσ
(n)
n+1 = cn (E2)

cnwn = idn (E3)

σ
(i)
n+1wn = wnσ

(i)
n 1 ≤ i < n (E4)

σ
(n+1)
n+2 wn+1wn = wn+1wn (E5)

σ
(i)
n cn = cnσ

(i)
n+1 i < n− 1 (E6)

cnσ
(n−1)
n+1 σ

(n)
n+1wn = σ

(n−1)
n wn−1cn−1 n ≥ 2 (E7)

cncn+1σ
(n)
n+2 = cncn+1 (E8)

((2, n− 1)(1, n)wn−1cn−1)2 = (wn−1cn−1(2, n− 1)(1, n))2 n ≥ 4 (E9)

We define EA to be the set of all the equations of the form (E1)-(E9).

In order to apply Theorem 3.4 we are now going to prove that we have indeed a presentation
of A = SetF. We will use a known presentation of the monoid of functions from n to n, for
n ≥ 4, given by Aizenštat [6].

Theorem 4.1. A = SetF is isomorphic to Alg(ΣA, EA) with ΣA given by (20) and EA given
by (E1)-(E9).

Proof. Given a functor G : F → Set we will construct a (ΣA, EA)-algebra. For each n ∈ N
consider G(n) as the set of elements of sort n. The operations corresponding to σ

(i)
n , cn

and wn are given by G(σ
(i)
n ), G(cn) and G(wn) respectively. It is not difficult to check that

(G(n))n∈N is indeed a (ΣA, EA)-algebra, as all the equations (E1)-(E9) are satisfied by the
corresponding functions in F.

Conversely, starting with a (ΣA, EA)-algebra (An)n∈N we will construct a functor G : F →
Set. On objects we define G(n) to be An. We define G(σ

(i)
n ), G(cn) and G(wn) to be the
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interpretation of σ
(i)
n , cn and wn respectively. We can define G(f) for any map f of F if we

prove that any morphism in F can be written as a composition of functions of the form σ
(i)
n ,

cn and wn. We can conclude that G is a well-defined functor once we show that any two
such representations of a function f as composition of the generators σ

(i)
n , cn and wn, are

equivalent using the equations (E1)-(E9).

Let us prove that any function in F can be generated using only functions of the form
σ

(i)
n , cn, wn. We will use several lemmas, which will be proved at the end of the section.

Lemma 4.2. Let n be a natural number such that n ≥ 4. For each function f : n → n we

can choose a canonical representation in terms of σ
(i)
n and an = wn−1cn−1, and any other

representation in terms of σ
(i)
n and an can be reduced to this canonical one using EA.

For all positive integers n, k such that n ≥ k, we call a k-partition of n a k-tuple p =
(i1, . . . , ik) such that i1 + · · · + ik = n and 1 ≤ i1 ≤ · · · ≤ ik. For any k-partition p of n we
denote by Np

n,k : n → n the function which maps the first i1 elements of n to 1, the next i2
elements to 2 and so on, the last ik elements to k. By Lemma 4.2, if n ≥ 4 then Np

n,k has a

canonical representation in terms of σ
(i)
n and wn−1cn−1.

Each function f : n→ m determines a k-partition of n denoted by pf , where k is the cardinal
of the image of f . There are exactly k nonempty sets among f−1(1), . . . , f−1(m), and the
sum of their cardinalities is n. It is easy to see that there exist permutations πn of the set n
and πm of the set m, such that:

f = πmwm−1 . . . wkck . . . cn−1N
pf

n,kπn if n ≥ 4

or

f = πmwm−1 . . . wkck . . . cn−1πn if 1 ≤ n < 4

We use here the convention that if k = m then no inclusions will appear in the equation
above, and similarly if k = n we don’t have any contractions. We have shown that any map
f has a representation using the generators.

Let us consider another representation of f as composition of generators. We have a corre-
sponding sequence of operation symbols, let us denote it by R.

Lemma 4.3. R can be reduced to a sequence of the form π′mwm−1 . . . wkg where g is a
sequence of transpositions and contractions and π′m is a sequence of transpositions of sort m.

Let us first consider the case n ≥ 4. There exists a permutation τ : k → k such that we have
the following equalities in F:

π′mwm−1 . . . wkτ = πmwm−1 . . . wk (21)

τ−1g = ck . . . cn−1N
pf

n,kπn (22)
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This holds because both π′mwm−1 . . . wk and πmwm−1 . . . wk are injective maps from k to m,
and their image is the image of f . If we restrict the co-domain of these maps to the image of
f , we obtain two bijective maps, and τ is obtained by composing the latter with the inverse
of the former. Let us notice that (22) implies that the following equality is also true in F.
Here we use the fact that the image of N

pf

n,k is exactly k.

wn−1 . . . wkτ
−1gπ−1

n = N
pf

n,k (23)

Notice that if (23) is derivable from the equations, then so is (22); we have to apply (E3)
for n − k times. Therefore it is enough to show that we can derive (21) and (23) from the
equations EA. The first follows from the next lemma. We only have to apply (E4) and
multiply with (πm)−1.

Lemma 4.4. If the equality τmwm−1 . . . wk = wm−1 . . . wk holds in F, where τm is a permu-
tation on m, then the equality can be deduced from EA.

In order to prove (23), recall that g is a sequence of transpositions and contractions, and
since it has arity n→ k, it must contain precisely n− k contractions. From the next lemma
it follows that wn−1 . . . wkτ

−1gπ−1
n can be reduced to an expression in terms of σ

(i)
n and

wn−1cn−1.

Lemma 4.5. If h is a sequence which contains only transpositions and exactly n − k con-
tractions, then wn−1 . . . wkh can be reduced to an expression written only in terms of trans-

positions of the form σ
(i)
n and an = wn−1cn−1.

Now we can apply Lemma 4.2 and we obtain that wn−1 . . . wkτ
−1gπ−1

n can be reduced to
N
pf

n,k via the equations EA. The proof is complete for n ≥ 4.

If n = 1 then the fact that any two representations of f are equivalent via EA derives from
Lemma 4.4.

Assume n = 2. Using Lemma 4.3, c1 = c1σ
(1)
2 and (E4) we obtain that any representation of

f can be reduced to the form f = πmwm−1 . . . w1c1 where πm is a sequence of transpositions

of the form σ
(i)
m . If τmwm−1 . . . w1c1 is a different representation of f , then the equality

πmwm−1 . . . w1 = τmwm−1 . . . w1 holds in F, because c1 is surjective. The conclusion of the
proposition follows easily from Lemma 4.4.

If n = 3 then we have three possible cases:

1. If the image of f has three elements then any representation of f can be reduced to
the form πmwm−1 . . . w3, and we can apply Lemma 4.4.

2. The image of f has two elements. Then any representation of f can be reduced to one of
the form πmwm−1 . . . w3c2σ

(1)
3 if f(1) = f(3) or πmwm−1 . . . w3c2σ

(1)
3 σ

(2)
3 if f(1) = f(2) or

πmwm−1 . . . w3c2 if f(2) = f(3). In either case we can deduce that the representations
are equivalent by a similar reasoning as above, using Lemma 4.4.
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3. Finally if the image of f has one element, then any representation of f can be reduced
to the form πmwm−1 . . . w1c1c2 using (E8) and (E2). We conclude again using Lemma
4.4.

2

Proof of Lemma 4.2 Let n be a positive integer such that n ≥ 4. Aizenštat [6], gives a
presentation of the monoid of functions from n to n using the generators of the symmetric
group and an additional generator:

A =

(
1 2 3 . . . n
1 1 3 . . . n

)
Apart from the relations used in the presentation of the symmetric group, Aizenštat proves
that the following seven relations are enough to present the monoid:

Aσ(1)
n = σ(3)

n Aσ(3)
n = (3, 4, . . . , n)A(3, 4, . . . , n) = [(1, n)A]2 = A

[σ(2)
n A]2 = Aσ(2)

n A = [Aσ(2)
n ]2 (24)

[σ(2)
n (1, n)A]2 = [Aσ(2)

n (1, n)]2

We will use the fact that A = (1, n − 1)(2, n)wn−1cn−1(1, n − 1)(2, n). Using Aizenštat’s

result we can find a representation of f in terms of σ
(i)
n and an = wn−1cn−1. It only remains

to check that the relations (24) can be deduced from EA. Indeed, Aσ
(1)
n = A can be deduced

from (E2). From (E4) and (E6) one can deduce that:

σ(i)
n wn−1cn−1 = wn−1cn−1σ

(i)
n for 1 ≤ i < n− 2 (25)

But (1, n − 1)(2, n)σ
(3)
n (1, n − 1)(2, n) and (1, n − 1)(2, n)(3, 4, . . . n)(1, n − 1)(2, n) are per-

mutations which leave invariant n− 1 and n, so they can be represented in terms of σ
(i)
n for

1 ≤ i < n− 2. Therefore we obtain:

(1, n− 1)(2, n)σ(3)
n (1, n− 1), (2, n)wn−1cn−1 = wn−1cn−1(1, n− 1)(2, n)σ(3)

n (1, n− 1), (2, n)

or equivalently σ
(3)
n Aσ

(3)
n = A. Similarly (3, 4, . . . , n)A(3, 4, . . . , n) = A can be derived from

EA.
It is not difficult to prove that ((1, n)A)2 = A can be obtained from (25) and

(σ
(n−2)
n wn−1cn−1)2 = wn−1cn−1. The latter can be deduced as follows:

σ
(n−2)
n wn−1cn−1σ

(n−2)
n wn−1cn−1 =

=
(E4)

wn−1σ
(n−2)
n−1 cn−1wn−1σ

(n−2)
n−1 cn−1 =

=
(E3)

wn−1σ
(n−2)
n−1 σ

(n−2)
n−1 cn−1 =

=
(E1)

wn−1cn−1

(26)
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Similarly the relations [σ
(2)
n A]2 = Aσ

(2)
n A = [Aσ

(2)
n ]2 follow from (25) and:

[(n− 2, n)wn−1cn−1]2 = [wn−1cn−1(n− 2, n)]2 = wn−1cn−1(n− 2, n)wn−1cn−1

which are proved below. Firstly, we have:

wn−1cn−1σ
(n−2)
n σ

(n−1)
n σ

(n−2)
n wn−1cn−1 =

=
(E4)

wn−1(cn−1σ
(n−2)
n σ

(n−1)
n wn−1)σ

(n−2)
n−1 cn−1 =

=
(E7)

wn−1σ
(n−2)
n−1 wn−2cn−2σ

(n−2)
n−1 cn−1 =

=
(E4),(E2)

σ
(n−2)
n wn−1wn−2cn−2cn−1

(27)

Now, using (27) we get:

(σ
(n−2)
n σ

(n−1)
n σ

(n−2)
n wn−1cn−1)2 =

=
(27)

σ
(n−2)
n σ

(n−1)
n σ

(n−2)
n σ

(n−2)
n wn−1wn−2cn−2cn−1 =

=
(E1)

σ
(n−2)
n σ

(n−1)
n wn−1wn−2cn−2cn−1 =

=
(E5)

σ
(n−2)
n wn−1wn−2cn−2cn−1 =

=
(27)

wn−1cn−1σ
(n−2)
n σ

(n−1)
n σ

(n−2)
n wn−1cn−1

(28)

Similarly:

(wn−1cn−1σ
(n−2)
n σ

(n−1)
n σ

(n−2)
n )2 =

=
(27)

σ
(n−2)
n wn−1wn−2cn−2cn−1σ

(n−2)
n σ

(n−1)
n σ

(n−2)
n =

=
(E8)

σ
(n−2)
n wn−1wn−2cn−2cn−1σ

(n−1)
n σ

(n−2)
n =

=
(E2)

σ
(n−2)
n wn−1wn−2cn−2cn−1σ

(n−2)
n =

=
(E8)

σ
(n−2)
n wn−1wn−2cn−2cn−1 =

=
(27)

wn−1cn−1σ
(n−2)
n σ

(n−1)
n σ

(n−2)
n wn−1cn−1

(29)

The last of Aizenštat’s equations follows from (E9) and (25). 2

Proof of Lemma 4.3 Let us consider the first wl which appears from left to right in R.
We will prove that we can reduce R such that either wl disappears or in front of it there
are only transpositions. Assume that there are some contractions in front of wl. If R has
the form . . . clwl . . . then it can be reduced by (E3) and wl disappears. Otherwise, R has

the form . . . clσ
(i1)
l+1 . . . σ

(ij)
l+1wl . . . . We will prove that this can be reduced to . . . clwl . . . or to

clσ
(l−1)
l+1 σ

(l)
l+1wl . . . . We are in at least one of the following six possible cases:

1. ij < l or i1 < l − 1. Then R can be further transformed using either (E4) or (E6) to
an expression such that the number of transpositions between cl and wl is reduced by
one.

2. ij = l and j = 1. Then wl disappears as clσ
(l)
l+1wl can be reduced using (E2) to clwl

and further to idl, using (E3).

3. ij = l and j = 2 and R has the form . . . clσ
(l−1)
l+1 σ

(l)
l+1wl . . . .
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4. j > 1 and there exists h such that 1 ≤ h < j − 1, ih+1 = ih − 1 and ir+1 = ir + 1 for
all r > h. In this case using (E1) we have that

σ
(ih)
l+1σ

(ih+1)
l+1 σ

(ih+2)
l+1 σ

(ih+3)
l+1 . . . σ

(ij)
l+1wl =

= σ
(ih)
l+1σ

(ih−1)
l+1 σ

(ih)
l+1σ

(ih+1)
l+1 . . . σ

(ij)
l+1wl =

= σ
(ih−1)
l+1 σ

(ih)
l+1σ

(ih−1)
l+1 σ

(ih+1)
l+1 . . . σ

(ij)
l+1wl =

= σ
(ih−1)
l+1 σ

(ih)
l+1σ

(ih+1)
l+1 . . . σ

(ij)
l+1σ

(ih−1)
l+1 wl =

= σ
(ih−1)
l+1 σ

(ih)
l+1σ

(ih+1)
l+1 . . . σ

(ij)
l+1wlσ

(ih−1)
l+1

(30)

so the number of transpositions between cl and wl is reduced by one.

5. j > 1 and there exists h such that 1 ≤ h < j and ih+1 > ih + 1 and ir+1 = ir + 1 for all
h < r ≤ j − 1. In this case we have that ih < l so we can apply (E1) and (E4) to get:

σ
(ih)
l+1σ

(ih+1)
l+1 . . . σ

(ij)
l+1wl = σ

(ih+1)
l+1 σ

(ih)
l+1 . . . σ

(ij)
l+1wl

= σ
(ih+1)
l+1 σ

(ih+2)
l+1 . . . σ

(ij)
l+1σ

(ih)
l+1wl

= σ
(ih+1)
l+1 σ

(ih+2)
l+1 . . . σ

(ij)
l+1wlσ

(ih)
l+1

(31)

6. j > 1 and there exists h such that 1 ≤ h < j − 1 and ih+1 < ih − 1 and ir+1 = ir + 1

for all h < r ≤ j − 1. In this case we have that σ
(ih)
l+1 commutes with σ

(ih+s)
l+1 for s such

that ih+s < ih − 1. This case can be reduced to the case (4) above and so, also in this
case the number of transpositions between cl and wl decreases.

We can conclude that repeating the reductions as above we can either make wl disappear or
reduce R to the form . . . clσ

(l−1)
l+1 σ

(l)
l+1wl . . . .In the latter case we can apply (E7) and R can be

transformed to . . . σ
(l−1)
l wl−1cl−1 . . . . So either wl disappears, or the first w to appear in the

new sequence is wl−1 and it has a smaller number of contractions in front of it, compared
to wl. Continuing this procedure we can reduce R to a sequence in which the first w which
appears (if there is any) has no contractions in front of it. Now we can apply the same
algorithm to reduce the remaining part of R. So we will get an expression of the form
τm′wm′−1 . . . τk′wk′g, where g has only transpositions and contractions and τm′ , . . . , τk′ are

sequences of transpositions of the form σ
(i)
m′ , . . . , σ

(i)
k′ respectively. But whenever we have w

followed by a transposition, we can apply (E4) to move the transposition in front of w. So
in the end R can be reduced to an expression of the form θm′wm′−1 . . . wk′g. It only remains
to notice that we must have m = m′ and k = k′. The first equality holds because of the
arity of R. Moreover we must have that f = θm′wm′−1 . . . wk′g. Since g is a surjective map
and θm′wm′−1 . . . wk′ is injective, we must have that the cardinality of the image of g is the
same as that of the image of f , namely k. We conclude the wk′ must have arity k → k + 1,
thus k = k′. 2

Proof of Lemma 4.4 Since the equality τmwm−1 . . . wk = wm−1 . . . wk holds in F, we deduce
that τm leaves invariant the elements 1, . . . , k, therefore, using (E1) we can express τm as a

composition of j transposition of the form σ
(i)
m where i ≥ k + 1. The proof is by induction
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on j. It is obvious for j = 0. Assume the statement of the lemma holds for j, and let us

prove that it also holds for j + 1. Assume that σ
(i1)
m . . . σ

(ij+1)
m wm−1 . . . wk = wm−1 . . . wk

holds in F, where i1, . . . , ij+1 > k. Applying repeatedly (E4), we can deduce that

σ
(i1)
m . . . σ

(ij+1)
m wm−1 . . . wk = σ

(i1)
m . . . σ

(ij)
m wm . . . σ

(ij+1)
ij+1+1wij+1

wij+1−1 . . . wk. Since ij+1 > k

and σ
(ij+1)
ij+1+1wij+1

wij+1−1 = wij+1
wij+1−1 by (E5), we obtain that σ

(i1)
m . . . σ

(ij+1)
m wm−1 . . . wk =

σ
(i1)
m . . . σ

(ij)
m wm−1 . . . wk. The conclusion follows from the induction hypothesis. 2

Proof of Lemma 4.5 We use induction on n−k. If n−k = 0 we have nothing to prove. Now
assume the statement of the lemma is valid for n−k = l and let us prove it for n−k = l+1.

We have that wn−1 . . . wkh = wn−1 . . . wkσ
(i1)
k . . . σ

(ij)
k ckh

′ where h′ is a sequence containing
transpositions and l contractions. We have:

wn−1 . . . wkσ
(i1)
k . . . σ

(ij)
k ckh

′ =

=
(E4)

σ
(i1)
n . . . σ

(ij)
n wn−1 . . . wkckh

′ =

=
(E7)

σ
(i1)
n . . . σ

(ij)
n wn−1 . . . wk+1σ

(k)
k+1ck+1σ

(k)
k+2σ

(k+1)
k+2 wk+1h

′ =

=
(E4),(E7) · · · =

=
(E4),(E7)

σ
(i1)
n . . . σ

(ij)
n σ

(k)
n . . . σ

(n−1)
n wn−1cn−1τnwn−1 . . . wk+1h

′

where τn : n → n is a sequence of transpositions of the form σ
(i)
n . To finalise the proof we

just have to apply the induction hypothesis for wn−1 . . . wk+1h
′. 2

4.2 An equational presentation for binding algebras

Following Theorem 3.4, an equational presentation for the binding algebras Alg(L) can be
obtained from the presentation of SetF given by Theorem 4.1 and a presentation for the
functor L : SetF → SetF (19). We can check that L preserves sifted colimits. Therefore, by
Theorem 3.5, L has a finitary presentation. However the presentation obtained in the proof
of that theorem is an exhaustive one, in particular, the set of operation symbols for each sort
is infinite. In this section we give a more efficient presentation for L, considering for each
n ∈ N the operation symbols lamn, appn which semantically correspond to λ-abstraction and
application. The respective signature functor ΣL : SetN → SetN is given by

(ΣLX)n = {lamn+1} ×Xn+1 + {appn} ×Xn ×Xn (32)

For simplicity we will denote (lamn+1, t) ∈ (ΣLX)(n) by lamn+1t and an element
(appn, t1, t2) ∈ (ΣLX)(n) by appn(t1, t2). For any presheaf A ∈ A let ρA : ΣUA → ULA be
the map defined by

lamn+1t 7→ t ∀t ∈ A(n+ 1) = (δA)(n)
appn(t1, t2) 7→ (t1, t2) ∀t1, t2 ∈ A(n)

The equations EL should correspond to the kernel pair of the adjoint transpose ρ]A : FΣUA→
LA. For any (Xn)n ∈ SetN we have that F (Xn)n =

∐
n∈N

Xn · hom(n,−) where · denotes the
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copower. For example Xn ·hom(n,m) consists of |Xn| copies of hom(n,m). In the remainder
of this section, for x ∈ Xn and f : n→ m, we will denote by fx the element of Xn ·hom(n,m)
which is the copy of f corresponding to x. Now we can give the map ρ]A explicitly:

f(lamn+1α) 7→ (δA)(f)(α) ∀ α ∈ A(n+ 1)
fappn(α1, α2) 7→ (A(f)(α1), A(f)(α2)) ∀ α1, α2 ∈ A(n)

We will consider EL to be the set of equations of the following form

σ
(i)
n lamn+1t = lamn+1σ

(i)
n+1t

wnlamn+1t = lamn+2σ
(n+1)
n+2 wn+1t

cnlamn+2t
′ = lamn+1σ

(n)
n+1cn+1σ

(n)
n+2σ

(n+1)
n+2 t′

σ
(i)
n appn(t1, t2) = appn(σ

(i)
n t1, σ

(i)
n t2)

wnappn(t1, t2) = appn+1(wnt1, wnt2)
cnappn+1(t′1, t

′
2) = appn(cnt

′
1, cnt

′
2)

(33)

where t is a variable of sort n+ 1, t′ is a variable of sort n+ 2, t1, t2 are variables of sort n,
t′1,t′2 are variables of sort n+ 1 and n is an arbitrary positive integer. The equations for lam
are obtained from (17) and (18).

Theorem 4.6. The functor L : SetF → SetF given by (19) is presented by (ΣL, EL) with ΣL

given by (32) and EL given by (33).

Proof. Suppose A ∈ A. We have to check that LA is a coequalizer as in diagram (4).
First let us check that the equations EL are satisfied. Let t be a variable of sort n + 1
and let v : V → UA be a valuation such that v(t) = α ∈ (UA)(n + 1). Observe
that ρ]A(FΣLUv

](f(lamn+1t))) = ρ]A(f(lamn+1α)) = δ(A)(f)(α) = A(f + id1)(α). On the
other hand, ρ]A(FΣLUv

](lamn+1(f + id1)t)) = ρ]A(lamn+1A(f + id1)(α)) = δ(A)(idn)(A(f +
id1)(α)) = A(f+id1)(α). Therefore, the first three of the equations (33) are satisfied because
we have:

σ
(i)
n+1 = σ(i)

n + id1

σ
(n+1)
n+2 wn+1 = wn + id1

σ
(n)
n+1cn+1σ

(n)
n+2σ

(n+1)
n+2 = cn + id1

As for the latter three it suffice to notice that

ρ]A(FΣLUv
](fappn(t1, t2))) = (A(f)(v(t1)), A(f)(v(t2))

ρ]A(FΣLUv
](appn(ft1, ft2))) = (A(f)(v(t1)), A(f)(v(t2))

Conversely, suppose that (f(lamn+1α), g(lamm+1β)) is in the kernel pair of ρ]A, for some
f : n→ k, g : m→ k′, α ∈ A(n+ 1) and β ∈ A(m+ 1). This means that

A(f + id1)(α) = A(g + id1)(β) (34)
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so in particular we deduce that k = k′. We have to show that f(lamn+1α) and g(lamm+1β)
can be proved equal in FΣLUA using the equations (33). Let t be a variable of sort n + 1.
Then the pair (f(lamn+1t), lamk+1(f + id1)t) belongs to the congruence relation generated
by the equations EL in FΣLUFV , and so does (g(lamm+1s), lamk+1(g + id1)s) for a variable

s of sort m+ 1. In order to prove this, we can write f and g as compositions of σ
(i)
n ,cn and

wn and use the following observations:

1. For any functions h, h′ which can be composed in F, we have that h ◦ h′ + id1 =
(h+ id1) ◦ (h′ + id1).

2. For any functions h, h′, which can be composed in F, we have that h ◦ h′(lamn+1t) and
h(lamk+1(h′ + id1)t)) are congruent via EL.

Let v : V → UA such that v(t) = α and v(s) = β. We can see that FΣLUv
](lamk+1(f +

id1)t) = lamk+1A(f + id1)(α) and analogously FΣLUv
](lamk+1(g + id1)s) = lamk+1A(g +

id1)(β). Using (34) we can conclude that FΣLUv
](f(lamn+1t)) = f(lamn+1α) and

FΣLUv
](g(lamm+1s)) = g(lamm+1β) can be proved equal via the equations EL. A sim-

ilar, but easier argument works for the elements in the kernel pair of ρ]A of the form
(fappn(α1, α2), gappm(β1, β2)). 2

Remark 4.7. The presentation of L depends on the operations ΣA used to describe A = SetF

but is independent of the equations EA.

Representing different implementations of λ-terms If V is the presheaf defined by
V (ρ) = ρ for all morphisms ρ in F, the free L-algebra over V gives an implementation of
λ-terms by de Bruijn levels. In [14], it is suggested that different implementations of λ-terms
can be obtained by equipping F with different coproduct structures. But this implies working
with a different functor, because it changes the definition of (17) and hence (19). Instead, we
can use another approach, namely to consider the free L-algebra over different presheaves of
variables. For example, if W is the presheaf of variables defined explicitly by W (n) = n and

W (cn)(1) = 1 W (cn)(i) = i− 1 (i > 1)

W (wn)(i) = i+ 1

W (σ(i)
n ) = σ(n−i)

n ,

then the free L-algebra over W presents λ-terms up to α-equivalence via de Bruijn indices.

5 First-Order Logic

This second application builds on the first (presenting functors on presheaf-categories) and
leads to the third (coalgebraic logic). The basic observation, essentially going back to Law-
vere [31], is that presheaves taking values in the category BA of Boolean algebras

A : F+ → BA
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where the weakenings wn have left-adjoints ∃n

∃na ≤ b ⇔ a ≤ wnb (35)

are (algebraic) models of first-order logic (we write wnb for A(wn)(b)). Here, F+ denotes the
full subcategory of F whose objects are the positive ordinals.

In this section we will: (1) show how to obtain algebraic models of first-order logic as
algebras for a functor Q on BAF+ satisfying the additional equations (35); (2) show that
these Q-algebras are equivalent to the polyadic algebras of Halmos [18]; (3) dualise these
Q-algebras to obtain a coalgebraic semantics of first-order logic.

Note that BAF+ is a many-sorted subvariety of SetF+ . A presentation for SetF+ can be
obtained from the presentation of SetF just by dropping the operation symbols, σ0 and w0

and the equations involving them. BAF+ is the subvariety of SetF+ , obtained by adding
for each sort the Boolean connectives ∨n and ¬n, satisfying the usual axioms for Boolean
algebras and commuting with the operations from F+, that is, we have wn∨n = ∨n+1wn and

cn∨n+1 = ∨ncn and σ
(i)
n (x ∨n y) = σ

(i)
n x ∨n σ(i)

n y as well as the analogous equations for ¬n.

5.1 Algebraic Semantics of First-Order Logic

We are looking for algebras QA → A where the structure at sort n, (QA)(n) → A(n)
interprets the quantifier ∃n binding the new name in n+ 1. Thus, the quantifier corresponds
to a map A(n+ 1) → A(n) and, being an existential quantifier, it preserves joins. Since
arrows in BA are Boolean homomorphism, we account for this by letting (QA)(n) be the free
BA over the finite-join-semilattice A(n+ 1), or, explicitly

Definition 5.1. Define Q : BAF+ → BAF+ as the functor mapping A ∈ BAF+ to the presheaf

• generated, at sort n, by ∃na, a ∈ A(n+ 1)

• modulo equations specifying that ∃n preserves finite joins, explicitly ∃n(0) = 0 and
∃n(a ∨ b) = ∃na ∨ ∃nb.

Remark 5.2. Boolean algebra homomorphisms QA(n) → A(n) are in bijective correspon-
dence with finite-join preserving maps A(n+ 1)→ A(n).

Furthermore, using the (co)unit of the adjunction, the two implications (35) are easily trans-
formed into to equations (recall a ≤ b ⇔ a = a ∧ b), leading to

Definition 5.3. The category of FOL-algebras is the category of those Q-algebras satisfying
the additional equations φ ≤ wn∃nφ and ∃nwnψ ≤ ψ, where φ is a variable of sort n+ 1 and
ψ is a variable of sort n.

Algebraic semantics of first-order logic was first studied by Tarski [20] and Halmos [18].
A polyadic algebra [18] on a set of variables V is a Boolean algebra with some additional
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structure that captures quantifiers and an action of the set V V , subject to several axioms.
If A be a Boolean algebra, a map ∃ : A→ A is called a quantifier if
∃0 = 0
∃p ≥ p for all p ∈ A
∃p ∨ ∃q = ∃(p ∨ q) for all p, q ∈ A
∃∃p = ∃p for all p ∈ A
∃¬∃p = ¬∃p for all p ∈ A

Definition 5.4. A polyadic algebra A over a set of variables V is a tuple (A, V,S,∃) such
that A is a Boolean algebra, S : V V → EndA and ∃ is a map from PV to the set of quantifiers
on A, such that

(P1) ∃(∅) is the identity map on A.
(P2) ∃(J ∪K) = ∃(J)∃(K) for all J,K ⊆ V
(P3) S maps the identity on V to the identity on A.
(P4) S(στ) = S(σ)S(τ) for all σ, τ ∈ V V

(P5) S(σ)∃(J) = S(τ)∃(J), if σ and τ coincide on V \ J .
(P6) ∃(J)S(τ) = S(τ)∃(τ−1J) for all transformations τ which are injective when

restricted to τ−1J .

Definition 5.5. A polyadic algebra A = (A, V,S,∃) is called locally finite if for each P ∈ A
there exists a finite set W ⊆ V such that ∃(J)P = P for all J ⊆ V such that J and W are
disjoint.

Ouellet [33] reformulated Halmos’s polyadic algebras using Boolean-valued presheaves. He
characterised the locally finite polyadic algebras on a set of variables V as Boolean algebra
objects in the category of locally finite V -actions that admit suprema indexed by V . A
V -action on a set X is locally finite if each element x ∈ X has a finite support (or is finitely
supported), that is, there exists a finite subset W of V , such that any function ξ : V → V
that acts as the identity on W has no effect on x, i.e. ξx = x. Note that any locally
finite polyadic algebra is equipped with a V -action given by (P3) and (P4), which is locally
finite because of (P5). Locally finite V -actions also appear (under the name of nominal
substitutions) in Staton [39] in his study of the open bisimulation of π-calculus.

Ouellet [33] uses the equivalence [32] between the category of locally finite V -actions and
SetF+ . The proof of the next theorem shows how this equivalence restricts to an equivalence
between FOL-algebras and locally finite polyadic algebras.

Theorem 5.6. The category of FOL-algebras is equivalent to the category of locally finite
polyadic algebras.

Proof. First we construct a functor from FOL-algebras to locally finite polyadic algebras.
Let α : QA→ A be a FOL-algebra. Let us fix an infinite set of variables V .

We consider the Boolean algebra A[ = LaniA(V ), where LaniA is the left Kan extension of
A along the inclusion i : F+ → Set. Notice that A[ is computed as a colimit in the comma
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category (i, V ), more explicitly, it is isomorphic to lim−→f :n→VA(n). So A[ is a quotient of the

disjoint union of A(n) taken after all n ≥ 1 and all maps f : n→ V . Consider an element P
in the copy of A(n) that corresponds to a function f : n→ V mapping i ∈ n to vi ∈ V . We
will denote by [P (v1, . . . , vn)] the equivalence class of P . Two elements of A[, [P (v1, . . . , vn)]
and [Q(w1, . . . , wm)], are equal iff there exist maps l : n→ p, k : m→ p and h : p→ V such
that h(l(i)) = vi for all i ∈ n, h(k(j)) = wi for all j ∈ m and A(l)(P ) = A(k)(Q).

For any map ξ : V → V we define S(ξ) to be the Boolean algebra morphism Lani(A)(ξ).
So we have a V -action structure on A[. Moreover A[ is a locally finite V -action, because
each element is finitely supported. Indeed, an element of A[ of the form [P (v1, . . . , vn)] is
supported by the finite set with elements v1, . . . , vn. In fact each x ∈ A[ has a minimal
support denoted by supp(x). Moreover if supp(x) = {v1, . . . , vn} for some n ≥ 1, then there
exists P ∈ A(n) such that x = [P (v1, . . . , vn)]. If x has empty support, then for any tuple of
variables (v1, . . . , vn) there exists P ∈ A(n) such that x = [P (v1, . . . , vn)].

Next, for each subset W ⊆ V we define an existential quantifier ∃W . First we do this
for singleton sets. Assume v ∈ V , and x ∈ A[. There exists n ≥ 1 and P ∈ A(n+ 1)
such that x = [P (v1, . . . , vn, v)] for some variables v1, . . . , vn, all different than v. We define
∃v(x) = [(∃nP )(v1, . . . , vn)]. One can check that this definition does not depend on the
choice of P or of the variables v1, . . . , vn. Note that ∃nP is just an abbreviation for αn(∃nP ).

Remark 5.7. We have that supp(∃v(x)) = supp(x) \ {v}.

We need to show that ∃v is indeed an existential quantifier on A[.

1. ∃v0 = 0 follows from ∃n0n+1 = 0n.

2. Let us prove that ∃v(x) ≥ x. With the notations above we have that

∃v(x) = [(∃nP )(v1, . . . , vn)]
= [(wn∃nP )(v1, . . . , vn, v)]
≥ [P (v1, . . . , vn, v)]
= x

(36)

3. The fact that ∃v(x ∨ y) = ∃v(x) ∨ ∃v(y) follows from the corresponding equation for
∃n.

4. Let us prove that ∃v(∃v(x)) = ∃v(x). Using Remark 5.7 it is enough to show that
∃v(x) = x for all x whose support does not contain v. Indeed, if x is such that
v 6∈ supp(x) ⊆ {v1, . . . , vn}, then x = [P (v1, . . . , vn)] for some P ∈ A(n). Then
∃v(x) = [(∃nwnP )(v1, . . . , vn)] ≤ [P (v1, . . . , vn)] = x. On the other hand we know that
∃v(x) ≥ x.

5. In order to prove that ∃v(¬∃v(x)) = ¬∃v(x) we use the same argument as above, plus
the observation that supp(¬x) = supp(x) for all x ∈ A[.

Lemma 5.8. For u, v ∈ V and x ∈ A[ we have ∃v(∃u(x)) = ∃u(∃v(x))
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Proof. There exists P ∈ A(n+ 2) such that x = [P (v1, . . . , vn, u, v)], for n ≥ 1 and for
variables v1, . . . , vn different form u, v. It remains to show that

∃n∃n+1σ
(n+1)
n+2 (P ) = ∃n∃n+1(P ) (37)

From the equations it follows that

wn+1wn∃n∃n+1(P ) ≥ P

⇔ σ
(n+1)
n+2 wn+1wn∃n∃n+1(P ) ≥ σ

(n+1)
n+2 P

⇔ wn+1wn∃n∃n+1(P ) ≥ σ
(n+1)
n+2 P

⇔ ∃n∃n+1(P ) ≥ ∃n∃n+1σ
(n+1)
n+2 (P )

(38)

Applying the last inequality to σ
(n+1)
n+2 (P ) instead of P , we get that ∃n∃n+1(P ) ≤

∃n∃n+1σ
(n+1)
n+2 (P ), so in fact we have equality. 2

Now we can define the existential quantifier ∃W for an arbitrary subset W ⊆ V . If x ∈ A[
is such that supp(x) ∩W = {v1, . . . , vn}, then we define ∃W (x) = ∃v1 . . . ∃vn(x). The above
lemma implies that ∃W is well defined.

We have to show that these existential quantifiers satisfy the equations defining a polyadic
algebra. It is straightforward to check (P1)-(P5), so we will only give the proof for (P6).
Assume W ⊆ V and ξ ∈ V V is injective when restricted to ξ−1(W ). We need to show that
∃W ◦ξ = ξ◦∃ξ−1(W ). This is immediate using the observation that supp(ξ(x)) ⊆ ξ(supp(x)).

The polyadic algebra obtained in this way is locally finite in the sense of Definition 5.5.
Indeed, for x ∈ A[ we have ∃(J)x = x for all sets J , such that J ∩ supp(x) = ∅.

Conversely, given a locally finite polyadic algebra (A, V,S,∃), let us construct a FOL-algebra
A]. The map S : V V → End(A) determines a V -action structure on A such that each element
is finitely supported. For each n > 0 define A](n) to be the set of V -action morphisms from
V n to A, where V n is endowed with the component-wise evaluation action. If f : n→ m is
a morphism in F, and P : V n → A is an element of A](n) then

A](f)(P )(v1, . . . , vm) = P (vf(1), . . . , vf(n))

We have to construct an algebra α : QA] → A]. This will be determined by the maps
∃n : A](n+ 1) → A](n) defined as follows: For P ∈ A](n+ 1) define (∃nP )(v1, . . . , vn) =
∃v(P (v1, . . . , vn, v)) for some v distinct from all the vi-s. From (P6) it follows that this is
well-defined. It is trivial to check that ∃n preserves joins.

We can check that for all P ∈ A](n) we have that ∃nwnP = P . Indeed
∃nwnP (v1, . . . , vn) = (∃v)((wnP )(v1, . . . , vn, v)) for some v different than v1, . . . , vn. There-
fore ∃nwnP (v1, . . . , vn) = (∃v)(P (v1, . . . , vn)) = P (v1, . . . , vn). The last equality holds be-
cause supp(P (v1, . . . , vn)) ⊆ {v1, . . . , vn} does not contain v.
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For P ∈ A](n+ 1) we have that (wn∃nP )(v1, . . . , vn, vn+1) = (∃nP )(v1, . . . , vn) =
(∃v)(P (v1, . . . , vn, v) ≥ P (v1, . . . , vn, vn+1) for some v 6∈ {v1, . . . , vn}. The last inequality
follows from (P5) and the fact that (∃v)(P (v1, . . . , vn, v)) ≥ P (v1, . . . , vn, v).

One can check that the functors [ and ] give an equivalence of categories.
2

5.2 Coalgebraic Semantics of First-Order Logic

Based on the duality (dual adjunction) between Boolean algebras and Sets, we will exhibit
the coalgebraic dual of FOL-algebras and relate them to (standard) models of first-order
logic. We start by dualising the algebraic side described above. The technical justification
of the next two definitions will be the duality theorem 5.13 below.

Definition 5.9. Define P : SetFop
+ → SetFop

+ via (PX)(n) = P(X(n+ 1)).

We consider coalgebras X → PX as models of first-order logic. X(1) is the carrier of the
model and formulas in one free variable will be interpreted as subsets of X(1). Similarly,
formulas in two free variables will be interpreted as subsets of X(2). The weakening w1 :
1 → 2 gives rise to a ‘projection’ X(2) → X(1). This terminology derives from the case
where X(2) = X(1)×X(1). This observation leads to the following

Example 5.10. A standard model is given by

• a binary-product preserving functor X : Fop
+ → Set. Writing X1 for X(1), this means

that we can identify X(n) with Xn
1 and that X(f : n→ m) is given by Xm

1
∼= Xm

1

Xf
1−→

Xn
1
∼= Xn

1 . For example,

– X(w1) is the projection X2
1 → X1 mapping (x1, x2) to x1,

– X(c1) is the diagonal X1 → X2
1 mapping x to (x, x),

– X(σ
(1)
2 ) is the swap X2

1 → X2
1 mapping (x1, x2) to (x2, x1).

The fact that X is completely determined by X(1) can be expressed more abstractly:
Fop

+ is the free category with binary products on one generator.

• a structure map ξ : X → PX (‘cylindrification’) such that ξ(n)(x1, . . . xn) =
{(x1, . . . xn, x) | x ∈ X1}. Note how ξn is determined by the projection X(wn).

The dual of (35) is formulated in

Definition 5.11. The category of FOL-coalgebras is the category of those P-coalgebras ξ :
X → PX satisfying y ∈ ξ(x) ⇔ X(wn)(y) = x for all x ∈ X(n), y ∈ X(n+ 1).
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The algebraic and coalgebraic semantics are related by the dual adjunction between BA and
Set (see [26] for an introduction on this point of view). In more detail, we have

BA
Uf

33 Set
P

ss (39)

mapping a Boolean algebra A to the set Uf(A) = BA(A,2) and mapping a set X to its
powerset PX = Set(X, 2). This adjunction becomes a dual equivalence if restricted to finite
BAs and finite sets. The adjunction lifts pointwise to presheaves

BAF+

Uf

22 SetFop
+

Prr
(40)

where we continue to write P,Uf for the lifted functors.

Example 5.12. 1. Consider a standard model ξ : X → PX. The dual algebra A =
P (X, ξ) has sorts A(n) = 2X

n
1 . Denoting by φ(x0, . . . , xn−1, xn) an element in A(n), we

can write wnφ(x0, . . . xn−1, xn) = φ(x0, . . . xn−1, xn, xn+1) (adding a dummy variable)
and cn−1φ(x0, . . . xn) = φ(x0, . . . , xn−1, xn−1) (fusing two variables).

2. Algebras arising from duals of standard models are two-valued functional algebras in
the sense of Halmos [18, p.102].

We call a presheaf A ∈ BAF+ , or X ∈ SetFop
+ , sort-finite if A(n), or X(n), is finite for all

n ∈ N.

Theorem 5.13. For sort-finite X ∈ SetFop
+ , we have QPX ∼= PPX. This induces a dual

equivalence between sort-finite Q-algebras and sort-finite P-coalgebras. Moreover, this dual
equivalence restricts to a dual equivalence between the sort-finite FOL-algebras and the sort-
finite FOL-coalgebras.

Proof. First, the isomorphism δ : QPX → PPX is given, at sort n, by δn(∃na) = {b ⊆
X(n+ 1) | b ∩ a 6= ∅}. That this is an isomorphism for finite X(n+ 1) is well-known
in modal logic, see eg Halmos [17, Theorem 8] (and recalling Remark 5.2). The second
sentence’s claim then follows from the dual equivalence of finite Boolean algebras and finite
sets. The final claim follows from the observation that, whenever there is an adjunction
between posets (wrt inclusion)

2Y
3

33 2Z
f

ss

where Y, Z are finite, f preserves Boolean operations and 3 is left-adjoint to f , then f = w−1

for some w : Y → Z and z ∈ 3b ⇔ ∃y.w(y) = z ∧ y ∈ b. 2
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6 Modularity of Functorial Coalgebraic Logic

The functorial approach to coalgebraic logic considers logics as functors: Whereas coalgebras
are given wrt a functor T on a category of ‘state spaces’ (the category Set of sets in this
section), logics for T -coalgebras are given by functors L on a category of algebras representing
a propositional logic (the category BA of Boolean algebras in this section). Syntactically,
L specifies an extension of Boolean propositional logic by modal operators and axioms.
Semantically, L gives a logical description of the ‘transition type’ T of the coalgebras.

Two slogans of Coalgebraic Logic are: Coalgebraic Logic is uniform and Coalgebraic
Logic is modular. This section discusses these notions in connection with completeness.
The key to a modular composition of logics is the notion of many-sorted (or symmetric)
composition of functors (Section 6.1). We then give a uniform proof of completeness for
arbitrary T : Set → Set (Section 6.2). For the case where T does not restrict to finite
sets, we devise a method of filtration and illustrate it with the finite distribution functor
(Section 6.3). Finally (Section 6.4), we prove completeness of the modular logics from
Section 6.1 by using the uniform completeness of Section 6.2.

The material has been organised in such a way that Section 6.1 on many-sorted compo-
sition is purely logical/algebraic and does not refer to coalgebras. Sections 6.2 - 6.4 concern
the application to coalgebras.

6.1 Many-sorted composition of functors

In this section we are interested in composing logics. In particular, given logics L1, L2, we
want to form the logics

+(L1, L2) × (L1, L2) L2 ◦ L1 (41)

where we deliberately blur the distinction between logics, functors and presentations. This is
often convenient, but let us recall that, more precisely, any sifted-colimit preserving functor
on a variety has a presentation and hence gives rise to what we call a logic of rank 1, that is
an equational logic where the axioms are of the special format of Definition 3.3; conversely,
every logic of rank 1 gives rise to a sifted-colimit preserving functor (see Theorem 3.5).

The constructions (41) are easily described for functors, but need to be extended to pre-
sentations. We first show how to obtain a presentation for the functor L = L2 ◦ L1 from
presentations (Σ2, E2) and (Σ1, E1).

We know that such a presentation exists: Given (Σ2, E2) and (Σ1, E1), take the canonical
presentation of L2 ◦ L1, which exists due to Theorem 3.5. But this in itself does not give us
a recipe to compute a good presentation (Σ, E) from the presentations (Σi, Ei) in a simple
modular way :

Remark 6.1. For example, in the case that Li : BA→ BA, even if the Σi contain only one
unary operation symbol 2i, one may need an infinite set of operation symbols of arbitrary
(finite) arities to present L = L2 ◦ L1 : BA → BA. The reason is that operation symbols
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for L are of the form 22φ where φ can be any Boolean combination of terms of the kind
21ψ, or, more formally, in the notation of Section 3, operation symbols for L are terms in
G2UFG1UFV .

The solution is to replace L by a two-sorted functor L̄ : BAS → BAS where we write
S = {s, i}, the idea being that L1-formulas are now of sort1 i and L2-formulas of sort s. In
fact, we consider the more general case L1 : As → Ai and L2 : Ai → As, which allows us to
obtain +(L1, L2) and ×(L1, L2) as particular examples.

Definition 6.2 (two-sorted, or symmetric, composition of functors). Given two functors
L1 : As → Ai and L2 : Ai → As between any two categories, the two-sorted composition of
L1 with L2 is the functor L̄ : Ai ×As → Ai ×As mapping A = (Ai, As) to (L̄A)s = L2(Ai)
and (L̄A)i = L1As.

Example 6.3. If L1 : BAS2 → BAS1 and L2 : BAS1 → BAS2, then the two-sorted composition
is a functor BAS1+S2 → BAS1+S2.

This composition is symmetric: Swapping L1 and L2 just means that the indices i and
s change role. It is therefore tempting to suppress the distinction between 1 and i and
between 2 and s in our notation. We do not do this because we want to use the notation
(−)1 to refer to the functor L1 and the notation (−)i to refer to a projection onto sort i.

The next proposition ensures that we can extract the initial L2 ◦L1-algebra from the initial
algebra of the symmetric composition. (We continue to write L2L1 instead of L2 ◦ L1).

Proposition 6.4. Consider categories Ai,As which are lfp and two finitary functors L1 :
As → Ai and L2 : Ai → As. Let L̄ be the symmetric composition of L1 with L2. Then the
s-component of the initial L̄-algebra is the initial L2L1-algebra.

Proof. Ai ×As is lfp and L̄ is finitary. Therefore, the initial L̄-algebra is the colimit of the
initial algebra chain L̄n0 where 0 denotes the initial object and n runs through finite ordinals.
As colimits are calculated sort-wise, it is enough to show that the projected sequence (L̄n0)s

has the same colimit as the initial sequence of L2L1, which follows from the latter sequence
being a subsequence of the former. 2

The proposition tells us that we can present L̄ instead of L2L1. It is obvious how to do this:

Theorem 6.5. Consider (many-sorted) varieties Ai × As and two functors L1 : As → Ai
and L2 : Ai → As with presentations (Σ1, E1) and (Σ2, E2), respectively. Consider (Σ̄, Ē)
given as follows.

(Σ̄X)s = Σ2Xi

(Σ̄X)i = Σ1Xs

where we use that the signatures Σ1,Σ2 are given by functors SetS2 → SetS1 , SetS1 → SetS2

and X = (Xi, Xs) denotes and element of SetS1 × SetS2. Equations are given by Ēs = E2,
Ēi = E1. Then (Σ̄, Ē) is a presentation of the symmetric composition L̄ of L1 with L2.

1i for intermediate; also i, 1 and s, 2 go together.
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Let us illustrate this theorem using more familiar notation.

Example 6.6. Assume that Ai and As are both BA. We write `i ψ and `s φ to assert that
ψ, φ are formulas of sort i, s, respectively. The theorem then states that formulas of both sorts
are closed under Boolean operations and, for all n-ary operation symbols σi in Σi, formulas
are closed under

`i ψ1, . . . ,`i ψn
`s σ2(ψ1, . . . , ψn)

`s φ1, . . . ,`s φn
`i σ1(φ1, . . . , φn)

The axioms are given by equations E1 and E2 and the laws of Boolean algebra. The rules
of the calculus are those of equational logic. The only rules that make the two sorts interact
are the congruence rules:

`i ψ1 = ψ′1, . . . ,`i ψn = ψ′2
`s σ2(ψ1, . . . , ψn) = σ2(ψ′1, . . . , ψ

′
n)

`s φ1 = φ′1, . . . ,`s φn = φ′n
`i σ1(φ1, . . . , φn) = σ1(φ′1, . . . , φ

′
n)

Here, we use `i ψ = ψ′ and `s φ = φ′ to denote derivability of equations of the respective
sorts.

The above approach of sorting a logic was found useful eg in the work [9] on the π-calculus
which has process-formulas and capability-formulas. The example above shows how it arises
in a systematic way from a symmetric composition of functors. The next two examples give
the constructions of +(L1, L2) and ×(L1, L2).

Example 6.7. We define +(L1, L2) as the logic given by the composition BA
〈L1,L2〉−→ BA ×

BA
L+−→ BA, where L+(A1, A2) is presented by unary operation symbols 〈1〉 and 〈2〉 (where

〈i〉 takes arguments from Ai). Equations specify that the 〈i〉 preserve finite joins and binary
meets and that (i) 〈1〉a1 ∧ 〈2〉a2 = ⊥, (ii) 〈1〉> ∨ 〈2〉> = >, (iii) ¬〈1〉a1 = 〈2〉> ∨ 〈1〉¬a1,
¬〈2〉a2 = 〈1〉> ∨ 〈2〉¬a2.

The modal operators 〈1〉, 〈2〉 describe a situation of choice between two alternatives. For
example, 〈1〉a can be read as ‘alternative 1 is chosen and then a holds’. The axioms express
that (i) the alternatives exclude each other, (ii) one of the alternatives has to be chosen, (iii)
¬〈1〉a1 means that either alternative 2 is chosen or 1 is chosen but then not a1.

A good way of thinking about +(L1, L2) is as a logic for systems that have to output exactly
one of 1 or 2 and then continue. Dually, one can think of ×(L1, L2) as a logic for systems
that read input from a two-element set {1, 2}:

Example 6.8. We define ×(L1, L2) as the logic given by the composition BA
〈L1,L2〉−→ BA ×

BA
L×−→ BA, where L×(A1, A2) is presented by unary operation symbols [1] and [2] (where [i]

takes arguments from Ai). Equations specify that the [i] preserve all Boolean operations.
For example, if both Li are the modal logic K from Example 3.1 with modal operators

2i and 3i, respectively, then, because of the equations, every formula can be written in a
way such that the only modalities are [1]21, [1]31 and [2]22, [2]32. This means that we can
elide [1], [2] from formulas, and we obtain what is known in modal logic as the fusion of L1
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and L2, see eg Kurucz [25]. The reason for our notation ×(L1, L2) will become apparent in
Section 6.4: if Li are logics for systems of type Ti, then ×(L1, L2) is a logic for systems of
type T1 × T2.

6.2 Uniform completeness

In this section we show how to associate to an arbitrary set-functor T a functor L on BA
and a semantics δ : LP → PT so that the logic given by any presentation of L is complete.
Construction of (L, δ) and proof of completeness are syntax free because, by Theorem 3.5
we can conflate the distinction between functors and logics of rank 1. On the other hand,
Theorem 3.5 does not tell us how to find good presentations of functors. How to build them
in a modular way will be discussed in Section 6.4.

The definition of L from T is the same as in [30, 29], but as we do not insist on strong
completeness2 here, we don’t need to put any assumptions on T . Instead we use an induction
along the final sequence as in Pattinson [34] and adapted to the setting of functorial logics
over BA in [24].

Definition of L. First, let us recall from [30, 29] the definition of L from T (see also
Klin [23]). The essential ingredients are as follows. Two contravariant functors P and S
that are adjoint on the right

A
S

33L
''

X
P

ss
T

ww

A0

I

OO (42)

where A is lfp with a small subcategory A0 of finitely presentable objects. We then define
L as

LIA = PTSIA (43)

and extend L continuously fromA0 toA. Note that L thus defined preserves filtered colimits,
whereas PTS need not to do so.

Example 6.9. Take A = BA and X = Set. P is contravariant powerset and S takes
ultrafilters. On arrows, P and S map a function to its inverse image. The adjunction
restricts to a dual equivalence between finite Boolean algebras and finite sets. The ultrafilters
of a finite Boolean algebra A are the atoms of A, that is, those elements a ∈ A such that
there are no elements strictly between ⊥ and a. Thus, on finite Boolean algebras, the duality
reduces to the well known fact that every finite Boolean algebra is isomorphic to the powerset

2A logic is strongly complete if, whenever φ holds in all models satisfying a possibly infinite set of formulas
Γ, then one can also derive φ from Γ. Strong completeness is closely related to compactness. So, for example,
the procedure below will not give rise to strongly complete logics if T is the probability distribution functor
or if TX = A×X for an infinite set A.
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of its atoms. We will also make use of the fact that the finitely presentable Boolean algebras
coincide with the finite ones.

Further, take T = P. Then the L as defined by (43) coincides with the one given in
Example 3.1.

Definition of δ : LP → PT . The idea that the semantics of a logic for coalgebras should
be described by a natural transformation LP → PT goes back to [24, 8]. The following
definition is again from [30].

PX LPX
δX // PTX

Ai

ci

OO

LAi

Lci

OO

∼= // PTSAi

PTc]i

OO (44)

PX is a filtered colimit ci : Ai → PX. Under the adjunction, this cocone corresponds to a
cone c]i : X → SAi which is turned into a cocone under PT (recall that P is contravariant).
Now δX exists uniquely, since L preserves filtered colimits .

Example 6.10. In the situation of Example 6.9, consider an arbitrary functor T : Set→ Set
and let L be the functor defined above. Let (Σ, E) be the presentation of L given in the proof of
Theorem 3.5. According to (11), the set of operations of Σ of arity k is ULFk ∼= UPTSFk ∼=
UPTUPk = 2T (2k) ∼= Nat((2k)X , 2TX), the latter denoting the set of natural transformations
(2k)X → 2TX). But the natural transformations (2k)X → 2TX are precisely the (k-ary)
predicate liftings of Pattinson [34]. It follows that the logic given by Σ is the logic of all
(finitary) predicate liftings investigated by Schröder [38]. In addition L also incorporates a
complete axiomatisation of the logic of all predicate liftings. Conversely, any logic for T -
coalgebras given by predicate liftings and axioms of rank 1 defines a functor L : BA → BA
and a natural transformation δ : LP → PT .

Intuitively, the logic L is complete if any two formulas identified in the semantics, are already
identified in the syntax, or, more technically, if δ is injective. We turn this into

Definition 6.11 (one-step completeness [24]). (L, δ) is one-step complete if δ is injective.

Assumption: From now on we take A = BA and X = Set with the functors P and S
sort-wise as in Example 6.9.

The next lemma shows that for any T : Set → Set we can find a one-step complete logic
(L, δ).

Lemma 6.12. δX as defined in (44) is injective.

Proof. Consider two distinct φ1, φ2 ∈ LPX. By filteredness, we find some Ai and φ′j ∈ Ai
such that ci(φ

′
j) = φj. Moreover, since in BA the finitely presentable objects are closed under

quotients, we can assume ci to be injective. The following fact is easily proved.
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Claim 6.13. Let A be finite. c : A→ PX is injective iff the adjoint transpose c] : X → SA
is surjective.

Indeed, by the laws of adjunction and A being finite, we have that c is A ∼= PSA
Pc]−→ PX;

now Pc] = (c])−1 is injective iff c] is surjective, which proves the claim. Using that T , as
any functor on Set, preserves surjective maps and that P maps surjective maps to injective
BA-homomorphisms, we conclude that PTc]i is injective, hence δX(φ1) 6= δX(φ2). 2

Lemma 6.14. Finitary functors L : BA → BA preserve injective maps.

Proof. Consider an injective BA-morphism f : A → B. A is a filtered colimit ci : Ai → A
where Ai are finite and ci are injective. Let a1, a2 ∈ LA and Lf(a1) = Lf(a2). Since L
preserves filtered colimits, we find i and a′1, a

′
2 ∈ LAi with Lci(a

′
j) = aj. Hence L(f ◦ci)(a′1) =

L(f ◦ ci)(a′1). Since f ◦ ci is injective and Ai is finite, the claim now follows from the fact
that for any BA-morphism g : C → D with C finite and g injective there is h : D → C with
h ◦ g = idG (and hence Lg is injective). 2

Finally, for the completeness theorem, we only need to make the step from one-step com-
pleteness to completeness as in Pattinson [34].

Theorem 6.15. Let L : BA → BA be finitary and δ : LP → PT be injective. Then any
logic given by a presentation of L is complete for T -coalgebras. In particular, the logic given
by (43), (44) and the presentation according to Theorem 3.5 is complete for T -coalgebras.

Proof. (The proof is essentially the one from [24].) L preserves filtered colimits and therefore,
using a special property of BA and following [30, Proposition 3.4], L preserves sifted colimits.
It follows that L has a presentation, which induces an equational logic, which in turn can be
written in the usual modal-logic style, using the correspondences between equations φ = ψ
and formulas φ↔ ψ and between formulas φ and equations φ = >.

The semantics of an L-formula wrt a coalgebra ξ : X → TX is determined by the arrow
[[−]](X,ξ) from the initial L-algebra to the algebra LPX → PTX → PX. Because of the
naturality of δ, the semantics wrt to all coalgebras is determined by the semantics wrt to
the final coalgebra. Since we don’t assume that the final coalgebra exists, we replace it by
the corresponding final sequence T n1 which is defined as follows. We denote by 1 = T 0

1

the final object in Set. p0 : T1→ 1 is given by finality and pn+1 : T (T n1)→ T n1 is defined
to be Tpn. We think of the T n1 as approximating the final coalgebra.3 In the same way as
any coalgebra ξ : X → TX has a unique arrow into the final coalgebra, there are canonical
arrows ξn : X → T n1 to the approximants of the final coalgebra, defined inductively by
ξn+1 = T (ξn) ◦ ξ. The idea now is to interpret a formula φ ‘of depth n’ as a subset [[φ]]n of
T n1. The semantics of φ in X is then ξ−1

n ([[φ]]n).4 To say what it means for a formula to be
of depth n we need the initial sequence of L, which we define next.

3Indeed, if we let run the final sequence through all ordinals, we obtain the final coalgebra as a limit if it
exists, see Adámek and Koubek [2].

4This point of view has been elaborated in [27].
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Since L is finitary the initial algebra is the colimit of the sequence Ln2 defined as follows.
We denote by 2 = L0

2 the initial object in BA. e0 : 2 → L2 is given by initiality and
en+1 : Ln2 → L(Ln2) is defined to be Len. We call the elements of Ln2 formulas of depth
n. The semantics of a formula of depth n is given by a BA-morphism [[−]]n : Ln2 → PT n1
as follows.

P1
Pp0 // . . . PT n1

Ppn // PT n+1
1

. . .

2

[[−]]0

OO

e0
// . . . Ln2

[[−]]n

OO

en
// Ln+1

2

[[−]]n+1

OO

. . .

(45)

[[−]]0 is given by initiality (and is actually the identity). [[−]]n+1 is defined to be δTn1◦L([[−]]n).
Observe that the semantics of a formula is independent of the particular approximant we
choose (all squares in the diagram commute). Moreover, given a coalgebra ξ : X → TX and
a formula of depth n, the semantics via the initial L-algebra and the semantics via the final
sequence coincide: [[φ]](X,ξ) = ξ−1

n ([[φ]]n). Since δ is injective and L preserves injective maps,
all [[−]]n, n ∈ N, are injective.

To show completeness, suppose φ1 6= φ2 in the initial L-algebra. We find an approximant
Ln2, in which φ1 and φ2 are different. Any one-sided inverse i of p0 gives rise to a T -coalgebra
ξ = T n(i) with carrier T n1. We have [[φ]](Tn1,ξ) = [[φ]]n. Now injectivity of [[−]]n shows that
(T n1, ξ) provides a counter-example for φ1 = φ2. 2

6.3 One-step filtration and the finite distribution functor

If T preserves finite sets the logic L discussed in the previous section has good claims of
being the finitary logic for T . But—following Example 6.10—the language has 2T (2k)-many
modal operators of arity k, which is uncountable if T (2k) is infinite.

In this section we first describe a method to find a functor L so that the corresponding logic
has only countably many modal operators of arity k. Second, we illustrate this construction
with the important example of the finite distribution functor (for which the logic of all
predicate liftings is strictly more expressive than the logic discussed here).

6.3.1 A filtration method

As in the previous section, given T , we want to find L and a (componentwise) injective δ as
in

LPX
δX // PTX

LkPX
δk,X

99ttttttttt

OO (46)

To this end we propose to find Lk such that

• L is a filtered colimit of the Lk
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• the Lk preserve finite sets (so that the initial Lk-algebra is countable)

• the δk are injective

Lemma 6.16. In the situation of Diagram (46) assume that L is a filtered colimit of the
Lk. Then δ is injective if the δk are injective.

Proof. Suppose δX(x) = δX(y). Then there is k such that δk,X(x) = δk,X(y), hence x = y. 2

Using the above lemma to prove completeness of L resembles the filtration method in modal
logic: instead of using the whole language L, one restricts to a sublanguage Lk. This aspect
is emphasised by the following lemma:

Lemma 6.17. In the situation of Diagram (46) assume that the Lk preserve finite sets.
Then δk is injective iff, for all finite X, the transpose δ]k : T → SLkP is surjective .

Proof. As in Lemma 6.12, it is enough to show that δk,X : LkPX → PTX is injective for
finite X. But LkPX is finite for finite X (since Lk preserves finite sets) and we can apply
Claim 6.13. 2

The above lemmas could be called the one-step filtration method: For a finite X, SLkPX
is the finite set of maximal consistent theories over the formulas in LkPX. To show that δk
is surjective means to find a model in TX for each maximal consistent theory in SLkPX.

In the usual filtration method one would not work with one-step theories but instead consider
maximal consistent theories over all formulas of depth bounded by some n < ω. These
theories are elements in SLn2. The task then is to find a model in T n1 for each theory. But
this is exactly how the proof of the completeness theorem 6.15 goes.

6.3.2 The finite distribution functor

We will now apply the method of this section to the finite distribution functor D : Set→ Set
defined by

D(X) = {µ : X → [0, 1] | µ(x) 6= 0 for finitely many x ∈ X and
∑
x∈X

µ(x) = 1}

Notation. From now we will follow standard practise and denote by Lq modal operators
of the probability logic. Where L before referred to a functor we will write L now.

The syntax. We consider the endofunctor L : BA → BA given by the following finitary
presentation. The signature will consist of unary operations Lq for all rational numbers
q ∈ [0, 1]. The intended meaning of Lqφ is that formula φ has probability at least q. The
following abbreviations will be used: Mq = L1−q¬ and Eq = Lq ∧ Mq with the intended
meaning ’probability at most q’ and ’probability exactly q’, respectively.

We consider the following set of equations:
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L0x = > (E1)
Lα> = > (E2)
Lα(x ∧ y) ∧ Lβ(x ∧ ¬y)→ Lα+βx = > α + β ≤ 1 (E3)
¬Lα(x ∧ y) ∧ ¬Lβ(x ∧ ¬y)→ ¬Lα+βx = > α + β ≤ 1 (E4)
Lαx→ ¬Lβ¬x = > α + β > 1 (E5)
Lαx↔ Lαy = > x↔ y (E6)

So far, this is an adaptation of a sound axiomatisation system for probability logic for type
spaces considered by Aumann. This system was completed by Heifetz and Mongin in [19]
considering another axiom, essentially expressed by the following equation:

(
m∧
i=1

Lαi
xi) ∧ (

n∧
j=2

Mβj
yj)→ L(α1+···+αm)−(β2+···+βn)y1 = > (E7)

whenever m,n ≥ 1, (α1 + · · ·+αm)− (β2 + · · ·+ βn) ∈ [0, 1] and
maxm,n∧
k=1

x(k) ↔ y(k). Here by

x(k) denotes
∨

1≤l1<...lk≤m
(xl1 ∧ · · · ∧ xlk).

The main idea in the proof of completeness is to use the method of filtration. Completeness
is proved for each formula, restricting the language to a finite one. Suppose X is a Boolean
algebra and φ is an element of LX. In the formula φ appear only a finite number of operators
Lq. Let k be the least common multiple of the denominators of these rational numbers q.
Then φ can be regarded as an element of LkX where Lk : BA → BA is the endofunctor
defined by the following finitary presentation. As generators we consider only the unary
operations Lr such that the rational number r has k as its denominator. The equations will
be the same as for L. The advantage of considering the functor Lk consists in the fact that
it sends finite sets to finite sets. We can easily see that L is a filtered colimit of the functors
Lk taken after all positive integers k.

The semantics. As in the previous section, the semantics of this coalgebraic logic will be
described by a natural transformation δ : LP → PD. For each positive integer k consider
the map δk,X : LkPX → PDX given by:

LrY 7→ {µ ∈ DX |
∑
y∈Y

µ(y) ≥ r}

for all Y ⊆ X. It is not difficult to check that equations (E1)-(E7) are satisfied and that
δk,X is a well-defined Boolean algebra morphism.

Completeness. We have to show the surjectivity of the maps δ]k,X : DX → SLkPX defined
by

δ]k,X(µ) = θµ

where θµ : LkPX → 2 is given by θµ(LrY ) = > iff
∑
y∈Y

µ(y) ≥ r. Suppose θ ∈ SLkPX. We

need to find a probability µ such that θ = θµ. Let us consider rx = max{r | θ(Lr{x}) = >}
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and lx = min{r | θ(Mr{x}) = >}. From the axioms one can derive that rx ≤ lx. We should
find a probability µ such that µ(x) = rx if rx = lx or such that µ(x) ∈ (rx, lx) if rx < lx. But
this is the content of Lemma A.5 of [19].

Remark 6.18. The above one-step completeness proof can be seen as a category theoretical
reconstruction of the one-step completeness result in Cı̂rstea and Pattinson [11, Proposition
48].

6.4 Modular Completeness

We study the modular construction of logics for T -coalgebras, where T is constructed from
a number of ‘basic’ functors B : Set → Set together with binary constructors +,× and
composition ◦. Thus we consider functor expressions

B ::= Id | KC | P | D | . . .
H ::= B | H +H | H ×H | H ◦H (47)

Functor expressions correspond to Abramsky’s notion of meta-language [1]. They can be
interpreted on the semantic side over Set and on the logic side over BA:

Definition 6.19 (TH , LH , δH). Each functor expression H gives rise to functors TH : Set→
Set and LH : BA → BA. To obtain TH , one interprets P as powerset, D as the finite
distribution functor, + as disjoint union, × as cartesian product. To obtain LH one interprets
P as in Example 3.1, D as the L of Section 6.3.2, + as cartesian product, × as coproduct.
◦ is composition in both interpretations. Assuming a semantics δB : LBP → PTB for the
basic functors is given, one obtains inductively δH : LHP → PTH .

It is convenient to continue to write P instead of TP , etc, or to write T2, T1 instead of TH2 , TH1

if the precise nature of the Hi does not matter for the issue under discussion.

We can think of a coalgebra X → T2 ◦ T1(X) as first making a step to an intermediate
state in T1(X) and then to a (proper) state in T2(T1(X)). This point of view introduces a
{s, i}-sorted semantics: (proper) states, of sort s, and intermediate states, of sort i. We could
make this explicit using a two sorted functor T̄ : Set{s,i} → Set{s,i}, but we do not need to
do this here. On the other hand, on the dual side, to construct the logics, introducing new
sorts for intermediate states will allow us to compose presentations in a modular way.

Definition 6.20 (L̄H). Each functor expression H gives rise to a functor L̄H : BAS → BAS

for some finite set S as follows. The interpretation of basic expressions B is LB as in
Definition 6.19. The symmetric composition of Definition 6.2 is used to interpret ◦, but also
+ and × as follows. H = H ′ +H ′′ is interpreted as

LH
′,H′′

+ ◦ 〈L̄H′ , L̄H′′〉 (48)
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where

L̄H′ : BA{s
′,i′1,...i

′
n′} → BA{s

′,i′1,...i
′
n′}

L̄H′′ : BA{s
′′,i′′1 ,...i

′′
n′′} → BA{s

′′,i′′1 ,...i
′′
n′′}

LH
′,H′′

+ : BA{s
′,i′1,...i

′
n′ ,s
′′,i′′1 ,...i

′′
n′′} → BA{s,i

′
1,...i

′
n′ ,i
′′
1 ,...i

′′
n′′}

and LH
′,H′′

+ is defined as

(LH
′,H′′

+ (A))i = Ai i ∈ {i′1, . . . i′n′ , i′′1, . . . i′′n′′}
(LH

′,H′′

+ (A))s = As′ × As′′
∼= L+(As′ , As′′)

where L+ is as in Example 6.7. The interpretation of × is obtained by permuting + with ×.

Remark 6.21. Applying Definition 6.2 to (48) yields a functor

L̄H : BA{s,s
′,i′1,...i

′
n′ ,s
′′,i′′1 ,...i

′′
n′′} → BA{s,s

′,i′1,...i
′
n′ ,s
′′,i′′1 ,...i

′′
n′′}

(L̄H(A))s = (L̄H(A))s′ × (L̄H(A))s′′

(L̄H(A))i = (L̄H′(A
′))i i ∈ {s′, i′1, . . . , i′n′}

(L̄H(A))i = (L̄H′′(A
′′))i i ∈ {s′′, i′′1, . . . i′′n′′}

where A′, A′′ are the restrictions of A to {s′, i′1, . . . , i′n′} and {s′′, i′′1, . . . i′′n′′}, respectively.

Definition 6.22 (LogH). Assume presentations (ΣB, EB) for basic functors are given and
recall the presentations of L+, L× given in Examples 6.7, 6.8. Then LogH is the many-sorted
equational logic obtained by representing L̄H as in Theorem 6.5.

Theorem 6.23 (modular completeness). If the logics (ΣB, EB) are one-step complete, then
LogH is complete.

Proof. Consider two LogH-formulas φ, ψ of sort s and suppose the equation φ = ψ is not
derivable. By Theorem 3.4, φ and ψ are in different equivalence classes of the initial L̄H-
algebra. By Proposition 6.4, φ and ψ are also different in the initial LH-algebra. Now the
claim follows from uniform completeness, Theorem 6.15, once we know that δH is injective.
But this is a consequence of Lemma 6.14. 2

Remark 6.24. The many-sorted approach to coalgebraic logic goes back to Rößiger [37] and
was further developed, in technically different styles, by Jacobs [22] and Cı̂rstea and Pattin-
son [11]. The above definitions can be seen as reformulating their approaches by identifying
logics (of rank 1) with (sifted-colimits preserving) functors on BA. This functorial formula-
tion has the advantage of making possible an abstract treatment in terms of category theoretic
properties of L and δ and separating it from concrete syntactic considerations. For example,
to use the theorem below, all the work will go into verifying one-step completeness of the basic
logics given by presentations (ΣB, EB), the rest then coming from the abstract machinery.

Comparing in more detail with Cı̂rstea and Pattinson [11], we note the following advan-
tages of our approach.
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• The two notions of syntax constructor and of proof system constructor of [11, Defs 8,
37] are combined into one notion, which is simply that of a (presentation of a) functor
BA→ BA.

• The combinations of syntax and proof system constructors of [11, Defs 10, 50] are
described in a syntax independent way: they correspond to product, coproduct, power
and composition of functors. And since they appear in our approach as functors BAn →
BA their syntactic description arises from the fact they have themselves presentations,
see Examples 6.7 and 6.8.

• Our approach is supported by the theory of Stone duality and provides a clear method-
ology of how to extend syntax and proof system constructors and their combinations to
other categories. This has been used in [9] which derived a logic for π-calculus from
its domain-theoretic semantics making use, for example, of a different combination
+(L1, L2) corresponding, semantically, to separated sum and not to disjoint union.

• The fact that in our approach syntax and proof system constructors are functors L :
BA→ BA, induces immediately an algebraic semantics of the logic, namely the category
of L-algebras. This has been exploited in [30, 29], generalising the Jónsson-Tarski and
the Goldblatt-Thomason theorems from Kripke frames to coalgebras.

• Finally, our approach allowed the simple construction of (43) and (44) providing a
sound and complete syntax and proof system constructor for any endofunctor T on
Set.

7 Conclusion

We have seen that the notion of presentation of functors on many-sorted varieties allows
a systematic treatment of syntax involving binding constructors, algebraic and coalgebraic
semantics of first-order logic and modular completeness in coalgebraic logic. Our work can
be extended in several directions.

Regarding Section 4 on abstract syntax for variable binding, we are studying [28] the move
from SetF to SetI (where I is the category of finite ordinals and injective maps), making
available standard (many-sorted) universal algebra to study certain nominal logics [12, 16].

Wrt to Section 5 on the (co)algebraic semantics of first-order logic, we should draw the
attention to the work of Pigozzi and Salibra [35] who generalised polyadic algebras to provide
an abstract variable binding calculus. The precise relationship of [35] with approaches in
computer science such as [14, 15] should be studied.

It will also be of interest to further explore the duality between the algebraic and coalgebraic
models of first-order logic, for example: To use bisimulations to prove the equivalence of
points in first-order models; or to use the Jónsson-Tarski Theorem for presenting modal
algebras to prove completeness of first-order logic. Moreover, one can extend the models of
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Section 5 by adding equality, relation symbols, and function symbols; the latter will replace
F by a suitable Lawvere-theory, a move not available in traditional polyadic algebra.

Finally, in Section 6, the construction of the logic L and its semantics is purely category
theoretic, but the completeness theorems use special properties of the category of Boolean al-
gebras. The generalisation to, at least, (presheaves over) distributive lattices is an important
task.
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