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Abstract

We study modal Lindström theorems from a coalgebraic perspective. We provide three different Lindström
theorems for coalgebraic logic, one of which is a direct generalisation of de Rijke’s result for Kripke models.
Both the other two results are based on the properties of bisimulation invariance, compactness, and a third
property: ω-bisimilarity, and expressive closure at level ω, respectively. These also provide new results in
the case of Kripke models. Discussing the relation between our work and a recent result by van Benthem,
we give an example showing that only requiring bisimulation invariance together with compactness does
not suffice to characterise basic modal logic.
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1 Introduction

Lindström’s theorem [19,12] states that every ‘abstract logic’ extending first-order
logic and satisfying Löwenheim-Skolem and compactness is equivalent to first-order
logic. The notion of abstract logic is a technical one capturing some fundamental
properties one expects from the set L of sentences of any legitimate logic. Thus,
roughly speaking, Lindström’s theorem says that first-order logic is the strongest
logic satisfying Löwenheim-Skolem and compactness.

In modal logic, de Rijke’s theorem [23,7] states that every ‘abstract modal logic’
extending basic modal logic and having finite depth (or finite degree) is equivalent to
basic modal logic. Later, van Benthem [5] showed that the finite depth condition can
be replaced by compactness and relativisation. In collaboration with ten Cate and
Väänänen, van Benthem expanded on this result in [6], where Lindström theorems
are discussed for various fragments of first-order logic, including for instance graded
modal logic. Inspired by this work, Otto and Piro [21] establish a Lindström type
characterisation of the extension of basic modal logic by a global modality, and
of the guarded fragment of first-order logic, with the corresponding bisimulation
invariance, and the Tarski Union Property replacing the closure under relativisation.



Kurz and Venema

Our approach to Lindström-type theorems for modal logic is coalgebraic. The notion
of a coalgebra X → TX for a functor T encompasses, for particular instantiations
of T , Kripke frames and models, but also many other structures of importance in
computer science. Accordingly, we generalise de Rijke’s theorem to a wide range of
functors T . But our analysis also gives an elegant explanation of de Rijke’s theorem
and leads to new variations in the case of Kripke frames and models.

There are two main differences between our approach and that of van Benthem et
al [5,6]. In the mentioned papers, abstract modal logics are not supposed to be
bisimulation invariant, and, second, they are supposed to be closed under relativi-
sation. Neither of these assumptions is very natural in the coalgebraic setting, and
therefore, our starting point will be rather different from that of the cited authors.
Similarly, we do not see how to translate the Tarski Union Property of Otto and
Piro [21] to a coalgebraic setting.

The technique used to obtain our results is based on the final coalgebra sequence.
It can be explained as follows.

1 T1
p10oo T 21

p21oo . . . Tα1

pα2
tt . . . Z

pα
tt

(1)

An element of Z (the final coalgebra) is an equivalence class of pointed models up to
bisimilarity. Similarly, for each ordinal α, there is a notion of α-bisimilarity and the
‘approximants’ Tα1 classify pointed models up to α-bisimilarity. The ‘projections’
p identify elements that cannot be distinguished at a coarser level.

From our perspective, an abstract coalgebraic logic L then will just be a collec-
tion of subsets of Z, see eg [11,16] for more on this perspective. L will have finite
depth if all these subsets are determined at a finite stage α < ω. Since it is known
that basic modal logic (over finitely many variables) allows us to define all subsets
of all finitary approximants, de Rijke’s theorem is an immediate consequence: An
abstract coalgebraic logic extending basic modal logic and having a notion of fi-
nite depth must be equivalent to basic modal logic (because the formulas of such a
logic, up to logical equivalence, correspond precisely to the subsets of the finitary
approximants Tn1, n < ω).

In a further analysis, we investigate ways to replace the notion of finite depth
by compactness. Whereas the argument in the previous paragraph was based on
all subsets of all finitary approximants being definable in L, we now look at higher
approximants, such as Tω1 (or Z itself) and consider the topologies generated by
(extensions of) formulas. Then topological compactness and logical compactness
coincide and we can combine topological results with properties of the final coalgebra
sequence.

Summary and Structure of the paper. Section 7 presents our three Lindström
theorems, stating that a logic invariant under bisimilarity, closed under Boolean op-
erations and at least as expressive as the ‘basic modal logic’ LF

T is actually equivalent
to LF

T if additionally one of three conditions hold:

• L has finite depth,
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• L is compact and invariant under ω-bisimilarity,
• L is compact and expressively closed at ω.

We also give an example showing that in the second item ω-bisimilarity cannot be
replaced by bisimilarity.

Sections 3-5 are devoted to these three conditions, respectively. Section 6
presents two lemmas on the final coalgebra sequence, which we believe are of inde-
pendent interest.

2 Preliminaries on Coalgebras and Modal Logic

2.1 Coalgebras

Coalgebras generalise Kripke frames and models.

Definition 2.1 The category Coalg(T ) of coalgebras for a functor T on a category
X has as objects arrows ξ : X → TX in X and morphisms f : (X, ξ)→ (X ′, ξ′) are
arrows f : X → X ′ such that Tf ◦ ξ = ξ′ ◦ f .

The main examples of functors of interest to us in this paper are

Definition 2.2 A Kripke polynomial functor (KPF) T : Set→ Set is built accord-
ing to

T ::= Id | C | T + T | T × T | T ◦ T | P (2)

where Id is the identity functor, C is the constant functor that maps all sets to a
finite set C, + is disjoint union, × is cartesian product, ◦ is composition, and P
maps a set to the collection of its subsets.

Remark 2.3 • In the above definition, we insist on constants C being finite and
coproducts being finite as well, hence a KPF in our sense maps finite sets to finite
sets.

• A coalgebra X → PX is a Kripke frame and a coalgebra X → 2P × PX for a
finite set P (of atomic propositions) is a Kripke model.

• An element x0 of a coalgebra ξ : X → C × X specifies a stream (infinite list)
(c1, c2, . . .) via (cn+1, xn+1) = ξ(xn), n < ω.

• Similarly, an element x0 of a coalgebra X → C1 +C2×X×X specifies a possibly
infinite binary tree with leaves labelled from C1 and the other nodes labelled from
C2.

• Consider a coalgebra X → 2 ×XC where 2 = {0, 1}. It can be understood as a
deterministic automaton over the alphabet C, where the elements in 2 are used
to label states as accepting or non-accepting.

• The reader can easily extend this list, for example, non-deterministic automata
are coalgebras X → 2× (PX)C

Definition 2.4 We say that T has the properties (wp) and (fs) if T is a functor
Set→ Set and, respectively,

(wp) preserves weak pullbacks,
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(fs) restricts to finite sets.

Example 2.5 A KPF T satisfies (wp) and (fs). Further examples of functors are
obtained by extending (2) with

. . . | Pω | List | Mult | D | H (3)

where PωX is the set of finite subsets of X, ListX the set of finite lists over X, MultX
the set of finite multisets over X, DX the set of discrete probability distributions
over X, and HX = 22X . They all satisfy (wp) with the exception of H and they
do not satisfy (fs) with the exception of Pω and H. H-coalgebras coincide with
neighbourhood frames in modal logic and are investigated, from a coalgebraic point
of view, in Hansen and Kupke [13].

Final Coalgebra and Bisimilarity. Given T : Set → Set the final coalgebra
(Z, ζ) is determined by the property that for any coalgebra ξ : X → TX there is
a unique coalgebra morphism f : X → Z. Instantiating T as P, we find that f
identifies two elements of X iff they are bisimilar in the usual sense. So we may
take this as a definition: Two elements of a coalgebra are bisimilar if they are
identified by the unique morphism into the final coalgebra. This definition extends
to elements in two different coalgebras (X, ξ), (X ′, ξ′) by considering their disjoint

union (or coproduct) X + X ′
ξ+ξ′−→ TX + TX ′ → T (X + X ′). Bisimilarity is the

smallest relation between elements of (possibly different) coalgebras containing all
pairs of bisimilar elements. Clearly, bisimilarity is an equivalence relation.

Remark 2.6 (Existence of the final coalgebra) The final coalgebra does al-
ways exist if we allow its carrier to be a proper class as in [2] or if we assume
the existence of an appropriate inaccessible cardinal as in [4]. Both approaches
are equivalent, but we find the latter point of view more convenient as we then
know that the final sequence, discussed below, always converges against the final
coalgebra.

Example 2.7 (i) The final coalgebra Z → PZ is Aczel’s universe of non-well-
founded sets [1]. The elements of Z can be understood as precisely the non-
well-founded sets, that is, the equivalence classes of pointed Kripke frames
under bisimilarity.

(ii) The final coalgebra for TX = C × X is ζ : Cω → C × Cω where ζ maps a
stream (ci)i<ω to the pair (c0, (ci)1≤i<ω) consisting of the ‘head’ and the ‘tail’
of the stream.

(iii) Similarly, the final coalgebra for TX = C1 +C2 ×X ×X consists of the set of
all, possibly infinite, binary trees with leaves labelled from C1 and the other
nodes labelled from C2.

(iv) In case of TX = 2 ×XC , the final coalgebra Z is the set of all languages (ie
subsets of C∗) and the unique coalgebra morphism X → Z maps a state of the
automaton X to its accepted language [24].

Final Sequence and α-Bisimilarity. The final coalgebra is approximated by
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the final coalgebra sequence

1 T1
p10oo T 21

p21oo . . . Tα1

pα2
tt . . . Z

pα
tt

(4)

where 1 denotes a one-element set and

• Tα+11 = T (Tα1) and pα+1
β+1 = T (pαβ) for all β < α,

• pαγ = pβγ ◦ pαβ for γ < β < α,
• if α is a limit ordinal then (Tα1, (pαβ))β<α is a limiting cone.

Since the final coalgebra (Z, ζ) does exist [4] we know from [3, Thm 2] that the final
sequence converges, that is, there is an isomorphism pβ+1

β = ζ−1. As in (4) we write

Z for T β1 and pα for pβα.
For any coalgebra ξ : X → TX there are maps fα : X → Tα1

1 T1
p10oo T 21

p21oo . . . Tα1

pα2
tt . . . Z

pα
tt

X

f0

jjVVVVVVVVVVVVVVVVVVVVVVVV

fα
<<yyyyyyyy f

44hhhhhhhhhhhhhhhhhhhhhhhh

(5)

with fα given by Tα1 being a limit if α is a limit ordinal and

fα+1 = Tfα ◦ ξ (6)

otherwise. We say that x, y ∈ X are ααα-bisimilar iff fα(x) = fα(y). In the case
of T = P this notion coincides with the notion of bounded bisimulation of Ger-
brandy [9]. It was investigated from the point of view of coalgebraic logic in [18].

Remark 2.8 • The limit Tω1 can be calculated explicitly as the set of sequences
{t ∈

∏
n<ω T

n1| ∀m,n < ω . pmn (tm) = tn}. For example, in the case of streams
(TX = C × X), we have that Tn1 is Cn and Tω1 is (isomorphic to) Cω. The
pn : Cω → Cn are then the projections. In this case Tω1 is also the final coalgebra
and its elements classify bisimilarity.

• In general, the elements of Tω1 classify behaviour up to ω-bisimilarity. In the
case of Kripke models (TX = 2P ×PX), we have that Tω1 is the canonical model
of the modal logic K. Here, Tω1 is not the final coalgebra (and this cannot be
mended by replacing P by the finite powerset).

• The final sequence for TX = PX has been studied eg in Ghilardi [10] and Worrell
[26]. Elements can be seen as α-bisimilar classes of pointed Kripke frames.

• In case of TX = 2×XC , the inductive definition (6) of the maps fn : X → Tn1
provides the standard partition-refinement algorithm of minimising deterministic
automata: Starting with a finite X, we are sure to find some n < ω such that the
image of fn is isomorphic to the image of fn+1, which then is the minimisation of
X. The coalgebraic view on this algorithm allows to generalise this, for example,
to π-calculus processes [8].
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2.2 Coalgebraic Logic

The aim of this section is just to give a snapshot of how modal logics for coalgebras
can be set up parametric in the functor T . We cannot give full details here and it
mainly serves to substantiate the notion of abstract coalgebraic logic below.

Example 2.9

(i) We denote by LP
T the logic given by all n-ary predicate liftings, n < ω, see

[22,25]. An n-ary predicate lifting is a natural transformation λX : 2X → 2TX .
Each predicate lifting gives rise to a modal operator [λ]. It is interpreted (unary
case) on a coalgebra (X, ξ) via

x  [λ]ϕ ⇔ ξ(x) ∈ λX({x ∈ X | x  ϕ}).

Conversely, modal operators in the usual sense can be described by predicate
liftings. For example, if T = P, the usual modal 2 arises from the predicate
lifting (λ2)X(S) = {S′ ∈ PX | S′ ⊆ S} and, similarly, (λ3)X(S) = {S′ ∈ PX |
S′ ∩ S 6= ∅}.

(ii) If T has (wp), we denote by LM
T the smallest logic closed under Boolean opera-

tions and the rule that ∇ψ ∈ LM
T whenever ψ ∈ T (Φ) for some finite Φ ⊆ LM

T .
We put x  ∇ψ ⇔ ∃w ∈ T () . T (π1)(w) = ξ(x) &T (π2)(w) = ψ where
 ⊆ X ×LM

T and π1, π2 are the two projections. This logic was introduced by
Moss in [20], but see also [15] for the finitary version.

If T has (fs) and (wp) both logics are equally expressive, see [17] for explicit
translations in both directions. For T = P both are equally expressive with basic
modal logic (in the sense of ≡ of Definition 2.10).

2.3 Abstract coalgebraic logic

We take the point of view that any coalgebraic logic should be invariant under
bisimilarity. That is, we can identify (the meaning of) a logical formula with its
extension on the final coalgebra.

Definition 2.10

• An abstract coalgebraic logic for a functor T : Set → Set is given by a class of
formulas L and a function [[−]] : L → 2Z to subsets of the carrier Z of the final
coalgebra. We usually identify ϕ ∈ L with its extension [[ϕ]].

• We write [[ϕ]]α for the direct image pα[ϕ] where pα is as in (5).
• A subset S ⊆ Tα1 is definable in L iff there is ϕ ∈ L such that [[ϕ]]α = S and
ϕ = p−1

α ([[ϕ]]α).
• L1 ≤ L2 iff for all ϕ1 ∈ L1 there is ϕ2 ∈ L2 such that [[ϕ1]] = [[ϕ2]]. L1 ≡ L2

means L1 ≤ L2 and L2 ≤ L1.
• Given a coalgebra ξ : X → TX and ϕ ∈ L, we define

x  ϕ ⇔ f(x) ∈ [[ϕ]] (7)

where f is as in (5).
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Remark 2.11 (Invariance under bisimilarity) It is immediate from (7) that
any abstract coalgebraic logic is invariant under bisimilarity (for the notion of bisim-
ilarity defined on page 4). Conversely, if a logic for coalgebras is invariant under
bisimilarity then (7) holds. To summarise, invariance under bisimulation means
precisely that formulas can be identified with their extensions on the final coalgebra
(Z, ζ).

In particular, we see that the logics of Example 2.9 become abstract coalgebraic
logics simply by putting [[ϕ]] = {z ∈ Z | z  ϕ}. The definitions of  from
Example 2.9 then agree with (7).

Example 2.12 We denote by LF
T the abstract coalgebraic logic in which precisely

all subsets of Tn1, n < ω, are definable, that is, LF
T =

⋃
n<ω{p−1

n (S) | S ⊆ Tn1}.

For a detailed comparison of LM
T ,LP

T ,LF
T we refer to [17], here we only record the

following.

Proposition 2.13 We have
LM
T ≤ LP

T ≤ LF
T ,

and LP
T ≡ LF

T if T has (fs) and LM
T ≡ LP

T if T has (fs) and (wp).

Definition 2.14 L has the properties (Sep), (fSep), (Full), (fFull), (Bool) if L is
an abstract coalgebraic logic and, respectively,

(Sep) any two distinct behaviours in the final coalgebra are separated by two for-
mulas, that is, for all z 6= z′ ∈ Z there are ϕ,ϕ′ ∈ L such that ϕ ∩ ϕ′ = ∅ and
z ∈ ϕ and z′ ∈ ϕ′,

(fSep) for all n < ω, any two behaviours in Tn1 are separated by formulas, that
is, for all t 6= t′ ∈ Tω1 there is n < ω and there are definable (see Definition 2.10)
S, S′ ⊆ Tn1 such that S ∩ S′ = ∅ and pωn(t) ∈ S and pωn(t′) ∈ S′,

(Full) for ordinals α, any subset of Tα1 is definable,

(fFull) for all n < ω, any subset of Tn1 is definable,

(Bool) L is closed under Boolean operations.

(fSep) holds iff any two behaviours in Tω1 can be separated by a formula. (fFull)
does not imply that all subsets of Tω1 are definable: For example, in the basic modal
logic, having an infinite path is a property corresponding to a subset of Pω1 which
cannot be expressed by the finitary approximants (

∧
n<ω 3n> only implies that the

lengths of paths cannot be bounded).
(Full) implies (Sep) and (fFull) implies (fSep).
All of LM

T ,LP
T ,LF

T enjoy (fSep) and (Bool), LF
T also (fFull).

3 Finite depth

Definition 3.1 We say that an abstract coalgebraic logic L has finite depth if all
formulas are determined by some subset of Tn1 for some n < ω, that is, for all
ϕ ∈ L there is n < ω such that [[ϕ]] = p−1

n ([[ϕ]]n) = p−1
n (pn[ϕ]).

Remark 3.2 (i) LM
T ,LP

T ,LF
T have finite depth, the µ-calculus does not have finite

depth.
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(ii) Every logic with finite depth is invariant under ω-bismilarity. The converse is
not true.

4 Compactness

This section is needed for Theorems 7.3 and 7.8.

Notation We already overloaded the symbol L to denote the logic as well as the
collection of definable subsets of the final coalgebra. For example, if we say that
the intersection of a set of formulas is non-empty, we refer to the extensions of the
formulas on the final coalgebra.

Similarly we now write

Lα = {pα[ϕ] ⊆ Tα1 | ϕ ∈ L}.

Note that Lα contains (possibly strictly) the set of definable subsets S ⊆ Tα1 in
the sense of Definition 2.10. Also note that even if L is closed under Boolean
operations, Lα need not be (because the direct image only preserves unions but
neither intersections nor complements).

Furthermore, when we treat Tα1 (or the carrier Z of the final coalgebra) as a
topological space in the following, then we do this with respect to the topology
generated by Lα (or L). For example, in the presence of (Bool), the following defi-
nition of compactness coincides with the topological definition of Z being compact
(that is, every cover of opens has a finite subcover). Recall that a collection C of
subsets of the final coalgebra has the finite intersection property (f.i.p.) if all finite
subcollections have non-empty intersection.

Definition 4.1 L is compact if each collection of formulas with the finite intersec-
tion property has a non-empty intersection.

Later we will use results from topology to show that there is only one possible
logic on Tω1 satisfying certain restrictions. But let us first take a look at the logics
we considered so far.

Proposition 4.2 (i) If L satisfies (fSep), then Tω1 is Hausdorff.

(ii) Let L be one of LM
T ,LP

T ,LF
T . Then Tω1 is Hausdorff and has a basis of clopens.

(iii) Moreover, (LM
T )ω ≡ (LP

T )ω ≡ (LF
T )ω are compact if T has (fs).

Proof. (i) is immediate from the definitions. (ii) follows from (Bool). (iii) holds
since under (fs) the approximants Tn1, n < ω, are finite (hence compact Hausdorff)
and a limit of compact Hausdorff spaces is compact Hausdorff. 2

To reason about compactness we use the following standard topological facts. The
first is an auxiliary statement. The second shows that a compact Hausdorff topology
cannot be made smaller (without loosing Hausdorff) nor bigger (without loosing
compactness). The third says that if compact Hausdorff spaces have a basis closed
under Boolean operations, then this basis is uniquely determined.
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Proposition 4.3 (i) In a compact space, every closed set is compact. In a Haus-
dorff space, every compact set is closed.

(ii) Let τ ⊆ τ ′ be two topologies on a set X and assume that τ is Hausdorff and τ ′

is compact (and hence both are compact Hausdorff). Then τ = τ ′.

(iii) Let (X, τ) be a Stone space, ie, τ is compact Hausdorff and has a basis of
clopens. Then τ has one and only one basis closed under the Boolean opera-
tions.

Proof. For the second statement, assume there is an open o ∈ τ ′, o /∈ τ . The
complement o′ of o is not closed in τ , hence not compact. Hence there is an open
cover o′i of o′ from τ that has no finite subcover. This cover is also a cover from τ ′,
hence o′ is not compact in τ ′, hence not closed in τ ′, contradicting o ∈ τ . 2

5 Expressively closed logics

This section is needed for Theorem 7.8.
The following definition makes precise the requirement that if some property P

is definable in the logic, then the weaker property Pα of ‘P up to α-bisimilarity’ is
also definable.

Definition 5.1 L is expressively closed at α if for all ϕ ∈ L there is ψ ∈ L such
that p−1

α ([[ϕ]]α) = [[ψ]]. L is expressively closed if it is expressively closed at α for all
ordinals α.

In other words, L is expressively closed at α iff Lα coincides with the definable
subsets of Tα1 (see Definition 2.10).

Example 5.2 (i) LM
T ,LP

T ,LF
T are expressively closed. Every logic extending LF

T

is expressively closed at n for n < ω.

(ii) Expressively closed at ω does not imply expressively closed at n < ω. For
example, in the case of T = P, take a logic which has exactly 4 pairwise
different formulas (false, true, ϕ, ¬ϕ) and where ϕ is definable at stage ω but
not at any n < ω.

(iii) The µ-calculus is not expressively closed, since (in the case of T = P) the for-
mula µx.2x expresses termination of each execution sequence (well-foundedness)
and this property cannot be defined at any ordinal level.

Remark 5.3 If L is expressively closed at α then pα : Z → Tα1 is continuous (with
respect to the topology generated by Lα).

Recall that if X is compact and f : X → Y is continuous and onto, then Y is
compact. The previous remark then implies the first part of the proposition below.

Proposition 5.4 (i) If L is compact, expressively closed at α, and pα : Z → Tα1
is onto, then Lα is compact.

(ii) If L is expressively closed and satisfies (Bool) and pα : Z → Tα1 is onto, then
Lα is closed under Boolean operations.
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Proof. For the second item, because direct image preserves unions, Lα is closed
under unions. To see closure under complements let S be a definable subset and
ϕ = p−1

α (S). Then [[¬ϕ]]α is the complement of S. 2

Proposition 5.5 If L is compact and extends LF
T , then

(i)
⋂
{(pωn)−1([[ϕ]]n) | n < ω} = [[ϕ]]ω

(ii)
⋂
{p−1
n ([[ϕ]]n) | n < ω} = p−1

ω ([[ϕ]]ω)

(iii) pω : Z → Tω1 is onto.

Proof. (ii) is immediate from (i). Putting ϕ = true in (i) yields Tω1 = [[true]]ω,
which implies (iii). To show (i), “⊇” is immediate. For “⊆”, assume that t ∈⋂
{(pωn)−1([[ϕ]]n) | n < ω}, that is, for each n < ω there is zn ∈ ϕ with pωn(t) =

pn(zn). Since L extends LF
T , we have p−1

n ({pn(zn)}) ∈ L. By construction, {p−1
n ({pn(zn)}) |

n < ω} ∪ {ϕ} has the f.i.p. and so, by compactness, there is z ∈ ϕ such that
pωn(t) = pn(z) for all n < ω. Hence t = pω(z) ∈ [[ϕ]]ω. 2

Remark 5.6 The proof also works for compact L that have for each t ∈ Tω1 a
collection of definable Sn ⊆ Tn1, n < ω, such that {t} is the intersection of the
(pωn)−1(Sn). For example, the proposition holds if the singleton subsets of Tn1,
n < ω are definable, or if L satisfies (fSep) and is expressively closed at n for all
n < ω.

The topological analysis above gives us a Lindström theorem ‘at ordinal level ω’,
roughly saying: an abstract coalgebraic logic that is compact and expressively closed
at each finite n agrees with LF

T at ω. The Lindström theorems of Section 7 can be
seen as variations where some further work is put into dropping the restriction ‘at
ordinal level ω’.

Theorem 5.7

(i) Let L be an abstract coalgebraic logic that satisfies (fSep), (Bool) and is compact
and expressively closed at n, n < ω. Then Tω1 is a Stone space.

(ii) If, moreover, T satisfies (fs), then Lω = (LM
T )ω = (LP

T )ω = (LF
T )ω.

Proof. (i). By (fSep) and Proposition 4.2, Lω is Hausdorff. By compactness of L
and (Bool), and Propositions 5.5 and 5.4, Lω is compact and has a basis of clopens.
(ii). If T preserves finite sets, then (fSep) and (Bool), together with expressively
closed, imply (fFull), that is, L extends LF

T . Hence (the topology generated by) Lω
is a Stone topology which extends the Stone topology (Proposition 4.2) (generated
by) (LF

T )ω. By Proposition 4.3(ii) the two topologies agree and by Proposition
4.3(iii) the same holds for the bases, that is, Lω = (LF

T )ω. 2

Concerning the assumptions of the theorem, we recall that a logic that extends
LF
T has (fSep) and is expressively closed at n. Also LM

T , LP
T , LF

T satisfy these two
properties, as well as (Bool). But, depending on T , neither need to be compact.
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6 Two lemmas on the final coalgebra sequence

For the proof of Theorem 7.8 we will need two lemmas about the final coalgebra
sequence. We study the diagram

1 T1
p10oo T 21

p21oo . . . Tn1

pn2
tt . . . Tω1

pωn
tt

0

k0

OO

e01

// T0

k1

OO

e12

// T 20

k2

OO

e2n

44. . . Tn0

kn

OO

enω

44. . . Tω0

kω

OO (8)

where the upper row is the final coalgebra sequence (4) and the lower row is its
dual, the initial algebra sequence. The arrows kn are the unique ones induced by
initiality/finality: k0 is the empty map and kn+1 = Tkn; for each n < ω this
induces over the terminal sequence (Tm1)m<ω a cone 1 knm : Tn0→ Tm1 given by
knm = km ◦ enm for m > n and by knm = pnm ◦ kn for m ≤ n; since Tω1 is a limit, the
cones (knm)m<ω induce maps knω : Tn0→ Tω1, which in turn form a co-cone 2 over
the initial sequence (Tn0)n<ω; since Tω0 is a colimit, the co-cone (knω)n<ω induces
kω.

In the situation above, the arrows pωn induce a metric d on Tω1 via d(x, y) = 2−n

where n is the smallest number such that pωn(x) 6= pωn(y). Moreover, Tω0 inherits
this metric via the injective kω.

Proposition 6.1 (Barr [4, Proposition 3.1]) Let T : Set→ Set with T0 6= 0. Then
kω in diagram (4) is a Cauchy completion.

The topology on Tω1 induced by the metric coincides with the limit topology over
the discrete spaces Tn1, n < ω. The topology is compact, if the Tn1, n < ω, are
finite. Then the collection of clopens of this topology is (LF

T )ω. Since Tω0 is dense
in Tω1 we have

Lemma 6.2 Let T : Set→ Set with T0 6= 0. Then for all ϕ ∈ LF
T , either [[ϕ]]ω = ∅

or [[ϕ]]ω ∩ Tω0 6= ∅.

For the next lemma, recall the notation pω : Z → Tω1 from Diagram (4).

Lemma 6.3 Let T be a weak pullback preserving functor Set → Set with T0 6= 0.
If for two elements z, z′ of the final coalgebra satisfying pω(z) = pω(z′) we have that
pω(z) = pω(z′) is in the image of kω in (8), then z = z′.

1 That is, pml ◦ knm = knl for all l ≤ m < ω.
2 That is, kmω ◦ enm = knω for all n ≤ m < ω.
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Proof. Without loss of generality, assume that kω is an inclusion. Consider

1 . . . Tn1 Tn+11
pn+1
noo . . . Z

pn+1
ss

pn

{{
TZ

poo

0

k0

OO

. . . Tn0

kn

OO

enn+1

//

en

;;Tn+10

kn+1

OO

en+1

55. . . A

k

OO

e
// TA

Tk

OO

which is as (8) but extended transfinitely through the ordinals until reaching the
initial algebra (A,α) = (A, e−1) and the final coalgebra (Z, ζ) = (Z, p−1) [3]. We
write “;” for relational composition and converse of R as Ro, eg, if f and g are
functions, (g ◦f)o = go; fo and also p−1 = po, e−1 = e0 (p and e are isos). The claim
follows once we have shown en; k = kn; pon for all n < ω. Indeed, pω(z) = pω(z′) ∈
Tω0 means there is n < ω and x ∈ Tn0 such that x(kn; pon)z and x(kn; pon)z′. Since
en; k is a functional relation, we must have z = z′.

To show en; k = kn; pon first observe that it holds for n = 0 since then both
relations are the empty relation. Further, en+1; k = (by definition of e = αo and
(A,α) being initial) Ten; eo; k = (by definition of k) Ten;Tk; p = (by ind.hyp. and T
preserving weak pullbacks) Tkn; (Tpn)o; p = (by definition of p = ζo and (Z, ζ) being
final) Tkn; (pn+1 ◦p)o; p = (by po = ζ being iso and definition of kn+1) kn+1; pon+1.2

7 Lindström theorems

The theorems below state that a logic L invariant under bisimilarity, closed under
Boolean operations and at least as expressive as LF

T is actually equivalent to LF
T if

additionally one of the following conditions is satisfied

• L has finite depth,
• L is compact and invariant under ω-bisimilarity,
• L is compact and expressively closed at ω.

7.1 Finite depth

The essence of de Rijke’s Lindström theorem [23] is coalgebraic and, in view of the
final sequence, its proof is almost obvious: That L has finite depth means that
formulas are determined by their extensions on the approximants Tn1, n < ω, and
that L extends LF

T means, conversely, that all subsets of Tn1, n < ω, are definable.

Theorem 7.1 If an abstract coalgebraic logic L extends LF
T and has finite depth,

then L ≡ LF
T .

Proof. Because L is invariant under bisimilarity and has finite depth, each formula
ϕ is determined by some Tn1, n < ω, that is, ϕ = p−1

n ([[ϕ]]n) for some n < ω. Since
all subsets of Tn1 are definable in LF

T , it follows L ≤ LF
T . 2

12
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Corollary 7.2 (i) If T = P, or T = P × 2P for a finite set P of atomic proposi-
tions, we recover de Rijke’s theorem [23], modulo the simplification that we do
not consider infinitely many atomic propositions. 3

(ii) If T = H, or T = H × 2P , we obtain a Lindström theorem for non-normal
modal logics and neighbourhood frames/models.

(iii) More generally, if T satisfies (fs) [and (wp)], the conclusion of the theorem can
be strengthened to L ≡ LP

T [and L ≡ LM
T ].

7.2 Compactness and ω-bisimilarity

Since Lindström’s theorem characterising first-order logic [19] makes crucial use of
compactness, it is natural to follow van Benthem [5] and search for characterisations
of modal logic involving compactness.

The proof of the following theorem is similar to Theorem 7.1, replacing the role
of the sequence of approximants (Tn1)n<ω by Tω1: That L is invariant under ω-
bisimilarity means that formulas are determined by their extensions on Tω1 and
that L is compact and extends LF

T means that all clopen (closed and open) subsets
of Tω1 are extensions of some L-formula. Finally, we use a result from topology to
establish that the topologies on Tω1 induced by the definable subsets of L and LF

T

coincide.

Theorem 7.3 If T preserves finite sets and an abstract coalgebraic logic L has the
following properties: (i) invariant under ω-bisimilarity, (ii) closed under Boolean
operations, (iii) L extends LF

T , (iv) L is compact, then L ≡ LF
T .

Proof. By (i), we can consider L as a collection of subsets of Tω1. By (ii), L is
a Boolean algebra. The topology τ generated by the basis L is Hausdorff by (iii).
By (iv), (Tω1, τ) is a Stone space, by Proposition 4.3(ii) we have that τ is the
topology generated by LF

T . By Proposition 4.3(iii), the basis of clopens of this space
is uniquely determined, hence L ≡ LF

T . 2

7.3 Compactness and invariance under bisimilarity is not enough

We investigate what can be said if, in the assumptions of Theorem 7.3, invariance
under ω-bisimilarity is weakened to invariance under bisimilarity. The following
example shows that we need to look for some additional condition.

Example 7.4 The logic Lcb is obtained from basic modal logic (without propo-
sitional variables) by adding one constant θ, which may not appear under a 2.
Explicitly, formulas are constructed according to

phi ::= θ | psi | ¬phi | phi ∧ phi (9)
psi ::= ⊥ | ¬psi | psi ∧ psi | 2psi (10)

3 For infinite P the logic LF
P×2P is more expressive than basic modal logic (it has formulas with infinitely

many atomic propositions). This problem can be overcome in several ways, but the issues arising are
orthogonal to the interests of this paper.
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Given any von Neumann ordinal α, let Mα be the pointed Kripke frame which has
root (distinguished point) α, carrier α + 1 = α ∪ {α} and the accessibility relation
given by the converse of ∈. The semantics of θ is then given by

(W,R), w  θ ⇔ (W,R), w bisimilar to Mω+2

Remark 7.5 With respect to Theorem 7.3, note that Mω+2 and Mω+1 are ω-
bisimilar but not bisimilar (an observation that can be found in [9]) and hence Lcb
is not invariant under ω-bisimilarity.

In our approach we identify formulas with their extension on the final coalgebra
Z. In this view, θ is the singleton subset of the final coalgebra containing the
equivalence class of Mω+2 up to bisimilarity. (If we take Z to be the non-well
founded sets of Aczel [1], then θ = {ω + 2}.) This observation allows us to replace
(9) by

phi ::= psi | psi ∨ θ | psi ∧ ¬θ (11)

To show that (9) and (11) are equivalent, we need to show that the language de-
scribed by (11) is closed under Boolean operations. Closure under negation (com-
plement) is immediate. For closure under conjunction (intersection) we have to
check 6 cases. For instance, using that θ is a singleton, we calculate on the final
coalgebra

(ψ1 ∨ θ) ∧ (ψ2 ∨ θ) = (ψ1 ∧ ψ2) ∨ θ (12)

since for any ϕ we have that ϕ ∧ θ is either ∅ or θ.

Proposition 7.6 Lcb is compact.

Proof. To check compactness we (identify formulas with their extension on the final
coalgebra and) assume that we are given a set Ψ∪Ψ∨∪Ψ∧ of formulas enjoying the
f.i.p. and where Ψ,Ψ∨,Ψ∧ contain formulas of type psi, psi∨θ, psi∧¬θ, respectively.

Case 1: Ψ∧ is non-empty. Then from the f.i.p. we can assume without loss of
generality that Ψ∨ is empty and that Ψ∧ = {¬θ}. For a contradiction assume that⋂

Ψ ∪ Ψ∨ ∪ Ψ∧ is empty, ie,
⋂

Ψ ⊆ θ. Then, since θ is a singleton and Ψ has the
f.i.p. (and LF

P is compact), it follows
⋂

Ψ = θ. This contradicts the fact that θ is
not definable by an infinite conjunction of formulas in LF

P.
Case 2: Ψ∧ is empty. Then, reasoning as in (12), we see that

⋂
Ψ∨ is semantically

equivalent to C ∨ θ for some C ⊆ Z where C is the intersection of some formulas
in LF

P . Note that Ψ ∪ {C ∨ θ} has the f.i.p. iff Ψ ∪ {C} or Ψ ∪ {θ} have the f.i.p.
If Ψ ∪ {C} has the f.i.p., we have

⋂
Ψ ∩ C 6= ∅ since LF

P is compact; hence also⋂
Ψ ∩ {C ∨ θ} 6= ∅. If Ψ ∪ {θ} has the f.i.p., we have θ ⊆ ψ for all ψ ∈ Ψ since θ is

a singleton; hence
⋂

Ψ ∩ {C ∨ θ} 6= ∅. 2

To summarise:

Theorem 7.7 Lcb is closed under Boolean operations, extends the basic modal logic
LF
P , is invariant under bisimilarity and is compact, but is not equivalent to LF

P.
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7.4 Compact and expressively closed at ω

The previous section showed that compactness needs to be complemented by some
further condition. In Theorem 7.3 it was invariance under ω-bisimilarity, which
we replace now by the weaker condition of being expressively closed at ω (Defini-
tion 5.1), meaning that if some property P is definable in the logic, then the weaker
property Pω of ‘P up to ω-bisimilarity’ is also definable.

Theorem 7.8 Let T : Set → Set preserve finite sets and weak pullbacks. If an
abstract coalgebraic logic L (i) extends LF

T , (ii) is closed under Boolean operations,
(iii) is compact and (iv) is expressively closed at ω, then L ≡ LF

T .

Proof. Suppose L extends LF
T , that is, there is a formula θ ∈ L such that θ (

p−1
n ([[θ]]n) for all n < ω. If θ =

⋂
{p−1
n ([[θ]]n) | n < ω} we obtain a contradiction

to compactness, so we assume that θ (
⋂
{p−1
n ([[θ]]n) | n < ω} = p−1

ω ([[θ]]ω), where
the latter equality is due to Proposition 5.5. By (iv), there is ψ ∈ L such that (the
extension of) ψ is p−1

ω ([[θ]]ω). By (ii), we have ψ ∧¬θ ∈ L and due to θ ( p−1
ω ([[θ]]ω)

we know that [[ψ ∧ ¬θ]]ω is non-empty. Using that L has (wp), it now follows from
Lemma 6.3 that [[ψ ∧ ¬θ]]ω ∩ Tω0 = ∅. Indeed, t ∈ [[ψ ∧ ¬θ]]ω implies, on the one
hand, t ∈ [[ψ]]ω and hence the existence of a z ∈ θ with pω(z) = t and, on the
other hand, t ∈ [[¬θ]]ω and hence the existence of a z′ 6∈ θ with pω(z′) = t; we
thus have pω(z) = pω(z′) and, since z 6= z′, can apply Lemma 6.3 to conclude that
t 6∈ Tω0. But [[ψ ∧ ¬θ]]ω ∩ Tω0 = ∅ now contradicts Lω = (LF

T )ω (using that L has
(fs) and Theorem 5.7) and the fact that all non-empty sets in (LF

T )ω intersect Tω0
(Lemma 6.2). 2

Remark 7.9 One way to analyse Example 7.4 in the light of Theorems 7.3 and
7.8 is as follows. In Example 7.4, the extension [[θ]]ω of θ on Tω1 is closed and not
open in the topology generated by Lcbω . From the uniqueness of compact Hausdorff
topologies (Proposition 4.3), we know that the complement of [[θ]]ω cannot be in
Lcbω , which suggests a contradiction to Lcb being closed under Boolean operations.
Unfortunately, the complement of [[θ]]ω is not definable in Lcb (note that [[¬θ]]ω =
Tω1). As we have seen in the proof of Theorem 7.8, the notion of expressive closure
at ω, together with the two lemmas of Section 6, gives us a way to exploit ¬θ.

The following specialises Theorem 7.8 to Kripke models.

Corollary 7.10 Let L be a logic which extends basic modal logic, is invariant under
bisimilarity, is closed under Boolean operations, is compact and is expressively closed
at ω, then L is basic modal logic.

Similarly the result applies to all Kripke polynomial functors.

7.5 Discussion

In [5], van Benthem presents a modal Lindström theorem stating that an abstract
modal logic L extending basic modal logic is equivalent to basic modal logic if L is
invariant under bisimilarity and L is compact. To compare this result to ours, we
recall that the definition of abstract modal logic includes the property

(rl) closed under relativisation,
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which means that for every formula ϕ and every proposition letter p, the logic
contains a formula rel(ϕ, p) which is true at a state x in a Kripke model M iff ϕ is
true at x in the Kripke model we obtain from M by throwing away all the states
where p is false. This condition is also part of Lindström’s definition of an abstract
logic, but from our coalgebraic perspective, it is not so natural. In particular, given
a coalgebra X → TX and a subset X ′ ⊆ X, it is not a priori clear what the induced
coalgebra with carrier X ′ would be. (In the case where T = P one can simply take
for ξ′(x) the intersection of ξ(x) with X ′).

In addition, there are natural logics that do not satisfy (rl). Consider for instance
the diamond 〈?〉, which is to be interpreted over the reflexive/transitive closure of
the accessibility relation of the diamond 3. If we consider the language with 〈?〉 but
without 3, we obtain a natural logic which is bisimulation invariant and compact,
but does not have the relativisation property, as can easily be verified.

Finally, there is the work of Otto and Piro [21] on Lindström theorems for the
extension of basic modal logic by a global modality, and of the guarded fragment of
first-order logic. This work revolves around the

(tup) Tarski Union Property,

which requires the logic L to be closed under unions of L-elementary chains. With-
out going into the details, we just mention that the definition of this notion also
involves substructures, which, as opposed to generated substructures, do not provide
a coalgebraic notion. For this reason, the property (tup) does not seem to be a
natural candidate for coalgebraic generalisations.

8 Conclusion

We showed that de Rijke’s modal Lindström theorem is coalgebraic in nature and
generalises from Kripke models to T -coalgebras for a large class of functors T . De
Rijke’s theorem is based on the notion of finite depth, whereas Lindström’s original
theorem makes crucial use of compactness. We therefore presented two coalgebraic
Lindström theorems, replacing finite depth by compactness plus an additional con-
dition. We showed that some additional condition is needed, but there may be other
conditions still to be discovered (ideally such a condition would be enjoyed by all
important non-compact logics extending basic modal logic). Further open questions
include

• a Lindström theorem that covers basic modal logic, implies van Benthem’s result,
and can be generalised to coalgebra of arbitrary type,

• a Lindström theorem for modal logics extended with fixpoint operators, in par-
ticular, modal µ-calculus,

• Lindström theorems that do not mention compactness and work for modal lan-
guages smaller than LFT such as probabilistic modal logic [14].
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