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Abstract

Coalgebra develops a general theory of transition systparametric in a functof’; the functor?” specifies the possible
one-step behaviors of the system. A fundamental questitmsrarea is how to obtain, for an arbitrary functy a logic
for T-coalgebras. We compare two existing proposals, Mossgebeaic logic and the logic of all predicate liftings, by
providing one-step translations between them, extendiagesults in21] by making systematic use of Stone duality. Our
main contribution then is a novel coalgebraic logic, whieh be seen as an equational axiomatization of Moss’s logdjie. T
three logics are equivalent for a natural but restrictedscta functors. We give examples showing that the logicsafadirt

in general. Finally, we argue that the quest for a genericlfig 7°-coalgebras is still open in the general case.

Keywords: coalgebra, coalgebraic logic, Stone duality, predicdtiadis, Moss-modality, nabla-modality

1 Introduction

When Aczel L] introduced the idea of coalgebras for a funcitais a generalization of tran-
sition systems, he made three crucial observations: (1jebes come with a canonical
notion of observational doehavioral equivalencénduced by the functor’); (2) this no-
tion of behavioral equivalence generalizes the notiopisimilarity from computer science
and modal logic; (3) any ‘domain equatioR’ = T'X has a canonical solution, namely the
final coalgebra, which is fully abstract wrt behavioral equinake

This idea of a type of dynamic systems being represented inycdrT and an individ-
ual system being @-coalgebra, led Rutter2f] to the theory of universal coalgebra which,
parametrized by, applies in a uniform way to a large class of different typesystems.
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In particular, final semantics and the associated prootjmii@ of coinduction (which are
dual to initial algebra semantics and induction) find theitunal place here.

These ideas have been proved very successful. Coalgelrameass such diverse
systems as, for example, labelled transition systethsdeterministic automata2p], «-
calculus processes]| HD-automata 7], stochastic systems$], neighborhood frame<].

Very early on in this endeavour the following question ardéeniversal coalgebra can
cover a wide range of models of computation uniformly ancpwatric in the type-functor
T, can the same be done for logics for coalgebras? The firgiy@answer was given by
Moss R2]. His fascinating idea was, roughly, to taKdtself as a modality. More precisely,
if M is the set of formulas of his language and: T M thenVa € M.

In the case of the power-set funct®;, this modality, denoted a¥, can be defined
using the standard box and diamond: Witke P M a set of formulas, the formul« can
be seen as an abbreviatidn = O\ a A ACa, whereCa denotes the s€tda | a € a}.

Independently of Moss’s work, Janin and Walukiewi@4][already observed that the
connectivesV and vV may replace the connectives, <, A, V. This observation, which
is closely linked to fundamental automata-theoretic aoietibns, lies at the heart of the
theory of the modali-calculus, and has many applications, see for instab@3][ Gen-
eralizing the link between fix-point logics and automataotiyeto the coalgebraic level
of generality, Kupke & Venemalp] generalized some of these observations to show that
many fundamental results in automata theory are reallyrémes of universal coalgebra.

A shortcoming of Moss’s logic is that the connectiVeis un-intuitive for writing out
specifications. 16] was the first paper to propose a standard modal logic forgebaas.
Pattinson 23] discovered how to describe such modal logics for coalgebrgeneral via
predicate liftings The logic £ of all predicate liftings was first investigated by Schribde
[28] and Klin [12].

The second author'?[] started a systematic investigation of the relationshiplogs’s
logic M and the logicC of all predicate liftings. In particular2[l] introduced a special no-
tion of predicate liftings, thaingleton liftings and observed that 1) they generate all other
predicate liftings and 2) they can be translated into Mdssji for all Kripke Polynomial
functors.

We continue this line of research and summarize our cortoibsl as follows:

¢ Coalgebraic logics can extend different underlying prdmosal logics. We investigate
how this choice influences translations between Moss'clagd logic with predicate
liftings.
¢ |f the underlaying logic is classical, i.e. based on Boolalgebras, we
- improve on the result ofZ1] by showing that all singleton liftings for any functd@r
can be translated into Moss's logic, establishing a ong-staslation. — M,
- give a simple description of a one-step translationhoto L,
- show that all expressive coalgebraic logics for a finitanyctor that preserves finite
sets are mutually translatable.

¢ We show that Moss’s logic can be given a more standard equaét{or modal) logic
style by replacing the modal operaf@rby a set of conventional modal operators. This
is based on the well-known fact that any set-fundonas a presentation by operations
and equations?].
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2 Notation and Preliminaries

We useQ : Set — Set®” for the contra-variant power set funcfor denotes the covariant
power set functor anBy the finite multiset functorB3y X consists of all maps (also knwon
as ‘bags’)B : X — N with finite support; forf : X — Y, the functionBy(f) maps
abagB : X — NtoBy(f)(B) : Y — Ngiven byy — X 14 B(z). The finite
distribution functorD follows the same ideaDX is the set of probability distributions
X — [0, 1] with finite support; similarly,D< denotes the subdistribution functor, which
mapsX to {u: X — [0,1] | u has finite support anl,.c x u(x) < 1}; on functions, both
functors act in the same way Bs.

BA denotes the category of Boolean algebras and Boolean horpbisims,BA,, the
category of finite Boolean algebras and all Boolean homohisngs between them, and
Set,, the category of finite sets and all functions between them.

Two properties of Boolean algebras will play an importaé iia our approach: First,
(Stone duality) the contra variant power set functor cangsnsas a functor into boolean
algebrasP : Set — BA“ and it has a right adjoint : BA”” — Set, which maps a
Boolean algebra to the set of ultrafilters (an ultrafilter isaximal consistent propositional
theory). On maps, both functors map a function to its inversege. Moreover, the restric-
tion of P andS to BA,, andSet, is a dual equivalence. Second, every Boolean algebra is
the directed union of finite Boolean algebras, or, more fdigmihe finite Boolean algebras
are precisely the finitely presentable ones.

Other relevant categories for this paper are: the categbuistributive latices and
lattice homomorphisms, denot&d_; the category of frames and frame homomorphisms,
denotedFrm; the category ofk-complete boolean algebras, denoBAl*.

2.1 Coalgebras

Definition 2.1 The categoryCoalg(T") of coalgebrasfor a functor? on a categoryX’ has
as objects arrow$ : X — TX in X and morphismg' : (X,¢) — (X’,¢’) are arrows
f:X — X'suchthatl'fo§ =¢ o f.

Examples are provided by

Definition 2.2 Let I" be a collection of set endofunctors. IAKripke polynomial functar
or I'-KPF for short, is a functol” : Set — Set built according to

T:=I1d|Ke|G|T+T|TxT|PT

where Id is the identity functor, K¢ is the constant functor that maps all sets to the set
C, G €T, andP is covariant powerset functor. If is empty, we just talk about Kripke
polynomial functor§ or KPFs.

Example 2.3 Coalgebras for the covariant power set functor are Kripam#s, also known
as non-deterministic transitions systertk [Slight variations allow to add labels to tran-
sitions or states. Coalgebras for the finite multiset funei@ directed graphs withi-

weighted edges, often referred as multigrap3@.[ Coalgebras for the finite distribution

5 Qisintended to remind df, because oD X = 2X.
6 The term Kripke polynomial functor was coined in RoRig24][
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functor are finitely branching discrete time Markov chaiBg [0 ©-coalgebras are known
as neighborhood frames in modal log#i.[

As shown in the references above, the traditional notiorisifrllarity can be captured
coalgebraically as follows.

Definition 2.4 Two statesz; in two coalgebrasX; are T-bisimilar, or T-behaviorally
equivalent if there is a coalgebréZ, ¢) and there are coalgebra morphisifis (X;, &)
— (2,¢) such thatfy (z1) = fa(x2).

2.2 Coalgebraic Logic

The Stone duality approach to coalgebraic logic assogimt@ssystematic way, to a given
category of coalgebras a suitable category of modal algeBitsis category of modal alge-
bras then embodies a suitable modal logic for coalgebras b@kic example is to consider
coalgebras ove$et and logics which extend Boolean propositional logic, tkatie are in
the following situation:

P
Lt (CBAZ Zset )t 1)
S
A coalgebraic logic is a functok. together with a natural transformation: LP — PT.
Usingd we can associate to7a-coalgebre : X — T X its dual L-algebra

P = Lrx 2 prx 29,

PX. 2
The logic is gixen by the initialL-algebralLl — I, the semantics by the unique arrow
[1xe : I — P(&), mapping aformulg € I to the set of statefgo] = {z € X [z I ¢}

Remark 2.5 It is important to understand thdt only describes how to add one layer of
modalities: If A consists of Boolean formulas, thdnA consists of modal formulas in
which each formula € A is under the scope of precisely one modal operator. Thalititi
algebra is obtained by iterating this construction andaostmodal formulas of arbitrary
depth. Moreover[. can take into account not only the syntax, but also the axigatan of
the logic, as revealed ir8) below. To capture these by a functor, it is essential toicens
L on BA and not simply orbet.

One advantage of this functorial approach to modal logieas(t_, §) gives us a syntax-
free description of the logic. Properties of the logic carekgressed by abstract properties
of (L,0), for example,(L,d) is complete iffd is injective [L3,18]. It is also possible,
without any consideration of syntax, to generalize frompKe frames to all KPFs (and
beyond) the Jonsson-Tarski theore2d][and the Goldblatt-Thomason theorefr8].

Concrete descriptions of logidd., §) are usually obtained by presenting the funcior
Presentations of functors are analogous to presentatfaigebras and studied in detail in
[4,20]. For our purposes, the following example should suffice.

Example 2.6 ConsiderT’ = P, ie, coalgebras are Kripke frames (unlabelled transition
systems). So we expect to have standard modal logic, giveméyinite-meet preserving
modal operatod. Accordingly, we definelp : BA — BA to map an algebral to the

4
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algebralp(A) generated byda, a € A, and quotiented by the relation stipulating that
preserves finite meets, that is,

OT=T O(a A b) = Oa A Ob (3)
(0p)x : LpPX — PPX is defined by
Oa+— {b€ PX |bCa}, 4

so that we obtain the usual semanticsdotating that a sét of successors satisfi€s iff
b C a.

The previous example shows how modal operators correspogenerators, and how
modal axioms correspond to quotienting freely generatgdbmhs. It is not difficult to
check that withbp and the semantics o2) we obtain the usual semantics of modal logic.
The details of how the example can be inductively extendeabtain a logic(Lr, é7) for
each KPFI" can be found in19]. Although these logics are defined by syntax and axioms,
all the good properties they enjoy flow from the following s&afree characterisation.

Proposition 2.7 Let T be a KPF. Ther(ér)x : LyPX — PTX is an isomorphism for
all finite setsX.

As a consequence one obtains for example:

Corollary 2.8 For any KPFT the logic(Ly, é7) is sound and complete.

3 Two Coalgebraic Languages

The Stone duality approach, presented in the previousosgeatan be generalized to any
concrete categoryl equipped with a functoP : Set — A°P such thatU P = Q. Intu-
itively this means that power-sets are algebrad iand the inverse image of a function is a
morphism ofA-algebras.

P

L (AP TSet )1 (5)

RN

Set?

Definition 3.1 A category A is said to be a categonyith power-set algebrag (1) it is
a concrete category ovéet. (2) The forgetful functol/4 : A — Set has a left adjoint
Fy : Set — A. (3) There exists a functaP : Set — A° such thal/ 4P = Q. (We will
often drop the subscripts.)

Examples of categories with power-set algebras are: setsi-lattices, distributive
lattices, framesgk-complete Boolean algebras, completely distributiveidast, complete
atomic Boolean algebras. This general perspective on ebad@ languages will help us
to illustrate the importance of the underlying logic to deftranslations.
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3.1 Moss’s Logic

Moss’s logic can be given for an arbitrary functbr: Set — Set preserving weak pull-
backs. Examples of such functors are(&l;, D)-KPFs, but not the functo@ Q.

In the original version22], Moss showed that his coalgebraic logic characterizembis
ilarity of T-coalgebras. Becauge may permit unbounded branching, this purpose needs
infinitary conjunctions in the logic. Here our interests alightly different. To specify
properties of coalgebras we want all Boolean connectivasotly finitary ones. Accord-
ingly, we will work with the finitary versiori;, of T

For convenience, and without loss of generalRj; {ve assume thaf’ is standard, that is

T preserves inclusions and the equaliger— 1 = 2. Under these assumptions we can
define the finitary version df by 7, X = [J{TY | Y C X,Y finite }. A functor is said
to befinitary iff T = T,,. For exampleP, X is the set of finite subsets &f .

Definition 3.2 Moss’s languageM  is the smallest set closed under Boolean operations
and under the formation rule ‘tk € T,,(Mr) thenVa € M7’ (we will often drop the
subscriptl’).

Following Diagram 1), we now cast this definition in terms of a functor BA. More-
over, we generalise frofBA to a category4 with power-set algebras.

Definition 3.3 Let A be a category with power set algebras, and/letSet — Set be a
weak pullback preserving functavloss’s logic forl" in A is given by the functor

FTLU=Mp: A— A.

Following Diagram 2), to define the semantick/P — PT, it is enough to give
a natural transformatioff,, UPX — UPTX, orTQ — QT. To this end, we let
V : T,Q — 9T be the natural transformation with the following compoeiin element
d € T,0X is mapped to

V(@®)={acTX|aT(ex) d}, (6)

whereT (€ x) is the relationTX « T(c€x) — TQX obtained from applying to the
membership relatioX «—ecy— 9X.

Remark 3.4 The above procedure can be applied to any binary relafloa X x Y,
yielding a new relatio’(R) C TX x TY, which is called theelation lifting of R.

Definition 3.3and @) give us syntax and semantics of Moss’s logic over varioop@r
sitional base logics. We would like to make the following

Remark 3.5 (i) In the caseA is the category of Boolean algebras, the carrier of the
initial M algebra is the quotient 0¥1, under Boolean equivalence, so baéth- and
M give us essentially the same information.

(i) As indicated in the introduction (see also the exammoty), in case ofl’ = P and
A = BA, we obtain a logic which is equivalent to the standard modgicl of O
and<. It is well-known that this finitary logic does not charadser bisimilarity for

7 WV is thesemanticsof V.
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infinitely branching transition systems. But the followivgysion of Moss’s result still
holds: If the functorT is finitary, thenM characterize§ -bisimilarity (behavioral
equivalence). This result remains true if we instantidtavith DL or meet-semi-
lattices.

Example 3.6 (i) In the case of the identity functdld, the operato’V : I1dQ — QId
is the identity and Moss'’s logic is just that of determirddtiansition systems\y =
Op = Op). Explicitely, a stater in a coalgebrg satisfiesVy iff £(x) € [¢].

(ii) In the case of a constant functdf, the operato’V : KocQ — QK maps an
elementd € C' to the sef{d}. A statex in a coalgebrg satisfiesVd iff £(z) = d.

(iii) In the case of the covariant power set funci@ris given by
aeV(@)iff Vpe® . TJxca.zcp)andVz ea.Tp e .z € p).

It is well-known (and not difficult to check) that in this caBss’s logic (overBA)
is equivalent to classical modal logic, that is, thereteaaslationsin both directions:
Va=0VaA ACaanddp = V{p}V V), Cp = V{p, T}.

(iv) Inthe case of the finite distribution functor, we can d#ze the operatoV noticing
that forb € D(X) and B € D(QX) the relationb D(cx) B can be described as
follows. First note thab = (x;, p;)1<i<, fOr somex; € X, p; € [0,1],p; > 0,n € N;
similarly B = (¢, q;)1<j<m for p; € QX,q; € [0,1],¢; > 0,m € N. Then
bﬁ(EX) B iff there al’e(’l“ij)lgign,lgjgm, Tij € [0, 1] such thaty; Q PYj = Tij = 0
andzi Tij = q; andzj Tij = Di-

For example, a statein a coalgebrg satisfiesV{(y,q),(T,1 — q)} iff the prob-
ability of going to a successor satisfyingis larger or equal tq. That is,V (together
with Boolean operators) can express the usual modal opsratgrobability logic
[10].

In the case of the finite multiset functor we have the samerifiiern, just replacing
[0, 1] by N. For example, a statein a coalgebra satisfies
e V{(T,n)} iff 2 has exactlyn successors;

e V{(¢,m),(T,n)} iff = has at leastn successors satisfying and exactlym + n
successors in total;

In fact, eachV-formula specifies the total number of successors. The paded

modalities can therefore not be expressed.

As mentioned in the introduction, there are at least twovatitins for av-based approach
towards modal logic: (1) In applications to automata the&fbased modal logic works
better because one may almost eliminate conjunctions fnerfanguage. This observation,
which is closely linked to fundamental automata-theoretiostructions, lies at the heart of
the theory of the modal-calculus, and has many applications, see for instabdd,R7].

(2) Moreover, as we saw allows coalgebraic generalizations. This has been used, se
[15,29], to show that many fundamental results in automata themyeally theorems of
universal coalgebra.

3.2 The Logic of All Predicate Liftings

For any endofunctdfl’ on Set, we define an endofunctdr; on the categorBA of Boolean
algebras. The idea is the following. Going back to Exanth& we defined) and then

7
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proved that, on finiteX, § : LP — PL is an iso (Propositior2.7). We now turn this
around and essentially use it as a definition.

Definition 3.7 Ly : BA — BA is defined, on finited, asLrA = PTSA. Since every

Boolean algebral is the directed union of finite subalgebraswe let L1 A be the directed

union of theL 1 A;. § is given byLr P = PT'SP = PT onfinite X and extended uniquely
to arbitrary X.

Example 3.8 For P the functorL has been described explicitly in Exam2l&

As shown in RQ|, L can be represented by operations, where wetaké'n as the set
of operations of arity: (identifying the number with a set ofn-elements). Calculating
ULFn = UPTSFn = QT(Qn), which, by the Yoneda Lemma, is the set of natural
transformation®Q” X — QT X, or, in more familiar notation(2")* — 27X Explicitly
this is:

Proposition 3.9 There is a natural isomorphism (natural inand QT")
Yinr) : QTQ(n) — Nat(Q", QT).

Proof. Recall thatQ"X = Hom(X, Qn). We define a bijection betwee@7 (9n) and
natural transformation®” X — QT X as follows: anyp € QT'(9n) gives a predicate
lifting that mapsv : X — Qn to QT'v(p). Conversely, for eachy : Q"X — QT X we
havelo, (id) € QT (Qn). 0

The proposition holds for any contravariant funcforand not just for for the functor
OT; this fact is known as Yoneda Lemma. It shows that our opmwatiof arityn are
precisely thepredicate liftingsof arity n in Schroder 28]:

Definition 3.10 Given a functorT’ : Set — Set, ann-ary predicate lifting is a natural
transformationQ” X — QT X.

Proposition3.9 tells us that predicate liftings of arity can be identified with subsets
of T'(2™); this is particularly useful to present examples of pretiddtings.

Example 3.11 (i) Let T be the covariant power set functor and2et= { L, T}. The
existential modality> can be presented using an homonymous predicate lifting®
— QP, with the followings components x(A) = {U C X |ANU # 0}. Using
Proposition3.9, we can see that this corresponds to the[§ét}, { T, L}}. Similarly,
the universal modalityd can be presented as a predicate lifting (A) = {B C
X | B € A} (compare this with4)). By Proposition3.9, this predicate lifting is
associated to the séf, { T} }.

(if) Let T be the finite distribution functor. The modality, specifies a probability of
at leastp for the event of going to a successor satsifyinglt can be described by
the predicate liftinggX — OTX, a — {d € DX | pq(a) > p}, wherepy(a) =
> zcq d() is the measure associated withBy Propositior3.9, this predicate lifting
corresponds to a subset Df2). If we describe a probability distributiod : 2 —
[0,1] by its value onT (d(L) = 1 — d(T)), we find that{, corresponds to the
set{qg € [0,1] | ¢ > p}. Similarly, the predicate lifting associated to an intérva
(¢,4") € [0,1] maps a set C X to the set of probability distributions ovef that
assign a probability betweenandq’ to the seta.

8
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We can also define a logic for any set of predicate liftingas follows:

Definition 3.12 Let A be a set of predicate liftings. The functby, : 4 — A mapsA
to the freed-algebra generated by alla4, . .., a,) whereX € A, n is the arity of\, and
a; € UA. We write L, or justL, if A is the set of all predicate liftings.

More explicitly, we can describe the functés, for a single predicate lifting\, to be
Ly = FU™, wheren, is the arity of\. In general we havé.y = J[,., L. We can
also define the language of all predicate liftings based on Boolean logic as follows (in
future, we will usually drop the subscrif?).

Definition 3.13 L is the smallest set closed under Boolean operations and threleule
ifn<wl1l<i<n,g €Lp, A€ QTAn = Nepi1,...0p) € L.

This perspective of languages with predicate liftings witbve to be useful to general-
ize the results in41].

4 Translators and A-Translators

In this section we will investigate under what circumstane® can find translation from
the V-logic M into the logic of all predicate lifting€ and vice versa. Let us note first that
we are not interested in showing only that every formul&ihas an equivalent formula
in M (and v.v.). Rather we want an inductive definition of the $tation, which respects
the one-step nature (see Remark). This stronger property of one-step translations is
captured by natural transformatiohs— M andM — L.

4.1 One-step translations

We start by defining translations between coalgebraic $ogi©ur notion of coalgebraic
logic assumes a category of power-set algebras as in Definiti@l, a functorL : A
— A and a natural transformation: LP — PL, as explained in Sectich2

Definition 4.1 Given two coalgebraic logidd., d2) and(Ls, d2), a natural transformation
v : L1 — Lo is aone-step translatioif it commutes with the semantics:

L.P vP

N

1
PT

02

A one-step translation can be understood as an inductiveititefi of a translation
between the associated logics. Indeed, givenlanrglgebrals A — A we obtain anl; -
algebraL; A 22 L,A — A; moreover, since is a natural transformation any morphism
f A — A of Ly algebras is also a morphism between the correspontirglgebras.
Denote byL;I; — I; the initial L;-algebras. Using this observation, we find, by initiality
of I, an inductively defined morphism @f;-algebras/; — I which translates formulas
in I; to formulas inl,. Notice that it is important that is a natural because this allows to
map a morphism of.o-algebrasly, — A to a morphism of.;-algebras.

9
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4.2 Translating Predicate Liftings

We are looking for a natural transformatidn — M (see Definitions3.12and3.3). To
do this, we need to translate predicate liftingéto V. Note that every predicate lifting
A Q" — QT and the natural transformatid¥ : 7,,Q — QT share the codomain but
have different domains (the subscriptbelow corresponds to the one in DefinitiBrB).
This motivates the following definitior2fl].

Definition 4.2 A translator for a predicate lifting is a natural transformation : (Q)"
— T'Q such that
Q" g 7.,Q

NP

Example 4.3 Consider the predicate lifting associated with the exisémodality & of
the covariant power set functor (Exam@e.l). It has the translatory : QX — P,0X
mapping an element C X to 7x(a) = {a, X}. Compare with the equivalencgy =
V{p, T} discussed in Exampl&.6.

For more see Exampk 6 below. The idea of a translator is to define a one-step trans-
lation ¢r via

tr(Ap) = Vr(tr(e)). @)
Unfortunately not all predicate liftings have translators

Example 4.4 Let K be a constant functor wher@ has at least two distinct elements
c1,c9. Using Proposition3.9 (see also Exampl8.11), predicate liftings correspond to
subsets of”. The predicate lifting\g corresponding t&Z = {c;,c2} does not have a
translator. This is because the components of a naturalftnamationr : Q@ — K¢ are
constant functions, hence the cardinality\af (X ) is always 1, butp X = E. Neverthe-
less, notice that the formulc; V Ve, translates the predicate liftingy.

If we look back at Equation7)), we can see that translators produce “simple” transla-
tions not involving operators such & Accordingly, translations will involve translators
as well as propositional operators. First, we need to knovg &ough class of predicate
liftings that do have translators.

Definition 4.5 ([21]) An n-ary predicate lifting\ is called asingleton predicate liftingor
a singleton liftingfor short, if it is associated (via Propositié9) with a single element
p € T(2"), ie, if the following holds: Giverp : n — 2%

Ax(p) ={t e TX |T(xy)(t) = p}, (8)

wherey,, : X — 2" is the transpose @f. If X is a singleton lifting, we write i\, or just
p, wherep is the associated elementB{2").

Example 4.6 (i) If T"is a constant functor with valug, then the singleton liftings far’
are associated with elements C'. The X-component of a singleton lifting.. is the
function A\, : QX — QK¢ with constant valugc}.

10
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(i) If T is the identity functor and we assure= {T, L}, then there are two singleton
liftings of arity 1 for Id. The X-component of\r is the identity. Similarly, theX-
component of\ | is the function(\|)x : QX — QX mapping a sep C X to
A1 (p) = —xp to its complement.

(iii) The covariant power set functor has four singletotiriis of arity 1, explicitely these
are associated witl(2) = {0,{T},{L},{T,L}}. Givenasetp C X, the action
of these predicate liftings is (we drop the subscrifis

A1) ={U ePX[0#UCo}; Miy(p) ={U e PX|D#U C ~xp};
Ao(e) ={0} AMr3(0) ={U e PX|UN~xp#0#UnNe};
Note that they all have translators, corresponding{e}, V{-x¢}, V0, V{p, - x ¢},
respectively.

(iv) If T is the finite multiset functor, a singleton lifting is givery la pair of natural
numbers(n,m). Its X component(n,m) : QX — OByX, maps asep C X
to the set of bags ovek with n + m elementsy of which are inp andm are in
the complement of. Such a predicate lifting has a translator as it correspomds
V{(¢,n), (—x¢p,m)}, in the notation of Exampl8.6.

(v) If T is the finite distribution functor, a singleton lifting isvgin by a real number
q € [0,1]. The X-component ofg maps a setp C X to the set of probability
distributions overX that assign probability; to the setp. Such predicate liftings
have translators as they correspond\ié(y, q), (—x¢,1 — ¢)}, in the notation of
Example3.6.

The second author'2]l] started the study of singleton liftings because: (1) In ¢hse
of KPFs they can be presented inductively over the complefithe functor, and (2) by
Proposition3.9they generate all the other predicate liftings:

Proposition 4.7 (21]) If X\ is ann-ary predicate lifting associated with a setC 7'(2"),
then for every seX’ and evenyh-sequence : n — QX we havedx () = U,cp(Ap) x ().
In other words, every.-ary predicate lifting can be obtained as a (possibly inéhijpin of
singleton predicate liftings.

Example 4.8 Going back to Exampl&.11 the predicate lifting for3 is Agg (11, It does
not have a translator but is the uniog U Aty of two singleton liftings, which have a
translator by Examplé.6. Similarly, the predicate lifting fo> is A\((t 1} (1} = M,y U
A1y- Incidentally,& does have a translator, see Examplé

The starting point of the present paper was the discovetysthgleton liftings always
have translators. The proof is based on the following lemwtach also plays a crucial
role in [14]. The proof of the lemma is immediate from the fact that thenposition

x =} ox 2. X of relations is the identity.

Lemma 4.9 Consider{—}4 : A — QA, to be the singleton function i.e.— {a}. Then
VooT({-}o) ={-}re.

Using this we can prove the following result.

Proposition 4.10 Let 7" be a weak pullback preserving functor. Then each singletng
Ap has atranslator. Moreover, the translator is associatethWi({—}¢o)(p).

11
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Proof. Consider the following diagram

Y,
Nat(Q", QT) ~— 208D opa {=}rom)
Vo (-) V\ / Yom))
Nat(Q",TQ) Q 7o) TOQ(n

The parallelogram on the left expresses the naturality ofeda Lemm&.9, hence com-
mutes, the triangle on the right commutes by Lenshta The upper edge maps an element
in p € TQ(n) to the associated singleton lifting,. The commutativity of the diagram
implies that the natural transformation associated &ith—} o(,,)) (p), Which is a natural
transformationQ™ — T'Q, is a natural translator fox,,. O

Notice that translators almost define one-step translatdosvever, we have to make
sure thatr in Equation 7) is definable in the logic. This is not always possible as the
following example shows.

Example 4.11 Suppose we replace, in Definiti@?3, A by the categorpL of distributive
lattices, that is, we work with a positive Moss logic withsmégation. Consider” to be

the identity functor and the predicate lifting, : @ — Q given by complementation.

In this example,V is the identity and complementation : @ — Q is a translator for

A. However, all the operators iV ;; are monotone, therefore all the definable terms are
monotone, which implies that negation is not definable. heptvords, we cannot translate
AL into My,.

The example shows that the underlying category plays asaldether translations are
possible: A | ¢ can be translated into&-formula overBA but not overDL. This leads us
to refine the notion of translator to that of altranslator. Intuitively, and-translator is a
translator that is natural wrt td-morphisms. We will show later that all translators can be
extended tBA-translators.

Definition 4.12 Let A be ann-ary predicate lifting,4 a category with power-set algebras,
andU : A — Set the forgetful functor. And-translator  for A is a natural transformation
7: U™ — T,U such thatrp is a translator fon (recall thatyU P = Q).

If the categoryA is clear from the context, we often call afrtranslator alogical
translator. We say that the logical translaterextends the translatotp. If there exists an
A-translator for), we say that the predicate liftingis .A-translatable.

Example 4.13 (i) In Example4.11, 7 = — extends to aBA-translator, but not to a
DL-translator.

(i) Consider the predicate lifting associated with theseamtial modality> as in Exam-
ple 4.3. We define a8BA-translatorr: Given a Boolean algebrd, with carrier A, the
functiong : A — PA maps an element € A to mo(x) = {x, T }. Notice that this
BA-translator is also anl-for any category4 of power-set algebras and induces the
following translationtr($p) = V{tr(y), T}.

12
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(iif) We can ask which predicate liftings havétranslators for all categoried of power-
set algebras. These are precisely what we call the Mosgjliftisee Remar&. 7.

The main property of logical translators, as suggested &ptavious examples, is that
they produce translations:

Proposition 4.14 Let A be a set of predicate liftings, each of which has a logicahsiator.
Then can we find a one-step translatiby — M.

Proof. Foreach\ € Aletr, : U™ — T,U be a logical translator. Combining those we
obtainamagd [, , U™ — T,U, the image of this map under the left adjointléfis the
required translatiod., — M. 0

5 Translating with Classical Logic

In this section, we will produce one-step translations (fidin 4.1) between Moss'’s logic
M (Definition 3.2) and the logicLy (Definition 3.13 of all predicate liftings. The
main technical result is that that translators (Definitdb) can always be extended to
BA-translators (Definitiort.12).

The translations rely on some conditions on the type furiEtand on the propositional
logic being Boolean. Accordingly, in this section we alwagsume our logic is based on
BA. If we would like to extend the results oL, we should modify the notion of predicate
lifting by working with endofunctorsl” over the category of ordered sets and replace the
functor Q by the down-set functor. We do not pursue this issue here.

5.1 From/[to M

Lemma 5.1 Every translatorr : 9" — T,,0 can be extended to B A-translator, i.e. a
natural transformation/™ — T,,U, whereU : BA — Set is the forgetful functor.

Proof. (Sketch.) Recall that (1) every Boolean algebra is the téecolimit of finite
Boolean algebras and (2) every Boolean algebra morphiswebetfiniteBAs arises from
the inverse image of a function between sets. Because ofg®we that : U — T,,U,,
is natural wherel/,, : BA, — Set is the restriction ofU to finite Boolean algebras.
Because of (1), we can extendfrom U,, to U. This makes the translator into a BA-
translator. O

The lemma does not hold for other categories of power-sebadg. But foBA, we
obtain

Theorem 5.2 If T preserves finite sets and weak pullbacks, there is a onestegation
Ly — M.

Proof. (Sketch.) LetL, be the functor given as in Definitidh12, but using only singleton
liftings. Becausd preserves finite sets, every predicate lifting can be egprkas a finite
join of singleton liftings (Propositiod.7), hence we have an isomorphisin= L,. Now

let A be a singleton lifting and let be the corresponding translator (Propositdi0).
Extendr to a logical translatot/™ — T,,U as in the previous lemma. This gives a natural
transformatior/™ — M. Doing this for each singleton lifting and combining all bése
logical translators we obtain a translatibg — Mr. O

13
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Notice that Exampled.11, and4.4 show that to translate all predicate liftings, we need
at least classical logic. The following example shows thatd¢ondition ofI" preserving
finite sets can not be avoided.

Example 5.3 If the functorT does not preserve finite sets, not every predicate lifting ca
be translated into Moss’s language. [ébe the constant functor with valie let £ C N

be the set of even numbers. If we are working oBéy, the predicate lifting\ can not
be translated into Moss’ language. Consider the coalgabea (N, 1) and the formula
AgT. On the one hand, this formula defines the set of even numbersjAT] = E.

On the other hand, we can check that using Moss’ language werdg define finite and
cofinite sets; therefore we conclude that the predicaiadift z can not be expressed into
Moss’ language oveBA.

The following translations are illustrations of the praxsaheorem.

Example 5.4 « Exampled.11is aBA-translator obtained using the previous theorem.

 Let (n,m) be singleton lifting for the finite multiset functor (Exanept.6). We define
a BA-translator for(n,m) as follows: Given a Boolean algebgg with carrier A, the
function Ty : A — ByA maps an element € A to the following bag: B, ,, ) : A
— N

B n,m)(T) = 1, By pm)(—aw) = m and B, ,, ) (a) = 0 for any other element.

This logical translator induces the following translatig(n, m)a) = V B(a),n,m)-

5.2 FromMto L

Our next step is to find a translatidd, — L. Note that we do not expect a natural trans-
formation M7 — L7 because eacW-formula corresponds to many different formulas of
L7 (see also the next section). BOt(Definition 3.7) already quotients out by one-step
logical equivalence, thus identifying all equivalent farias.

Theorem 5.5 For all weak pullback preserving functoi there exists a one-step transla-
tion My — L.

Proof. If we restrict to finite sets and finite boolean algebras, weehan isomorphism
v : Id — SP (see Diagrami)) and then the following natural transformation

T.UP Yo UPT — v UPTSP

which can be freely extended to a natural transformation: MyP — LpP. Since
everyBA is a directed colimit of finite Boolean algebras of the foftiX for finite X and
since M preserves directed colimits, we can exténdo a natural transformatioth: My

—>LT

MpA—b4

LrA

MPx )X 1 px

which is a one-step translation (Definitidil). O
14
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Again, the theorem is specific ®A. On the other hand, it is a particular instance of a more
general result. Namely, if we are working oM8A, all expressive coalgebraic logics for
a finitary functor that preserves finite sets are equivalest,mutually translatable. This
Lindstrom like theorem is formulated in the next theorem.

Theorem 5.6 Assume thal” that preserves finite sets and thiats a complete and expres-
sive coalgebraic logic. Then for all coalgebraic logi€s$ there is a one-step translation
7 : L' — L. Moreover, ifL’ is complete and expressive as well, theis an isomorphism.

The proof is exactly as the one used in the case of Moss’s.ld¢ie natural transformation

/ —1
7 can be obtained as the extensionéPX —— pPTX 2, Lo PX, whered’ andé are
the natural transformations inducing the respective séiogrT his relies on the fact thdt
is complete and expressive & is iso on finiteX .

6 Equational Coalgebraic Logic

The aim of this section is to apply our translation. We dollyipresenting Moss'’s logic us-
ing only conventional operators, i.e. predicate liftingsl ahowing how the axiomatization
of Moss’s logic from [L4], gives rise to a standard modal axiomatization. One adwggnof
such an equational version of Moss’s logic is that one casar&nown logical methods. For
example, in a logic given by predicate liftings, the subfolas of a formula\(¢1, ... ¢,)
are thep;. But what should be the subformulas Ofx, if all we know abouta is that
a € T,(Mr)? Or how to state tha¥ is monotone? Or what does congruence mean? All
these questions can be answerkd4,[but this requires some technical work, which can be
avoided in the equational presentation.

To presentM we use the fact that every finitary functéy, is a quotient of a polyno-
mial functorX:

X =[]0 x X" X TX. 9)
n<w

Such quotient is called presentation (X, E) of T,, by operations and equation&:,
is called the set of operations of arityand the equations definirifj, are the kernel of
Ex (for some countably infinite set of ‘variable&X’) (for more on set-functors and their
presentations see Adamek and Trnkozj. [

Example 6.1 P is a quotient of the list-functokist(X) = [, ., X". Ex maps lists
(xo,...x,) to sets{xg, ...z, }. The equations given b are the usual equations defining
sets from lists (expressing that order and repetitionstdoatter).

Remark 6.2 Every finitary functorT,, has ecanonical presentationgiven byX,, = T,,(n)
andEx (p,v) = T(v)(p) forp € T'(n) andv : n — X.

Using the presentation, we can compute relation liftingsnilark3.4). The following
lemma is the key stone for our development of equationalgedsibic logic

Lemma 6.3 Let R be a relation betweeX andY and T a finitary endofunctor ordet.

For everyt, € TX andt, € TY the following conditions are equivalent:

e t, T(R)t,.

e There existg < w,r € T'(k),a : k — X, andb : k — Y such thatT'(a)(r) = t,,
T(b)(r) = ty, and(Vi € k)(a; Rb;).
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More informally, we read the lemma as
to T(R)t, iff t,=r(a,...ar) andt, =7r(by,...by) and a;Rb;

where =’ refers to the equational theory of the presentatiofi’ of

Proof. The proof is straightforward from contemplating the folloggcommuting diagram

b by
sx ) gp B oy
Ex Egr Ey
TX TR TY (10)
T(mx) T'(my)
and taking into account thdfy, is surjective (due td finitary). O

6.1 The logicr

Given a presentatiofX:, E') of T,,, everyp € 3, gives rise to am-ary predicate lifting

E _
on o(p,—)

T,Q
AP v
orT (11)

If (3, E) is the canonical presentation, we call a predicate liftingirg in this way a
Moss lifting. The set of all Moss liftings can be identified wigh,, _ , 7., (n) (notice that if
(X, E) is any presentation df there is a canonical functiod,, — T,,(n)).

Example 6.4 (i) Let T = 1 + Id (deterministic transition systems with termination).
For each arityn there is a Moss lifting\);, which indicates termination; this lifting
corresponds to the unique elementlofAll other Moss liftings of arityn correspond
to the elements of. Forp € n, the Moss lifting\? maps a sequence: n — QX
to the setp,. Using Moss liftings we can see that if the system is detestinthere
is no need go beyond arity.

(i) Let T = P (non-deterministic transition systems). Moss liftingsaoty »n are asso-
ciated with subsets of. Letp be one of those subsets. The Moss liftilgmaps a
sequence : n — QX to the set

MN(p)={aePX|Vzrea)(Ticp)(zep)N(Viep)(3rea)r e p)}

(i) Let T be the finite multiset functor. Moss liftings of aritycorresponds to bags: n
— N. The predicate lifting associated with such a hamaps a sequence : n
— QX as follows. The pai(p, ©) can be considered as multiset oKX (p; being
the multiplicity of ;). It is then mapped b\ according to Exampl8.6.

Definition 6.5 Given a presentatioi®, E) of T,,, the IogicIC<TZ’E> is the logic (Defini-
tion 3.12 given by the set of predicate liftings’, p € >,. We simply write/Cr if the
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presentation is clear from the context or the canonicalgm@sion. The corresponding
functor is denoted by<r : BA — BA.

In[21] the natural transformatioR was used to translate Moss’s logic into the language
of predicate liftings. The translation is based on the factelacha € T, X there exists a
pair (p,v) € T,,(n) x X™ such thatFx (p,v) = . Thus formulasva can be replaced by
formulas\? (¢4, . .. ¢,,). More formally we have.

Proposition 6.6 (21]) For every formula inM there exists an equivalent formula;, .

Remark 6.7 By definition, seel1), every Moss'’ lifting can be translated into Moss’s lan-
guage, or more technicallfyo x (p, —) is a translator fon\? in the sense of Definitiod.2
Moreover, it is also amd-translator (Definitiord.12) for all category.A with power-set al-
gebras (Definitiorb). Conversely, instantiatingl with Set, we find that Moss liftings are
the only predicate liftings for which we can find-translators for any4d. Thus we may
say: The Moss liftings are precisely the totally transligiredicate liftings.

Another important property of Moss liftings is that they amenotone:

Proposition 6.8 Let \P : @™ — QT be a Moss lifting; letp, v : n — QX be sequences
of sets. If(Vi)(¢; C i) thenAP(p) C AP(3).

Proof. Let E(p, —) be the translator ok?. Using Lemmé&6.3we see thatvi)(p; C ;)
implies Eg(p, ) T(C) Eo(p,). Applying V on both sides of the previous inequality
will transform T(C) into C; we conclude\’(p) C AP(1)). O

This has the following important corollary.

Corollary 6.9 For every weak pullbacks preserving funciiothere exists a set of mono-
tone predicate liftings such that the logig, is expressive. The satis that of Moss liftings.

Remark 6.10 Finding a monotone set of predicate liftings is importantcoalgebraic
modal logic, as it opens the possibility of adding fix poinge@ators. The previous propo-
sition solves this problem in the case of weak-pullback gmésg functors. As far as we
know, the general problem for non-weak pullback preserfimgtors is still open.

6.2 A complete equational proof system for
Now we will present a proof system to describe logical edeivee between formulas built
from Moss liftings. [L4] presents the following complete and sound system foRtHegic.
(V1) AM{Valae A} <V{VT(N\)®|® € SRD(A)}.
(V2) VT(\)® < V{Va|aT(€)®}. (V3) Froma<ginfer-y Va < Vg3
where o € TyM, A € PoTuM, ® € Tu,PuM

Space forces us to refer ti4] for details. Intuitively, ¥1) eliminates conjunctionsM2)
distributes disjunctions over thé and (V3) is congruence. But note that these intuitions
are not expressed in standard logical concepts, ¥.4) ivolves applyindl’ to the map\ :
P,.M — M and the congruence rule uses relation lifting instead opliraubstituting
terms into operation symbols. This can be avoided by movimg M+ to K, as we show
in the following.

To emphasize the equational axiomatisatiol"afie introduce
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Notation 6.11 Given(p, a), (¢,b) € %, x X™, we writep(a) for (p, a) andq(b) for (¢, b) 8
and

p(a) =r q(b) iff T(a)(p) =T(b)(q) (ieiff Ex(p,a)=Ex(q,b)).
Example 6.12 In the case of the canonical presentation we have.
(i) f T=1+1id, p(a) =7 q(b) iff p=g=xo0ra, = b,.
(i) f T =P, p(a) =r q(b) iff {a;]i € p} ={q;]Jj € q}-
(i) If T = By, pla) =p q(b) forp : n — N, ¢ : m — N iff there is a matrix

(Tij)lgign,lgjgm such tham-j = a; = bj and Zz Tij = qj and Zj Tij = Pi, S€E
Example3.6.

The key concept behind11) is that of a redistribution.

Definition 6.13 A redistributionof a setA C XX is an elementq, ¢)) € T,,(n) x (QX)"
such that: for eackyp, a) € A there existg: < n,r € T'(k),b: k — X andy : k — QX
such that

r(b) =r p(a) A r(p) =r q() A (Vi)(bi € ¢i). (12)
Let|A| = {a; | (p.a) € A}. Aredistribution(q, ) is slimif n < 2I4l and|J,,, ¥ C |A|.
The set of slim redistributions of is denoted>RD(A).

‘Slim’ makes sure thaE RD(A) is finite if A finite.® (V1) now becomes
=) A(@I(pa) € A} <\/{N(A W) |(g,¢) € SRD(A)}.
where 1 is short for(A 1 ... A\ ¥n).

Remark 6.14 (X1) simplifies some, but not all aspects @¥1). In particular, it does
not replace the notion of a redistribution in the senseldf by something fundamentally
simpler: AXRD lives in the upper row of DiagramlQ) and has been defined so that
it matches the notion fromilf] living in the lower row. One way to understand our ax-
iomatisation in general, an@1) and (2) in particular, is as afmmplementatiorof the
axiomatisation in14]. Indeed, givenA as in(V1) or (X1), to apply the axiom we need a
join over a sulfficiently large set of redistributions 4f (12) tells us how to compute this
set using the equational theory,. For such computational purposes, one would not work
with the canonical representation but rather a smaller snegagiven for the powerset in
Example6.1

To translate V2) we make

Definition 6.15 A coredistribution of an element{q,v) € ¥QX is an elemen{p,a) €
¥ X satisfying (2) and a injective. The set of coredistributions @¢p, ) is denoted
CRD(p,v).

Now (V2) can be written as follows:

(2)  W(\/¥) <\ {N(a)|(¢.a) € CRD(p.¥)}.

8 To emphasise that andq denote operators acting on formulas.

9 Our notion is derived from the corresponding notion ][ |A| is the ‘base’ ofEXFA] and the cardinality restriction
onn derives from the one inlH4] plus conditions (1-3) in the proof of the theorem below. ritovants to work with a non-
canonical presentation @f,,, one has to make sure that (1-3) still hold or modify the boiandh. It may also be possible to
find better bounds for particuldr.
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One advantage of our equational axiomatisation is thattled ¥ 3) reduces to the standard
congruence rule of equational logic. In summary we have:

Theorem 6.16 Let (3, E') be the canonical presentation @f,. The derivation system
given by the equational logic fof and the axiom&:1 and ¥2 on top of a complete equa-
tional presentation for classical propositional logic isud and complete for the logic
Kr.

Proof. (Sketch) Letr be the translation of Moss liftings into tAé-logic obtained from the
translatorsE(p, —). Sincetr is onto, the axiom&1 andX2 are translated into instances
of the axiomsV1 andV2; and vice-versa.

To see this for(31), we use Lemmd.3 as well as the following observations on
standard functord,. (1) For all (p,v) there is(q,w) =~ (p,v) with w injective. (2)
Elem, = {(p,v) | E(p,v) = x,v injective } has an initial elementp, v) in the sense that
V(q,w) € Elem, . 3f : dom(v) — dom(w) . Tf(p) =¢q. (3) If (p,v) € Tn x X™is
such an initial element, them, or more precisely, the image of is thebase(see [L4]) of
E(p,v). O

7 Conclusion

In this paper we have depicted a general relation betweers’Mosalgebraic logic and the
logic of all predicate liftings. Working over a Boolean bdsgic, the one-step translations
we discussed are summarised below:

A solid arrow means that the translation works for@JIsubject to the proviso thd/ is
only defined ifT" preserves weak pullbacks. A dotted arrow meansthiahs to preserve
finite sets. K is the logic given by Moss liftings[ is the logic given by all predicate
liftings and L is obtained by quotienting, with a complete axiomatisatior/ is Moss’s
coalgebraic logic. The translatiod$ — L, K — M, L — L are immediate from the
respective definitions, the translatiohs— M andM — L are Theorem$.2 and5.5,
respectively. Double arrowheads indicate that the trépslas onto and can be reversed,
albeit not necessarily by a natural transformation as @i representatives are involved.
Arrows with tails indicate that the translation is one-teeo

The diagram above suggests tliais the canonical logic foll-coalgebras.L can be
defined for anyl’, is always completelf8] and it is expressive if is finitary [28]. If T
preserves finite sets, thedhand M are equivalent has only countably many formulas,
and the formulas of. correspond precisely to subsets of the final sequenG&sge 7).
But if 7" does not preserve finite sets (as eg for the distribution dfi4set functor), it is
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Base Categories
BA DL BA”
Transl lein .
Translatable into h al S -atakf) € Into Translatable into the
mozsrt the logic of all | ' ﬁftﬁ%g Ssi'\r’]'gss logic of Moss liftings
odali , e
Y| predicate liftings . using choice
choice
Moss BA-Translatable | DL-Translatable BA"®-Translatable
_ﬁ liftings into Moss’ logic | into Moss’ logic into Moss’ logic
E BA"-Translatable into
§ Singleton| BA-Translatable | Not translatable Moss’ logic for all
liftings into Moss’ logic | into Moss’ logic | (D, By)-KPF’s. Unknown
for other functors
BA-Translatable BA"-Translatable into Mosg
Predicate{ into Moss’ logic if | Not translatable | logic for all (D, By)-KPF'’s,
liftings | T preserves finite into Moss’ logic | if x > 2%, Unknown for
sets other functors

Table 1
Comparison Table: Modalities, base categories, and titaorsa

not so clear whethef is the best choice of logic fdf’ in general: On the one hand,

is too expressive as it may have uncountably many formulaghe other hand it is not
maximally expressive in the sense that there may be moddigates definable by subsets
of the final sequence df that do not correspond to formulas in

We also emphasised that these theorems depend on workind8AveThis suggests
that it would be worth studyingoalgebraic non-classical logicln particular, we do not
know of a general relation between Moss’s modality and jsegdiliftings if the underlying
logic is not classical. A summary of the relations betweers§mmodality and the three
classes of predicate liftings that we studied with respedifferent base logics is presented
in Tablel.

The work of Venema on fix points logics suggests that manylteesn Moss'’s logic
[15,29] will generalise to this new framework, at least for disttibe lattices. There is
not much work on non-classical logics of predicate liftindsotice that there is already
an issue at the basics, namely, what is the appropriatemofi@redicate lifting if we
don’t work with Boolean algebras? A more technical issudat the expressivity result in
Schroder 28] does not seem to work if we leave classical logic. It is nefaclto us how
the existence of a separating set of predicate liftingsiesghe Hennessy-Milner property
if the underlying logic does not have negations.

At the purely mathematical level, in this paper, we have higpax the concepts of
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translator, logical translatorandsingleton liftingintroduced in 1]. We have shown that
every singleton lifting has a translator (Propositibt0). Using these and properties of the
category of Boolean algebras, we have shown that if the yidgrogic is classical then
all these translators can be made iBta-translators (Lemm&.1) and then all singleton
liftings are translatable into Moss’s logic based on Boolakyebras. We have also shown
that classical logic is a necessary requirement to be aklietslate, see Exampldsll
and5.3 In the other direction, we have provided a compositionahdtation of Moss’s
language (Theorerb.5). As an additional gain we have used our techniques to prove a
Lindstrom Theorem for coalgebraic logics (Theorémg). In Example5.3 we showed
that not all predicate liftings are translatable7ifdoes not preserve finite sets, even if
the underlying logic is classical logic. However, it would imteresting to give a general
characterization of the predicate liftings that can bediaed into Moss’s logic and of
those that can not be translated. Our conjecture is: A patglidting is translatable into
Moss’s logic iff it can be presented as a finite disjunctiorsiafyleton liftings.

Using our translation techniques, previously mentioneglhave developed a complete
and sound equational logic for coalgebras (Section 6). We bhown that for every weak
pullback preserving functor there exists a set of monoteadipate liftings, namely the set
of Moss liftings (pagell), which is as expressive as Moss’s coalgebraic logic. Tpens
the possibility to add fix points to logics of predicate fiffis. Notice that we developed our
equational logic using the canonical representation ohatr 7' (Remark6.2). It seems
that our work can be carried out using other more econonmggaiesentations d@f. It might
be worth to study equational logics obtained from diffenepresentations df.

Another issue that we have not studied is related to the ctabfgproperties of trans-
lators and logical translators. We don’t know what is theuiactomputational cost of a
translation using logical translators. This might be iegting in the case of an actual im-
plementation of translators.
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