
Nominal Monoids

Alexander Kurz Tomoyuki Suzuki Emilio Tuosto
Department of Computer Science, University of Leicester, UK

University of Leicester Technical Report CS-10-004, October 2010

Abstract

We investigate different notions of nominal words, that is, words that my contain letters from an
alphabet as well as names and name-binders. In a first section we construct them from first principles.
In a second section we take the point of view that—as in the classical case—words over an alphabet S
form a free monoid over S. We define different notions of nominal monoids and reveal nominal words as
elements of free nominal monoids. Applications to computer science will be treated in subsequent work.

1 Introduction

Section 2 introduces several different notions of nominal words from first principles. Depending on how
the binder [n] interacts with the other word-forming operations, different notions arise. The most general
class of words consists of p-words but they are actually trees rather than words since the binder introduces a
notion of scope. The class of ng-words consists of those p-words where the scope always extends as far to
the right as possible: they are linear like classical words. In l-words, the binders can be moved to the left into
a prefix, prefixing a word without binders in the usual sense. Furthermore, in f-words, this prefix forms a set
and each name in this set has to actually appear in the word. These different notions correspond to different
intuitions arising from the interpretation of name-binding as resource-allocation and we will briefly discuss
this in the summary.

Section 3 reviews these notions taking a more conceptual approach. Following nominal algebra as
outlined by Gabbay [1] and Gabbay and Mathijssen [3], we first define the notion of a nominal monoid and
then refine it by adding further axioms. We reveal the notions of words defined in the previous section as
initial or free algebras in the corresponding categories of monoids.

We conclude with a table summarising the different notions.

2 Nominal words

We denote a countably infinite set of ‘names’ by N and an alphabet (finite set of ‘letters’) by S . Further,
the set of all finite kernel bijective functions (permutations) π : N → N is denoted by Perm(N), where a
permutation π : N → N is finite kernel when the set Ker(π) def= {a ∈ N

∣∣ π(a) 6= a} is finite). We often
use transpositions (m n), which swap m and n, denote the identity permutation by ι, and the empty word ε.
We also assume that N and S are disjoint.

Let A be a set with a Perm(N)-action. An element a ∈ A is called finitely supported, if there exists a finite
subset N ⊆N such that, for all π,π′ ∈ Perm(N), if π|N = π′|N , then π ·a = π′ ·a. We call such an N a support

1

for a. Among finite supports of a, the minimal one, which always exists, is called the support of a, denoted
by supp(a). We write n#a for n /∈ supp(a).

Definition 1 (Nominal sets [2]) A set A equipped with a Perm(N)-action · is a nominal set, if all its ele-
ments are finitely supported. The action satisfies, for each a ∈ A,

1. π′ · (π ·a) = (π′π) ·a for all π,π′ ∈ Perm(N),

2. ι ·a = a,

where π,π′ denote two permutations and ι denotes identity. We often write π′ ◦π instead of π′π to denote
composition. A function between two nominal sets is called equivariant if it preserves the permutation
action.

Let us begin with the definition of words in the classical language theory.

Definition 2 (Finite words) Given a set A, we inductively define a (finite) word over A as follows:

w ::= ε | aw,

where a ∈ A. We denote the set of all finite words on A by A∗.

For any set A, it is well-known that A∗ forms a monoid with concatenation and the empty word. Among all
monoids, it is the the free monoid over A. Hereafter, the following two free monoids N ∗ and (N ∪S)∗ play
fundamental roles. We extend each permutation π ∈ Perm(N) on N to a permutation on N ∗ and (N ∪S)∗

as follows: · : Perm(N)× (N ∪S)∗→ (N ∪S)∗, for each n ∈N , each s ∈ S and each w ∈ (N ∪S)∗

1. π · ε def= ε,

2. π ·nw def= π(n)(π ·w),

3. π · sw def= s(π ·w).

Note that the above also defines how permutations act on N ∗. We will often denote π · p and π ·w as π(p)
and π(w) for each p ∈N ∗ and each w ∈ (N ∪S)∗. However, when we take a transposition (m n), we will
always write (m n) · p and (m n) ·w. Note that N ,S ,N ∗ and (N ∪S)∗ are all nominal sets.

Definition 3 (G , ng-words) To introduce words with name binders consider:

w ::= ε | nw | sw | 〈n.w〉,

where n ∈N and s ∈ S . We call the words defined above ng-words and denote by G the set of all ng-words.
We also might write [n]w instead of 〈n.w〉.

We also define a Perm(N)-action on G . For each π ∈ Perm(N), n ∈N , s ∈ S and w ∈ G , we put

1. π · ε def= ε,

2. π ·nw def= π(n)π(w),

3. π · sw def= sπ(w),

2

4. π · 〈n.w〉 def= 〈π(n).π(w)〉.

Unlike the words in Definition 2, G is not a monoid since it is not closed under concatenation, eg. 〈n.n〉〈m.m〉
is not a ng-word. This will be repaired in Definition 16. But it also hints at the fact that, in the presence of
binders, several different notions of monoid make sense. We identify the following.

The most general notion derives from adding binders to a monoid. Having a binary ◦ and binding 〈n.w〉
actually means that ‘p-words’ are not linear but have a tree-structure.

Definition 4 (p-word) A p-word is inductively defined as follows:

w ::= ε | n | s | w◦w | 〈n.w〉,

where we assume that n ∈ N , s ∈ S and that ε and ◦ satisfy the monoid laws. We denote the set of all
p-words by P . We might write wv instead of w◦ v and [n]w instead of 〈n.w〉.

More special than p-words are the ng-words defined above: they have a linear structure. More special
again are the l-words, where all binders can be moved to the left, so that a word can be separated into a
prefix p of binders and binder-free word w.

Definition 5 (l-word) A pair (p,w) of p ∈N ∗ and w ∈ (N ∪S)∗ is called a l-word. We denote with L the
set of all l-words, i.e.

L def= {(p,w) | p ∈N ∗
,w ∈ (N ∪S)∗}.

If we further require that order and multiplicity of the binders in the prefix do not matter and that all
bound variables actually do occur in w, we arrive at the following notion.

Definition 6 (f-word) A pair (S,w) of w ∈ (N ∪S)∗ and S ⊆ supp(w) is called a f-word. We denote by F
the set of all f-words, i.e.

F def= {(S,w) | w ∈ (N ∪S)∗,S⊆ supp(w)}.

As above for ng-words, Perm(N)-actions are defined as follows.

1. On L , · : Perm(N)×L → L is defined as π · (p,w) def= (π(p),π(w)).

2. On F , · : Perm(N)×F → F : π · (S,w) def= (π(S),π(w)), where π(S) def= {π(n) | n ∈ S}.

3. On P , · : Perm(N)×P → P is inductively defined as follows:

(a) π · ε def= ε,

(b) π ·n def= π(n),

(c) π · s def= s,

(d) π · (w◦ v) def= π(w)◦π(v),

(e) π · 〈n.w〉 def= 〈π(n).π(w)〉.

We want to identify words up to α-equivalence. For example, 〈n.n〉 and 〈m.m〉 should be the same word.
We first fix the following

3

Notation 7 We write æ as an abbreviation of “for all but finitely many” that corresponds to the new-
quantifier of Gabbay and Pitts [2].

Definition 8 On P (and analogously on G) ∼ is defined as follows:

1. ε∼ ε,

2. n∼ n,

3. s∼ s,

4. w◦ v∼ w′ ◦ v′ ⇐⇒ w∼ w′ and v∼ v′,

5. 〈n.w〉 ∼ 〈m.v〉 ⇐⇒ æ l ∈N . (l n) ·w∼ (l m) · v.

Definition 9 On L , ∼ is given as

1. (ε,w)∼ (ε,w),

2. (pn,w)∼ (qm,v) ⇐⇒ æ l ∈N . (p,(l n) ·w)∼ (q,(l m) · v).

Lemma 10 For all (p,w),(q,v) ∈ L , if (p,w) ∼ (q,v), then the length of p is the same with that of q.
Moreover, if p = n1 · · ·nk and q = m1 · · ·mk,

æl1 ∈N , . . . ,ælk ∈N . (l1 n1) · · ·(lk nk) ·w = (l1 m1) · · ·(lk mk) · v.

Definition 11 On F , for all (S,w),(T,v) ∈ F , we let

(S,w)∼ (T,v) ⇐⇒ ∃k,∃bS,∃bT ,æl1 ∈N , . . . ,ælk ∈N .(l1 bS(1)) · · ·(lk bS(k))·w =(l1 bT (1)) · · ·(lk bT (k))·v

with bijections bS : {1, . . . ,k}→ S and bT : {1, . . . ,k}→ T

Note that (/0,w)∼ (/0,v) if and only if w = v.

Proposition 12 The binary relations ∼ in Definitions 9 and 11 are equivalence relations.

Proof Reflexivity and symmetry are trivial in each case. For all (p,w),(q,v),(r,u) ∈ L∼, if (p,w)∼ (q,v)
and (q,v)∼ (r,u), we can assume that p = n1 · · ·nk, q = m1 · · ·mk and r = l1 · · · lk, and

æo1 ∈N , . . . ,æok ∈N . (o1 n1) · · ·(ok nk) ·w = (o1 m1) · · ·(ok mk) · v,

æo′1 ∈N , . . . ,æo′k ∈N . (o′1 m1) · · ·(o′k mk) · v = (o′1 l1) · · ·(o′k lk) ·u,

by Lemma 10. By the definition of æ, we also have

æo1 ∈N , . . . ,æok ∈N . (o1 n1) · · ·(ok nk) ·w = (o1 l1) · · ·(ok lk) ·u.

Hence, (p,w) ∼ (r,u). For all (S,w),(T,v),(U,u) ∈ F∼ and card(S) = k, if (S,w) ∼ (T,v) and (T,v) ∼
(U,u), by definition, there are bijections bS,bT ,b′T ,bU . Since bT and b′T are bijections from the same domain,
there is a permutation π : T → T which makes b′T = π◦bT . Thus, we have

æl1 ∈N , . . . ,ælk ∈N . (l1 π◦bS(1)) · · ·(lk π◦bS(k)) ·w = (l1 bU(1)) · · ·(lk bU(k)) ·u,

hence (S,w)∼ (U,u). The cases for G∼ and P∼ are by induction. �

4

We denote by G∼,L∼,F∼,P∼ each quotient set with respect to the appropriate binary relation ∼. We
will use the terms ng-word, l-word, f-word and p-word for equivalence classes as well. To distinguish
equivalence classes from the original words, we might call the original words prewords. To avoid nesting
brackets, we abbreviate the equivalence class with w,(p,w),(S,w),w like the original words.

Proposition 13 The Perm(N)-actions on G , L , F , P induce Perm(N)-actions on G∼, L∼, F∼, P∼, re-
spectively.

Now, we recall Definition 1 and show the following.

Theorem 14 The quotient sets G∼,L∼,F∼ and P∼ are all nominal sets. That is, each quotient set S∼
is finitely supported, and there exists a Perm(N)-action · : Perm(N)× S∼ → S∼ such that for all π,π′ ∈
Perm(N) and every element s ∈ S∼, we have

1. π′ · (π · s) = (π′ ◦π) · s,

2. ι · s = s.

Proof Any word has a finite set of free names, which is its support. Items 1 and 2 are straightforward. �

Lemma 15 (Renaming) For all l-prewords (p,w),(q,v), there exist l-prewords (p′,w′),(q′,v′) such that
(p,w)∼ (p′,w′), (q,v)∼ (q′,v′), p′ and q′ does not share any name, p′ and v′ share no name, and q′ and w′

share no name.

Proof To simplify our argument, we assume that an order is given on N (notice though that the following
arguments do not depend on the chosen order on N).

For each l-preword (p,w), let fv(p,w) be the set of all free variables in w, i.e. fv(p,w) is the collection
of names which occurs only in w but not in p. Suppose that p = n1 · · ·nk and q = m1 · · ·ml . Since every
l-preword contains a finite number of names, fv(p,w) and fv(q,v) are finite, hence fv(p,w)∪ fv(q,v) is also
finite. We let a be the largest name with respect to the order on N , and let

p′ def= (a+1) · · ·(a+ k) and w′ def= (a+1 n1)◦ · · · ◦ (a+ k nk) ·w,

q′ def= (a+ k +1) · · ·(a+ k + l) and v′ def= (a+ k +1 m1)◦ · · · ◦ (a+ k + l ml) · v.

By construction, it is straightforward that they satisfy the required conditions. �

Similar statements hold for ng-prewords, f-prewords and p-prewords. Thanks to Lemma 15, we can define
the following functions on each quotient set.

Definition 16 1. ◦ : G∼×G∼→ G∼: for all w,v ∈ G∼ we define by induction on the construction of the
first argument:

(a) ε◦ v def= v,

(b) nw◦ v def= n(w◦ v),

(c) sw◦ v def= s(w◦ v),

(d) 〈n.w〉 ◦ v def= 〈n′,(w′ ◦ v)〉, where n′ is fresh for v and 〈n.w〉 ∼ 〈n′.w′〉.

5

2. ◦ : L∼×L∼→ L∼: (p,w)◦ (q,v) def= (p′q′,w′v′), where (p,w) ∼ (p′,w′), (q,v) ∼ (q′,v′), p′ and q′,
p′ and v′, q′ and w′ do not share any name.

3. ◦ : F∼×F∼ → F∼: (S,w) ◦ (T,v) def= (S′ ∪ T ′,w′v′), where (S,w) ∼ (S′,w′), (T,v) ∼ (T ′,v′), and
S′∩T ′ = S′∩ v′ = T ′∩w′ = /0.

4. ◦ : P∼×P∼→ P∼: w◦ v def= w◦ v.

5. [] : [N]G∼→ G∼: [n]w def= 〈n.w〉.

6. [] : [N]L∼→ L∼: [n](p,w) def= (np,w).

7. [] : [N]F∼→ F∼: [n](S,w) def=

{
(S,w) if n#(S,w),
(S∪{n},w) if n ∈ supp(S,w).

8. [] : [N]P∼→ P∼: [n]w def= 〈n.w〉.

Proposition 17 For each quotient set, the above concatenation ◦ and atom-abstraction [] are well-defined
equivariants.

Proof Here, we check only ◦ : G∼×G∼→ G∼ and [] : [N]F∼→ F∼.
For the first case, it suffices to show that (π ·w) ◦ (π · v) = π · (w ◦ v) for each π ∈ Perm(N) and all

w,v ∈ G∼. We use the induction on w.
(Base case w = ε) (π · ε)◦ (π · v) = ε◦ (π · v) = π · v and π · (ε◦ v) = π · v.
(Inductive steps) Assume that (π ·w)◦ (π · v) = π · (w◦ v).

1. (π ·nw)◦(π ·v) = (π(n)π ·w)◦(π ·v) = π(n)((π ·w)◦(π ·v)) by definition of · and ◦. By the assumption,
we have π(n)(π ·(w◦v)). On the other hand, π ·(nw◦v) = π ·(n(w◦v)) = π(n)(π ·(w◦v)) by definition.

2. (π · sw)◦ (π · v) = π · (sw◦ v). This is analogous to Item 1.

3. By Lemma 15, we can assume that n is fresh for v. Now, (π · 〈n.w) ◦ (π · v) = 〈π(n).π ·w〉 ◦ (π · v).
Since π is bijective, π(n) is fresh for π · v. Then, we have 〈π(n).(π ·w) ◦ (π · v)〉. By assumption,
〈π(n).π · (w◦ v)〉, hence π · (〈n.w〉 ◦ v).

For the second case, we recall that, for each (S,w) ∈ F∼ any n ∈ N is either n#(S,w) or n ∈ supp(S,w).
Moreover, since every π ∈ Perm(N) is bijective, n#(S,w) if and only if π(n)#(π(S),π(w)), hence n ∈
supp(S,w) ⇐⇒ π(n) ∈ supp(π(S),π(w)).

If n#(S,w), then π · ([n](S,w)) = π(S,w) = (π(S),π(w)) and [π(n)](π · (S,w)) = [π(n)](π(S),π(w)) =
(π(S),π(w)). Conversely, if n ∈ supp(S,w), then π · ([n](S,w)) = π · (S ∪ {n},w) = (π(S ∪ {n}),π(w))
and [π(n)](π · (S,w)) = [π(n)] (π(S),π(w)) = (π(S) ∪ π(n),π(w)) = (π(S ∪ {n}),π(w)). Therefore, π ·
([n](S,w)) = [π(n)](π · (S,w)). �

3 Nominal monoids

This section revisits the four different notions of nominal words from a more abstract point of view and
presents corresponding notions of nominal monoids. To carry this out in an elegant way, we make use of the
nominal algebra of Gabbay [1] and Gabbay and Mathijssen [3]. The different classes of nominal words from

6

Section 2 will appear now as explicit descriptions of free algebras of the corresponding classes of nominal
monoids.

Definition 18 (Nominal monoid) A tuple A = 〈A,◦, [] ,e〉 is a nominal monoid over N ∪ S , if N ∪ S ∪
{e} ⊆ A, A is a nominal set, ◦ a binary equivariant, [] atom-abstraction [2, 1, 3] and it satisfies

1. ` X ◦ (Y ◦Z) = (X ◦Y)◦Z,

2. ` X ◦ e = X,

3. ` e◦X = X.

In the definition above, we consider elements of N and of S as constants which are part of the signature. In
other words, a nominal monoid is an algebra, for the functor on nominal sets

A 7→ 1+S +N +A×A+[N]A,

satisfying conditions 1, 2, and 3. Our aim is to exhibit P∼,G∼,L∼ and F∼ as initial monoids of axiomatically
defined classes of nominal monoids.

First, we will prove that P∼,G∼,L∼ and F∼ are all nominal monoids. When we reason about L∼ and F∼,
since they do not include N ∪S ∪{e} syntactically, it is necessary to identify every element in N ∪S ∪{e}
with an element in L∼ and F∼. In L∼, we identify e, each n ∈N and each s ∈ S with (ε,ε), (ε,n) and (ε,s),
and, in F∼, with (/0,ε), (/0,n) and (/0,s), respectively.

Theorem 19 G∼,L∼,F∼ and P∼ are all nominal monoids. Furthermore, P∼ is the initial nominal monoid.

Proof We check only that G∼ is a nominal monoid and P∼ is the initial one.
Firstly we identify nε, sε and ε with n, s and e, respectively. Then, N ∪S ∪{e} ⊆ G∼.

1. For all w,v,u ∈ G∼,

(a) If w = ε, then ε◦ (v◦u) = v◦u and (ε◦ v)◦u = v◦u.

(b) Suppose that w◦ (v◦u) = (w◦ v)◦u.

i. nw◦ (v◦u) = n(w◦ (v◦u)) by definition. Hence, by assumption, we have n(w◦ (v◦u)) =
n((w◦v)◦u). On the other hand, by definition, (nw◦v)◦u = (n(w◦v))◦u = n((w◦v)◦u).

ii. As in Item (i), we have sw◦ (v◦u) = (sw◦ v)◦u.
iii. Let n′ be fresh for both v and v ◦ u. Now, 〈n.w〉 ◦ (v ◦ u) = 〈n′.w′ ◦ (v ◦ u)〉, where 〈n.w〉 ∼
〈n′.w′〉. By assumption, we have 〈n′.w′ ◦ (v ◦ u)〉 = 〈n′.(w′ ◦ v) ◦ u〉. Conversely, (〈n.w〉 ◦
v) ◦ u = 〈n′.w′ ◦ v〉 ◦ u, where 〈n′.w′〉 is the same with the previous one. Then, we have
〈n′.w′ ◦ v〉 ◦u = 〈n′.(w′ ◦ v)◦u〉.

Therefore, by induction on w, associativity holds.

2. By definition, we have ε◦ ε = ε. Assume that w◦ ε = w.

(a) nw◦ ε = n(w◦ ε) = nw for each n ∈N .

(b) sw◦ ε = s(w◦ ε) = sw for each s ∈ S .

(c) 〈n.w〉 ◦ ε = 〈n.w◦ ε〉= 〈n.w〉.

7

3. ` e◦X = X is analogous.

Next, we check the initiality of P∼. Let A = 〈A,◦, [] ,e〉 be any nominal monoid. Then, we inductively
define a function f : P∼→ A as follows:

1. f (ε) def= e,

2. f (n) def= n for each n ∈N ,

3. f (s) def= s for each s ∈ S ,

4. f (w◦ v) def= f (w)◦ f (v) for all w,v ∈ G∼,

5. f (〈n.w〉) def= [n] f (w).

We check that f is an equivariant. Namely, for each π ∈ Perm(N) and each w ∈ P∼, π · f (w) = f (π ·w).
Induction on w.

1. π · f (ε) = π(ε) = ε and f (π(ε)) = f (ε) = ε.

2. π · f (n) = π(n). On the other hand, since π(n) is also in N , f (π(n)) = π(n).

3. π · f (s) = π(s) = s and f (π(s)) = f (s) = s.

4. π · f (w◦v) = π · (f (w)◦ f (v)). Since ◦ is an equivariant on A, we have π · (f (w)◦ f (v)) = (π · f (w))◦
(π · f (v)). By the induction hypothesis, the left hand side is f (π(w)) ◦ f (π(v)). On the other hand,
f (π◦ (w◦v)) = f (π(w)◦π(v)), because ◦ is an equivariant on P∼. Then, by definition, the right hand
side is also f (π(w))◦ f (π(v)).

5. π · f (〈n.w〉) = π · [n] f (w), by definition. Since [] is an equivariant on A, we have [π(n)] f (π(w)). On
the other hand, f (π · 〈n.w〉) = f (〈π(n).π(w)〉) = [π(n)] f (π(w)) by definition.

By definition, f is a homomorphism, and it is the unique one. �

Definition 20 Let Cng be the subclass of nominal monoids satisfying n#Y ` [n]X ◦Y = [n](X ◦Y).

Theorem 21 G∼,L∼ and F∼ are in Cng, and G∼ is initial.

Proof Here we only check that G∼ is in Cng and the initiality. For each n∈N and all w,v∈G∼, if n is not in
supp(v), then [n]w◦v = 〈n.w〉◦v. By definition, we have 〈n.w◦v〉. On the other hand, [n](w◦v) = 〈n.w◦v〉,
hence n#v ` [n]w◦ v = [n](w◦ v).

For the initiality, we define a function f : G∼→ A as follows:

1. f (ε) def= e,

2. f (nw) def= n◦ f (w),

3. f (sw) def= s◦ f (w),

4. f (〈n.w〉) def= [n] f (w).

8

To prove that f preserves ◦, we use induction on the first argument:

1. f (ε ◦ v) = f (v) by definition. On the other hand, f (ε) ◦ f (v) = e ◦ f (v). Since e is the unit element,
we obtain f (v).

2. f (nw ◦ v) = f (n(w ◦ v)) = n ◦ f (w ◦ v), by definition. By induction hypothesis, we have n ◦ (f (w) ◦
f (v)). On the other hand, f (nw)◦ f (v) = (n◦ f (w))◦ f (v). By associativity, we have n◦(f (w)◦ f (v)).

3. This is analogous to Item 2.

4. Let n be fresh for v. By definition, we have f (〈n.w〉 ◦ v) = f (〈n.w ◦ v〉) = [n] f (w ◦ v). On the other
hand, f (〈n.w〉)◦ f (v) = [n] f (w)◦ f (v). Finally, we prove that n is also fresh for f (v) by induction on
v:

(a) f (ε) = e, hence n# f (ε).

(b) If n#mv, then n 6= m and n#v. By induction hypothesis, we obtain that n# f (v). Therefore,
n#m◦ f (v)(= f (mv)).

(c) This is analogous to Item 2.

(d) Assume that n 6= m. If n#〈m.v〉, we have n#v. By induction hypothesis, n is fresh for f (v). So,
n# f (〈m.v〉)).

Now we use the axiom n# f (v) ` [n] f (w)◦ f (v) = [n](f (w)◦ f (v)).

It is routine to check that f is equivariant and the unique homomorphism. �

Definition 22 Let Cl be the subclass of Cng satisfying the following axiom:

m#X ` X ◦ [m]Y = [m](X ◦Y).

Theorem 23 L∼ and F∼ are in Cl , and L∼ is initial in Cl .

Proof We prove only that L∼ is in Cl as the initial algebra. For all n,m ∈N (n 6= m) and each (p,w), let n
be fresh for (p,w). The left hand side is (ε,n)◦ [m](p,w) = (ε,n)◦ (mp,w) = (mp,nw). On the other hand,
[m]((ε,n)◦ (p,w)) = [m](p,nw) = (mp,nw). This is analogous to ` (ε,s)◦ [m](p,w) = [m]((ε,s)◦ (p,w)).

For the initiality, we define a function f : L∼→ A as follows: we let f (n1 · · ·nk,w) def= [n1] · · · [nk]w, for
each (n1 · · ·nk,w) ∈ L∼. Firstly, we check that f is homomorphic. The only case we should investigate is
that f ((p,w)◦ (q,v)) = f (p,w)◦ (q,v). Let p be n1 · · ·nk, q = m1, . . . ,ml , p and q share no name, p is fresh
for v and q is fresh for w. Namely, [n1] · · · [nk][m1] · · · [ml]wv = [n1] · · · [nk]w◦ [m1] · · · [ml]v. We separate this
into the following two arguments:

1. [n1] · · · [nk]w◦ [m1] · · · [ml]v = [n1] · · · [nk](w◦ [m1] · · · [ml]v),

2. w◦ [m1] · · · [ml]v = [m1] · · · [ml](w◦ v).

Iterating the axiom n#Y ` [n]X ◦Y = [n](X ◦Y), we obtain Item 1. For Item 2, we use the induction on w.
Note that w ∈ (N ∪S)∗

1. ε◦ [m1] · · · [ml]v = [m1] · · · [ml]v and [m1] · · · [ml](ε◦ v) = [m1] · · · [ml]v.

9

2. Recall that n is fresh for [m1] · · · [ml]v. Repeating the axiom m#n ` n ◦ [m]Y = [m](n ◦Y), we get
n◦ [m1] · · · [ml]v = [m1] · · · [ml](n◦ v).

3. This is analogous to Item 2.

4. Let o ∈N ∪S . o◦w◦ [m1] · · · [ml]v = o◦ [m1] · · · [ml](w◦ v), by induction hypothesis. By Item 2 or 3,
we have [m1] · · · [ml](o◦w◦ v).

It is routine to check that f is equivariant and the unique homomorphism. �

Definition 24 Let C f be the subclass of Cl in which every nominal monoid satisfies:

1. ` [n][m]X = [m][n]X,

2. n#X ` [n]X = X.

Theorem 25 F∼ is initial in C f .

Proof For all n,m∈N and each (S,w)∈F∼, if m#(S,w) and n#(S,w), then we have [n][m](S,w) = (S,w) =
[m][n](S,w), else if n#(S,w) and m ∈ supp(S,w), then [n][m](S,w) = (S∪{m},w) = [m][n](S,w), and else,
namely if n,m ∈ supp(S,w), then we have [n][m](S,w) = (S∪{n,m},w) = [m][n](S,w), hence ` [n][m]X =
[m][n]X .

Let n ∈N , (S,w) ∈ F∼ and n#(S,w). Then [n](S,w) = (S,w). So, we have n#X ` [n]X = X .
For the initiality of F∼, we define a function f : F∼→ A as follows: for each f-word (S,w) ∈ F∼, we

let f (S,w) def= [n1] · · · [nk]w, where S = {n1, . . . ,nk}. Due to the axiom ` [n][m]X = [m][n]X , we have that
f is independent of the order of elements in S and f is well-defined. It is also straightforward that f is
equivariant and unique.

Here, we prove that f is homomorphic. The important parts are ◦ and [] . The following diagrams
commute.

F∼×F∼
f 2

//

◦
��

A×A

◦
��

F∼
f // A

[N]F∼
[id] f //

[]
��

[N]A

[]
��

F∼
f // A

For all (S,w),(T,v) ∈ F∼, let S∩T = S∩ supp(T,v) = T ∩ supp(S,w) = /0 by the Renaming Lemma, and let
S = {n1, . . . ,nk} and T = {m1, . . . ,ml}.

f ((S,w)◦ (T,v)) = f (S∪T,wv) = [n1] · · · [nk][m1] · · · [ml]wv,

f (S,w)◦ f (T,v) = [n1] · · · [nk]w◦ [m1] · · · [ml]v.

By the axioms n#Y ` [n]X ◦Y = [n](X ◦Y), m#n ` n ◦ [m]Y = [m](n ◦Y) and ` s ◦ [m]Y = [m](s ◦Y), we
conclude f (S,w)◦ f (T,v) = [n1] · · · [nk][m1] · · · [ml]wv. Therefore, f ((S,w)◦ (T,v)) = f (S,w)◦ f (T,v). For
each n∈N and each (S,w)∈F∼ where S = {n1, . . . ,nk}, if n is fresh for (S,w), which means either n∈ S or n
does not occur in w, we have f ([n](S,w)) = f (S,w) = [n1] · · · [nk]w. Conversely, [n] f (S,w) = [n][n1] · · · [nk]w.
Since n is fresh for (S,w), n#[n1] · · · [nk]w holds. By the axiom n#X ` [n]X = X , we have [n1] · · · [nk]w.

Otherwise, if n∈ supp(S,w), then f ([n](S,w))= f (S∪{n},w)= [n][n1] · · · [nk]w. Conversely, [n] f (S,w)=
[n][n1] · · · [nk]w. Therefore, f ([n](S,w)) = [n] f (S,w). �

10

4 Summary

We investigated the following classes of nominal monoids.

Class of monoids axioms initial monoid typical example

C P∼ [n1](s1n1n4)[n0](n0[n3]s2)

Cng n#Y ` ([n]X)◦Y = [n](X ◦Y) G∼ [n1](s1n1n4[n0](n0[n3]s2))

Cl Cng plus
n#X ` X ◦ [n]Y = [n](X ◦Y)

L∼ [n1][n0][n3]s1n1n4n0s2

C f Cl plus
` [n][m]X = [m][n]X
n#X ` [n]X = X

F∼ [n0][n1]s1n1n4n0s2

We assume that all monoids contain an infinite countable supply of names n∈N and a finite supply of letters
s ∈ S . Elements of monoids are called words. In addition to the usual operations of neutral element and
concatenation, we also have permutations of names acting on words and the operation [n]w binding a name
n in a word w. The elements of the monoids are taken up to α-equivalence ∼. In particular, [n]n = [m]m.

C is the class of monoids just given by the classical laws of monoids, permutation actions, and α-equivalence.
Since binding introduces scope and concatenation, words have a tree rather than a linear structure.

Cng is given by an axiom saying that the scope of a binder extends as far to the right as possible (intuitively:
resources are never deallocated). Consequently, words have their usual linear structure again.

Cl has an additional axiom stating that binders can be moved two the left (intuitively: the (absolute) time of
allocation of a resource does not matter). Consequently, words can be represented by a prefix of binders and
a classical word without binders.

If we read ◦ as the parallel composition of π-calculus processes the axiom of Cl describes scope-extrusion.

C f contains two further axioms expressing that the order of the binders does not matter and that ‘non-binding
binders’ can be removed.

References

[1] M. Gabbay. Nominal algebra and the HSP theorem. J. Logic Computation, 2008.
doi:10.1093/logcom/exn055.

[2] M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In LICS’99.

[3] M. J. Gabbay and A. Mathijssen. Nominal (universal) algebra: equational logic with names and binding.
J. Logic Computation, 19(6):1455–1508, 2009.

11

