Logical Relations

Andrzej Murawski University of Leicester

Part III

Midlands Graduate School 2012

Definition 1. An n-ary logical relation is a family $\mathcal{R} = \{R_{\theta}\}_{\theta \in Types}$ of n-ary relations such that $R_{\theta} \subseteq [\![\theta]\!] \times \cdots \times [\![\theta]\!]$ for any θ and

$$R_{\theta_1 \to \theta_2}(f_1, \cdots, f_n)$$
 \iff

for all
$$(d_1,\cdots,d_n)\in \llbracket \theta_1
rbracket^n$$
, if $R_{\theta_1}(d_1,\cdots,d_n)$ then $R_{\theta_2}(f_1(d_1),\cdots,f_n(d_n))$.

Theorem 2. Let $\{R_{\theta}\}$ be a logical relation. For any closed λ -term $\vdash M: \theta, R_{\theta}(\llbracket \vdash M: \theta \rrbracket, \cdots, \llbracket \vdash M: \theta \rrbracket)$.

Types and Constants

Let us start with a collection B of base types. Let o range over B.

Types

$$\theta ::= o \mid \theta \rightarrow \theta$$

Let us also assume a set of typed constants ${\cal C}$

Constants

$$c:\theta_c$$

Applicative Structures

A general setting for interpreting λ -terms.

Definition 3. A (typed) applicative structure A is a triple

$$\langle \{A_{\theta}\}, \{App_{\theta_1,\theta_2}\}, Const \rangle$$

such that

- A_{θ} is a set,
- App_{θ_1,θ_2} is a function $App_{\theta_1,\theta_2}:A_{\theta_1\to\theta_2}\to A_{\theta_1}\to A_{\theta_2}$,
- $Const: C \to \bigcup_{\theta \in Types} A_{\theta}$ satisfies $Const(c) \in A_{\theta_c}$ if $c: \theta_c$.

Examples

• $\mathcal{A} = \langle \{A_{\theta}\}, \{App_{\theta_1, \theta_2}\}, Const \rangle$, where each A_{θ} is a set and

$$A_{\theta_1 \to \theta_2} = \text{the set of functions from } A_{\theta_1} \text{ to } A_{\theta_2},$$
 $App_{\theta_1,\theta_2}fx = f(x).$

- $\mathcal{A} = \langle \{A_{\theta}\}, \{App_{\theta_1, \theta_2}\}, Const \rangle$, where each A_{θ} is a cpo and
 - $\begin{array}{ll} A_{\theta_1\to\theta_2} &= \text{the cpo of continuous functions from } A_{\theta_1} \text{ to } A_{\theta_2}, \\ App_{\theta_1,\theta_2}fx &= f(x). \end{array}$
- $\mathcal{T} = \langle \{T_{\theta}\}, \{App_{\theta_1,\theta_2}\}, Const \rangle$, where T_{θ} is the set of simply-typed λ -terms M such that $\Gamma \vdash M : \theta$ for some finite $\Gamma \subseteq \mathcal{V}$, where \mathcal{V} is a set of typed variables, and

$$App_{\theta_1,\theta_2}MN = MN,$$

$$Const(c) = c.$$

Logical Relation

Definition 4. Let

$$\mathcal{A} = \langle \{A_{\theta}\}, \{App_{\theta_{1},\theta_{2}}^{\mathcal{A}}\}, \{Const^{\mathcal{A}}\} \rangle,$$

$$\mathcal{B} = \langle \{B_{\theta}\}, \{App_{\theta_{1},\theta_{2}}^{\mathcal{B}}\}, \{Const^{\mathcal{B}}\} \rangle$$

be applicative structures. A (binary) logical relation over $\mathcal A$ and $\mathcal B$ is a family $\mathcal R=\{R_\theta\}$ such that

- $R_{\theta} \subseteq A_{\theta} \times B_{\theta}$,
- $R_{\theta_1 \to \theta_2}(f,g)$ iff, for all $(x,y) \in A_{\theta_1} \times B_{\theta_1}$, if $R_{\theta_1}(x,y)$ then $R_{\theta_2}(App_{\theta_1,\theta_2}^{\mathcal{A}}fx,App_{\theta_1,\theta_2}^{\mathcal{A}}gy)$,
- $R_{\theta_c}(Const_{\mathcal{A}}(c), Const_{\mathcal{B}}(c))$ for every constant $c:\theta_c$.

Environments

Definition 5. Let \mathcal{V} be the set of variables.

- An environment is a function $\rho: \mathcal{V} \to \bigcup_{\theta} A_{\theta}$.
- If Γ is a context (finite type assignment), we say that ρ satisfies Γ (written $\rho \models \Gamma$) if $\rho(x) \in A_{\theta}$ whenever $(x : \theta) \in \Gamma$.
- $\rho[x \mapsto d]$ stands for the environment mapping x to d, and y to $\rho(y)$ for y different from x.

Definition 6. Let \mathcal{A}, \mathcal{B} be applicative structures, Γ a context and $\rho_{\mathcal{A}}, \rho_{\mathcal{B}}$ be environments satisfying Γ . Let \mathcal{R} be a logical relation over \mathcal{A} and \mathcal{B} . $\rho_{\mathcal{A}}, \rho_{\mathcal{B}}$ are **related** if $R_{\theta}(\rho_{\mathcal{A}}(x), \rho_{\mathcal{B}}(x))$ for all $(x : \theta) \in \Gamma$.

Interpretation

Definition 7. A partial mapping $[\![\cdot\cdot\cdot]\!]_{\mathcal{A}}$ from terms and environments $([\![\Gamma\vdash M:\theta]\!](\rho))$ is an acceptable meaning function if

$$\llbracket \Gamma \vdash M : \theta \rrbracket(\rho) \in A_{\theta} \text{ whenever } \rho \models \Gamma$$

and the following conditions are satisfied.

Examples

- Interpretations using sets/functions and cpo's/continuous functions.
- Recall the applicative structure $\mathcal T$ based on λ -terms. T_{θ} is the set of simply-typed λ -terms M such that $\Gamma \vdash M : \theta$ for some finite $\Gamma \subseteq \mathcal V$.

$$App_{\theta_1,\theta_2}MN = MN$$
$$Const(c) = c$$

Consider

$$\llbracket \Gamma \vdash M \rrbracket_{\mathcal{A}}(\rho) = M[\overline{\rho(x)/x}].$$

Note that

$$(MN)[Q/x] \equiv M[Q/x] N[Q/x].$$

Fundamental Theorem

Theorem 8 (Mitchell). Let \mathcal{A}, \mathcal{B} be applicative structures, let $\llbracket \cdots \rrbracket_{\mathcal{A}}, \llbracket \cdots \rrbracket_{\mathcal{B}}$ be acceptable meaning functions, let \mathcal{R} be a logical relation over \mathcal{A} and \mathcal{B} . Suppose $\rho_{\mathcal{A}}, \rho_{\mathcal{B}}$ are related environments satisfying Γ . Then

$$R_{\theta}(\llbracket\Gamma \vdash M\rrbracket_{\mathcal{A}}(\rho_{\mathcal{A}}), \llbracket\Gamma \vdash M\rrbracket_{\mathcal{B}}(\rho_{\mathcal{B}}))$$

for every $\Gamma \vdash M : \theta$.

Proof by structural induction. Not yet! More constraints are needed.

Admissible Relations

Definition 9. Let \mathcal{A}, \mathcal{B} be applicative structures, let $\llbracket \cdots \rrbracket_{\mathcal{A}}, \llbracket \cdots \rrbracket_{\mathcal{B}}$ be acceptable meaning functions, let \mathcal{R} be a logical relation over \mathcal{A} and \mathcal{B} . Suppose $\rho_{\mathcal{A}}, \rho_{\mathcal{B}}$ are related environments satisfying Γ . \mathcal{R} is called **admissible** if, for all $\Gamma, x : \tau \vdash M : \theta$ and $\Gamma, x : \tau \vdash N : \theta$.

$$\forall_{a,b}$$
 if $R_{\tau}(a,b)$ then
$$R_{\theta}(\llbracket \Gamma, x \vdash M \rrbracket_{\mathcal{A}} (\rho_{\mathcal{A}}[x \mapsto a]), \llbracket \Gamma, x \vdash N \rrbracket_{\mathcal{B}} (\rho_{\mathcal{B}}[x \mapsto b]))$$

implies

$$\forall_{a,b}$$
 if $R_{\tau}(a,b)$ then
$$R_{\theta}(App^{\mathcal{A}}(\llbracket\Gamma \vdash \lambda x.M\rrbracket_{\mathcal{A}}(\rho_{\mathcal{A}}))a, App^{\mathcal{B}}(\llbracket\Gamma \vdash \lambda x.N\rrbracket_{\mathcal{B}}(\rho_{\mathcal{B}}))b).$$

Logical predicates

Definition 10. Let $\mathcal{A} = \langle \{A_{\theta}\}, \{App_{\theta_1,\theta_2}^{\mathcal{A}}\}, \{Const^{\mathcal{A}}\} \rangle$ be an applicative structure. A **logical predicate** over \mathcal{A} is a family $\mathcal{R} = \{R_{\theta}\}$ such that

- $R_{\theta} \subseteq A_{\theta}$,
- $R_{\theta_1 \to \theta_2}(f)$ iff, for all $x \in A_{\theta_1}$, if $R_{\theta_1}(x)$ then $R_{\theta_2}(App_{\theta_1,\theta_2}^{\mathcal{A}}fx)$,
- $R_{\theta_c}(Const_{\mathcal{A}}(c))$ for every constant $c:\theta_c$.

Theorem 11 (Mitchell). Let \mathcal{A} be an applicative structure, let $\llbracket \cdot \cdot \cdot \rrbracket_{\mathcal{A}}$ be an acceptable meaning function, let \mathcal{R} be a logical predicate over \mathcal{A} . Suppose $\rho_{\mathcal{A}}$ satisfies Γ . Then $R_{\theta}(\llbracket \Gamma \vdash M \rrbracket_{\mathcal{A}}(\rho_{\mathcal{A}}))$ for every $\Gamma \vdash M : \theta$.

Strong Normalisability

Let us write SN(M) for "M is strongly normalising".

Theorem 12 (Tait). Every typable λ -term is strongly normalising.

Let us prove the result through the Fundamental Theorem.

- 1. Define a logical predicate $\mathcal{P} = \{P_{\theta}\}$ on \mathcal{T} .
- 2. Show that $P_{\theta}(M)$ implies SN(M).
- 3. Show that \mathcal{P} is admissible.

By 1. and 3. we can apply the Fundamental Theorem to deduce that $P_{\theta}(M)$ for any $M \in T_{\theta}$. By 2. SN(M) holds for any M.

Finding \mathcal{P}

$$\begin{array}{ccc} P_o(M) & \Longleftrightarrow & SN(M) \\ P_{\theta_1 \to \theta_2}(M) & \Longleftrightarrow & P_{\theta_2}(MN) \text{ for all } N \in T_{\theta_1} \text{ such that } P_{\theta_1}(N) \end{array}$$

Strong normalisability is a consequence (point 2.)

Lemma 13.

- (i) If $xM_1\cdots M_k\in T_\theta$ and $SN(M_1),\cdots,SN(M_k)$ then $P_\theta(xM_1\cdots M_k).$
- (ii) If $P_{\theta}(M)$ then SN(M).

Proving 2.

- (i) If $xM_1 \cdots M_k \in T_\theta$ and $SN(M_i)$ then $P_\theta(xM_1 \cdots M_k)$.
- (ii) If $P_{\theta}(M)$ then SN(M).

Case $\theta \equiv o$.

- (i) Because $SN(M_i)$ for $1 \le i \le k$, we also have $SN(xM_1 \cdots M_k)$. Hence, $P_o(xM_1 \cdots M_k)$ by definition of P_o .
- (ii) Follows from the definition of P_o .

Proving 2. (ii)

- (i) If $xM_1 \cdots M_k \in T_\theta$ and $SN(M_i)$ then $P_\theta(xM_1 \cdots M_k)$.
- (ii) If $P_{\theta}(M)$ then SN(M).

Case $\theta \equiv \theta_1 \rightarrow \theta_2$.

- (i) Take $N \in T_{\theta_1}$ such that $P_{\theta_1}(N)$. By (ii) for θ_1 we have SN(N) and, by (i) for θ_2 , we get $P_{\theta_2}(xM_1\cdots M_kN)$. So $P_{\theta_1\to\theta_2}(xM_1\cdots M_k)$, as required.
- (ii) Suppose $P_{\theta_1 \to \theta_2}(M)$. By (i) for $x:\theta_1$, $P_{\theta_1}(x)$, so $P_{\theta_2}(Mx)$. By (ii) for θ_2 , SN(Mx). If SN(Mx) then SN(M).

Admissibility

Lemma 14. Suppose $M[N/x]N_1 \cdots N_k \in T_o$. If SN(N) and $SN(M[N/x]N_1 \cdots N_k)$ then $SN((\lambda x.M)NN_1 \cdots N_k)$.

Since $SN(M[N/x]N_1\cdots N_k)$, we have $SN(M),SN(N_1),\cdots,SN(N_k)$. Suppose $(\lambda x.M)NN_1\cdots N_k$ is not strongly normalising. Then the λ must be reduced at some point.

$$(\lambda x.M)NN_1\cdots N_k \to_{\beta\eta}^* (\lambda x.M')N'N'_1\cdots N'_k \to_{\beta\eta} Q$$

- β -reduction: $Q \equiv M'[N'/x]N_1' \cdots N_k'$. Then we also have $M[N/x]N_1 \cdots N_k \to_{\beta\eta}^* M'[N'/x]N_1' \cdots N_k'$, which contradicts $SN(M[N/x]N_1 \cdots N_k)$.
- η -reduction: $M' \equiv M''x$ (x does not occur in M'') and $Q \equiv M'N'N'_1 \cdots N'_k$. Then Q can also be reached via a β -reduction, so this case reduces to the one above.

Adequacy for PCF and the cpo interpretation

For $\vdash M : \mathbf{nat}$, if $\llbracket M \rrbracket = n$ then $M \Downarrow n$.

$$R_{\theta} \subseteq \llbracket \theta \rrbracket \times \mathsf{PCF}_{\theta}$$

$$R_{\mathbf{nat}}(d, M) \iff \text{if } d = n \text{ then } M \Downarrow n$$

$$R_{\theta_1 \to \theta_2}(d, M) \iff \forall_{d_1, M_1}(R_{\theta_1}(d_1, M_1) \Rightarrow R_{\theta_2}(dd_1, MM_1))$$

The Fundamental Theorem yields $R_{\theta}(\llbracket M \rrbracket_{\mathcal{A}}, \llbracket M \rrbracket_{\mathcal{B}})$ for closed terms. This amounts to $R_{\theta}(\llbracket M \rrbracket, M)$, which is exactly the Adequacy result.

Admissibility needs to proved, but it is not too difficult.

References

More details can be found in [1, 2].

- [1] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press, 1992.
- [2] J. C. Mitchell. *Foundations for Programming Languages*. MIT Press, 2000.