
TYPED LAMBDA CALCULI

Andrzej S. Murawski
University of λeicester

http://www.cs.le.ac.uk/people/amurawski/mgs2011-tlc.pdf

1

The aim of the course is to provide an introduction to
the lambda calculus along with a selection of results on
its operational and denotational semantics.

THE COURSE

Rather like the chassis of a bus, which
supports the vehicle but is unseen by its

users, versions of λ or CL underpin several
important logical systems and programming.

Cardone & Hindley

ONLINE RESOURCES
Online Resources

• R. Loader. Notes on Simply Typed Lambda Calculus (1998)

http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/

• J.-Y. Girard. Proofs and Types. 1990

http://www.paultaylor.eu/stable/prot.pdf

• H. Barendregt. Lambda Calculi with Types (1993)

ftp://ftp.cs.ru.nl/pub/CompMath.Found/HBK.ps

• H. Barendregt. The impact of the lambda calculus in logic and com-

puter science (1997)

ftp://ftp.cs.ru.nl/pub/CompMath.Found/church.ps

• R. Cardone, J. R. Hindley. History of Lambda-Calculus and Combina-

tory Logic (2006)

http://www-maths.swan.ac.uk/staff/jrh/papers/JRHHislamWeb.pdf

2

SOME HISTORY

• Russell’s paradox (1901)
• Gödel’s incompleteness theorems (1931)

The lambda-calculus originated in order
to study functions more carefully.

Rosser

The untyped λ-calculus was originally part of a
formal system proposed by Alonzo Church in
1928 with the intention of providing improved
foundations of mathematics in turbulent times.

A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics 33:346-366 (1932)

A. Church. A set of postulates for the foundation of logic (second paper).
Annals of Mathematics 34:839-864 (1933)

1

1903-1995

MORE HISTORY

A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics 33:346-366 (1932)

A. Church. A set of postulates for the foundation of logic (second paper).
Annals of Mathematics 34:839-864 (1933)

S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics.
Annals of Mathematics 36: 630-636 (1935)

1

Initially the λ-calculus was seen as a ‘poor relative’ and was
not the primary focus of research in Church’s group.

1909-1994 1907-1989

FUNCTION ABSTRACTION
f(x) = x + 1

The λ-notation turned out very successful.
Note that the function on the right is “anonymous”.

A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics 33:346-366 (1932)

A. Church. A set of postulates for the foundation of logic (second paper).
Annals of Mathematics 34:839-864 (1933)

S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics.
Annals of Mathematics 36: 630-636 (1935)

LISP, Haskell, Standard ML, OCAML, Haskell C#, JavaScript Python,
Smalltalk, Visual Basic

(lambda (x) (+ x 1)) fn x => x+1 fn x -> x+1

\x -> x+1 x => x+1 function (x) { return x+1; }

lambda x: x+1 [:x | x+1] Function(x) x+1

1

λx(x + 1)

WHY LAMBDA?

x̂(φ(x))

∧x(φ(x))

λx(φ(x))

•Class-abstraction [Russell and Whitehead, 1913]

•Function-abstraction [Church, 1932]

•Ease of printing

UNTYPED LAMBDA-TERMS
Let V be a countably infinite set of variables.

Variables Any x ∈ V is a λ-term.
Function Application If M,N are λ-terms, then (MN) is a λ-term.
Function Abstraction If x ∈ V and M is a λ-term, then (λx.M) is a λ-term.

Notational conventions
It is common to omit brackets or λ’s on the understanding that

• M1M2M3 · · ·Mn stands for ((· · · ((M1M2)M3) · · ·)Mn);

• λx.MN stands for (λx.(MN)), not ((λx.M)N);

• λx1x2 · · · xn.M stands for (λx1.(λx2. · · · (λxn.M) · · ·)).

For example, λxyz.xyz is meant to abbreviate (λx.(λy.(λz.((xy)z)))). We
will also write λxyz.(xy)z.

4

Let V be a countably infinite set of variables.

Variables Any x ∈ V is a λ-term.
Function Application If M,N are λ-terms, then (MN) is a λ-term.
Function Abstraction If x ∈ V and M is a λ-term, then (λx.M) is a λ-term.

Notational conventions

It is common to omit brackets or λ’s on the understanding that

• M1M2M3 · · ·Mn stands for ((· · · ((M1M2)M3) · · ·)Mn);

• λx.MN stands for (λx.(MN)), not ((λx.M)N);

• λx1x2 · · · xn.M stands for (λx1.(λx2. · · · (λxn.M) · · ·)).

For example, λxyz.xyz is meant to abbreviate (λx.(λy.(λz.((xy)z)))). We
will also write λxyz.(xy)z.

4

SOME EXAMPLES

Some Examples

yx xx y(y(yx)) yyyx ((yy)y)x

λf.λx.fx λfx.fx λfx.f(fx) λfx.f(f(fx))

(λf.f(xx))(λf.f(xx))

5

BINDING
Binding

• Like a quantifier in logic, λ is a binding construct with scope that
extends over the body of the abstraction (indeed Church wrote λx(M)
instead of λx.M).

• An occurrence of x in M is free if it is not in scope of any λx. The
free occurrences of x in fxg(λx.hzx)(hx) have been underlined below.
Note that there can be occurrences of x that are not free (we call them
bound).

fxg(λx.hzx)(hx)

• The outermost λx in λx.M binds only free occurrences of x in M .

5

FREE AND BOUND VARIABLES
Free and bound variables

A variable is free in M if it has at least one free occurrence in M . The
set of free variables of a term can be defined as follows.

fv(x) = {x}
fv(MN) = fv(M) ∪ fv(N)

fv(λx.M) = fv(M) \ {x}

By analogy we can consider bound variables.

6

ALPHA-EQUIVALENCE
alpha-equivalence

Names of bound variables are just a notational device to represent the binding
structure within terms.

λa.a λb.b λc.c λd.d λe.e λf.f λg.g λh.h

λx.fxg(λx.hzx)(hx) λx.fxg(λy.hzy)(hx) λy.fyg(λx.hzx)(hy)

Different variable names can be used to convey the same information about
binding. Then we talk of α-equivalent terms, written M ≡α N .

Nominal set theory allows for an elegant formalization of α-equivalence!

8

ALPHA-EQUIVALENCE

Any term in the α-equivalence class of M can be obtained from M by a
renaming of bound variables. The renaming must not modify the internal
binding structure (the same occurrences of variables must be bound by the
same occurrences of λ’s).

λx.λx.x ≡α λx.λy.y �≡α λx.λy.x

λx.f(λy.y) �≡α λy.f(λx.y)

λf.f(λx.f(λy.y)) �≡α λf.f(λx.f(λy.x))

λy.yx �≡α λx.xy �≡α λy.yy

9

DE BRUIJN INDICES

de Bruijn indices

An alternative representation of binding: replace each bound occurrence of a
variable with a numerical index that indicates the exact position of its binder
relative to all potential binders (e.g. 1 means the innermost λ whose scope
covers the relevant occurrence).

λx.λy.λz.xz(yz) λλλ31(21)

Two terms are α-equivalent if their de Bruijn representations are the same.

10

EQUIVALENCE CLASSES

Some examples

• λx.λx.x ≡α λx.λy.y �≡α λx.λy.x

λλ1 �= λλ2

• λf.f(λx.f(λy.y)) �≡α λf.f(λx.f(λy.x))

λ1(λ2(λ1)) �= λ1(λ2(λ2))

In what follows we shall identify terms with their α-equivalence class without
using the explicit notation [· · ·]α. Care must then be taken to ensure that
all definitions respect α-equivalence.

11

BETA RULE
β-rule

Computation with λ-terms

(λx.M)N −→ M [N/x]

Suppose substitution is defined simply as

x[N/x] = N
y[N/x] = y x �= y

(M1M2)[N/x] = (M1[N/x]M2[N/x])
(λy.M)[N/x] = (λy.M [N/x])

Then
((λx.λy.fxy) y) z −→ (λy.fyy)z −→ fzz

During the substitution of y for x in (λy.fxy) the substituted occurrence y
becomes captured by λy!

12

CAPTURE AVOIDANCE
Capture-avoiding substitution

x[N/x] = N
y[N/x] = y x �= y

(M1M2)[N/x] = (M1[N/x]M2[N/x])
(λy.M)[N/x] = (λy.M [N/x]) x �= y, y �∈ fv(N)

Note that (λy.fxy)[y/x] is now undefined. But there exist terms M � such
that (λy.fxy) ≡α M � and M �[y/x] is defined. For example

(λz.fxz)[y/x] = (λw.fyw).

This is no coincidence: whenever M [N/x] is not defined, it will be possible
to find M � ≡α M such that M �[N/x] is defined. For instance, one can simply
“refresh” the bound variables in M , i.e. rename them using variable names
not occurring in M or N .

This is the notion of substitution we shall rely on in the course!

13

BETA-STEP
Beta-reduction revisited

Basic β-step
(λx.M)N −→b M

�[N/x]

providedM ≡α M � andM �[N/x] is defined. Note thatM �[N/x] is determined
uniquely up to α-equivalence, so the above definition gives rise to a well-
defined operation on α-equivalence classes of terms.

(λx.λy.fxy)y −→b λw.fyw

(λx.M)N is called a β-redex.

14

ONE-STEP REDUCTION
one-step reduction

We write M −→β1 M � if M � is obtained from M by carrying out one basic β-
step insideM (one-step β-reduction). Formally, −→β1 is the smallest relation
satisfying the following rules.

M −→b M �

M −→β1 M �
M −→β1 M �

λx.M −→β1 λx.M �

M −→β1 M �

MN −→β1 M �N

M −→β1 M �

NM −→β1 NM �

15

BETA-REDUCTION

Beta-reduction

• The reflexive and transitive closure of −→β1, written −→∗
β1 or −→β or

β−→, will be called β-reduction.

• The smallest equivalence relation containing−→β1, written =β, is called
β-equality or β-equivalence.

16

TERMINOLOGY
Terminology

A term M is normal (in normal form) if there is no N such
that M −→β1 N .

A term M is weakly normalizing if there exists normal N
such that M −→β N . We call N a normal form of M . If
a term is not weakly normalizing, we write M ⇑.

A term M is strongly normalizing if there is no infinite
sequence of terms M1, M2, · · · such that

M −→β1 M1 −→β1 M2 −→β1 · · · .

16

CHURCH-ROSSER
Confluence

If a term is weakly normalizing we can reduce it to some normal form. Are
normal forms of terms determined uniquely (up to α-equivalence)? Is β-
equality a consistent theory of λ-terms?

The two questions can be answered in the positive thanks to the following
confluence property of −→β (for α-equivalence classes of terms): whenever

M
β

��

β

��
M1 M2

there exists M � such that

M1
β

��

M2
β

��
M �

18

UNIQUENESS OF NF
Corollaries

• Suppose N1, N2 are normal forms and

M
β

��

β

��
N1 N2

Then, by confluence, we must have N1 ≡α N2.

• If we regard normal forms as values, the λ-calculus (equipped with β-
reduction) can be viewed as a simple deterministic programming lan-
guage. Not all computations yield values, though.

(λx.xx)(λx.xx) −→β1 (λx.xx)(λx.xx)

19

CONSISTENCY OF BETA
1 beta-equality

Recall that β-equivalence was defined the smallest equivalence relation con-
taining −→β1. More precisely, M =β N iff there exist Q1, · · · , Qk such that

M � Q1 � . . . � Qk � N

where S � T stands for S −→β1 T or T −→β1 S. Thanks to the Church-
Rosser Theorem we can conclude that M =β N if and only if there exists Q
such that

M
β

��

N
β

��
Q

β-equivalence is consistent! For instance, λx.λy.x �=β λx.λy.y.

20

CHURCH NUMERALSChurch numerals

Natural numbers can be represented inside the λ-calculus using the idea of
function iteration.

f �→ fn = f ◦ . . . ◦ f� �� �
n

We define the term n representing the number n as follows.

0 = λf.λx.x
1 = λf.λx.fx
2 = λf.λx.f(fx)

...
n = λf.λx. f(· · · f(f� �� �

n

x) · · ·)

22

REPRESENTABILITY
Representing functions

One can use the above representation to represent numerical functions (even

partial ones).

A term M is said to represent f : N −→ N if

• M n −→β f(n) for any n ∈ dom(f),

• M n ⇑ for n �∈ dom(f).

23

SOME ENCODINGSsome encodings

successor λn.λfx. f(nfx)

addition λn1n2.λfx. (n1f)(n2fx)

multiplication λn1n2.λfx. n1(n2f)x

exponentiation λn1n2.λfx. n1n2fx

24

CONDITIONAL
conditional

if 0 x y −→β y

if n+ 1 x y −→β x

λnxy.n(λv.x)y

25

KLEENE’S PREDECESSOR
Kleene’s predecessor

• Consider g : N× N → N× N defined by g(x, y) = (x+ 1, x).

Observe that gn(0, 0) = (n, n− 1) for n > 0.

• To encode g in the λ-calculus we need to represent pairs.

�M,N� = λz.zMN
π1 = λp.p(λxy.x)
π2 = λp.p(λxy.y)

• Put it all together

λn. π2(nMg �0, 0�)

26

CHURCH’S THESIS
lambda-definable functions

The λ-definable functions turned out to coincide with known classes of (re-
cursive) functions.

A. Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics 58:345–363 (1936)

S. C. Kleene. λ-definability and recursiveness. Duke Mathematical
Journal 2:340–353 (1936)

This made Church conjecture that λ-definability captures the (informal) con-
cept of “effective calculability”. This is known as Church’s Thesis.

27

ENTSCHEIDUNGPROBLEM

1912-1954

Church would use a different language as at the time people were only

beginning to realize that various notions of effective calculability coincide.

Turing arrived on the scene at the same time with his Turing machines,

which he showed equivalent to the lambda calculus.

A. Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic 1: 40-41 (1936)

A. M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Soci-
ety 42: 230-265 (1936)

A. M. Turing. Computability and λ-definability. Journal of Symbolic
Logic 2:153-163 (1937)

=

Both also presented solutions to a long-standing open problem about

validity of first-order logic.

TURING

22

FIXED POINTS
fixed points

Let us consider the factorial function.

fact(n) =

�
1 n = 0

n · fact(n− 1) n > 0

Note that fact is expressed in terms of fact.

Consider the function operator G : (N → N) → (N → N) defined as follows

G(f)(n) =

�
1 n = 0

n · f(n− 1) n > 0

Observe that G(fact) = fact, i.e. fact is a fixed point.

Recursive definitions can be viewed as fixed points of operators on functions!

29

TURING’S COMBINATOR
Turing’s Fixed-point combinator

Does any function have a fixed point in the λ-calculus? Given f , can we
always find M such that

M −→β f(M)?

Ω = λxy.y(xxy)
Y = ΩΩ

Note the following

Y f = (ΩΩ)f −→β (λy.y(ΩΩy))f −→β f(ΩΩf) = f(Y f)

Y f is the fixed point of f : f(Y f) =β Y f . Y is a fixed-point combinator.

30

LAMBDA FACTORIAL
defining the factorial function

Recall that fact is a fixed point of G : (N → N) → (N → N).

G(f)(n) =

�
1 n = 0

n · f(n− 1) n > 0

Consider the λ-term corresponding to G:

λf.λn. if n (n · f(n− 1)) 1.

Apply the fixed point combinator

Y (λf.λn. if n (n · f(n− 1)) 1)

to obtain a term that represents the factorial function on Church numerals.

31

CURRY’S COMBINATOR
curry’s combinator

Y = λf. (λx.f(xx)) (λx.f(xx))

Observe that

Y f =β f(Y f).

This time we do not have Y f −→β f(Y f)!

32

MGS COMBINATOR
MGS combinator

T = λabc · · · xyz.z(midlands graduate school rulez)

Y = T · · ·T� �� �
26

Observe that

Y f =β f(Y f).

33

SCOTT NUMERALS
Scott numerals

0̂ = λxy.x

1̂ = λxy.y(λxy.x)

2̂ = λxy.y(λxy.y(λxy.x))

3̂ = λxy.y(λxy.y(λxy.y(λxy.x)))

Operations

Undecidable problems

• Is a given term weakly normalizing?

• Is a given term strongly normalizing?

• Does M −→β N hold?

• Does M =β N hold?

31

SOME ENCODINGS
Operations

successor λn.λxy. yn

predecessor λn. n ∗ (λx.x)

conditional λn.λxy. n x y

32

UNDECIDABLE PROBLEMS
Undecidable problems

• Is a given term weakly normalizing?

• Is a given term strongly normalizing?

• Does M −→β N hold?

• Does M =β N hold?

22

EXTENSIONALITY
Extensionality

Extensionality is a fundamental property of functions.

Mx = Nx

M = N
x �∈ fv(M) ∪ fv(N)

But it is not reflected in the current system (based on β-equality alone).

Observe that the following rule cannot be derived in general.

Mx =β Nx

M =β N
x �∈ fv(M) ∪ fv(N)

Can you see cases in which it can?

To incorporate extensionality, one could admit the rule given above or, equiv-

alently, add the η-law.

λx.Mx = M
x �∈ fv(M)

24

ETA-REDUCTIONη-reduction

Basic η-step (x �∈ fv(M)):

λx.Mx −→e M

Like for −→b, we can define:

• a one-step βη-reduction (−→βη1) by allowing −→b and −→e inside
terms and not only at the outermost level;

• βη-reduction (−→βη) as the symmetric and transitive closure of −→βη1;

• βη-equality (=βη) as the smallest equivalence relation containing−→βη1.

=βη satisfies the extensionality principle. Suppose Mx =βη Nx, where x �∈
fv(M) ∪ fv(N). Then λx.Mx =βη λx.Nx. Because λx.Mx =βη M and
λx.Nx =βη N , we can conclude M =βη N .

25

FURTHER LAWS?

How about adding the following law?

λxy.x =law λxy.y

Equating any different βη-normal forms M,N leads to inconsistency!

Böhm’s Theorem: There exists a context C such that

C[M] =βη x C[N] =βη y.

A closed (fv(M) = ∅) term M has a head normal form (is solvable) if M =β

λx1 · · · xn.xi · · · . If a term has a normal form, then it has a head normal

form. Equating unsolvable terms does not lead to inconsistency.

39

TYPES

Typed lambda calculus

A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic 5: 56-68 (1934)

H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Science 20: 584-590 (1934)

Types and preterms

In the untyped λ-calculus application is unconstrained. Terms can even be

applied to themselves! This flexibility turns out to be a source of computa-

tional expressiveness. In what follows we shall impose constraints on the use

of application, using types.

Let G be the set of ground types. For the time being, let G = {o}.

• Any A ∈ G is a type.

• If A and B are types, so is A → B.

26

Typed lambda calculus

A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic 5: 56-68 (1934)

H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Science 20: 584-590 (1934)

Types and preterms

In the untyped λ-calculus application is unconstrained. Terms can even be

applied to themselves! This flexibility turns out to be a source of computa-

tional expressiveness. In what follows we shall impose constraints on the use

of application, using types.

Let G be the set of ground types. For the time being, let G = {o}.

• Any A ∈ G is a type.

• If A and B are types, so is A → B.

26

TYPED LAMBDA CALCULUS

Typed lambda calculus

A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic 5: 56-68 (1934)

H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Science 20: 584-590 (1934)

Types and preterms

In the untyped λ-calculus application is unconstrained. Terms can even be

applied to themselves! This flexibility turns out to be a source of computa-

tional expressiveness. In what follows we shall impose constraints on the use

of application, using types.

Let G be the set of ground types. For the time being, let G = {o}.

• Any A ∈ G is a type.

• If A and B are types, so is A → B.

26

Typed lambda calculus

A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic 5: 56-68 (1934)

H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Science 20: 584-590 (1934)

Types and preterms

In the untyped λ-calculus application is unconstrained. Terms can even be

applied to themselves! This flexibility turns out to be a source of computa-

tional expressiveness. In what follows we shall impose constraints on the use

of application, using types.

Let G be the set of ground types. For the time being, let G = {o}.

• Any A ∈ G is a type.

• If A and B are types, so is A → B.

26

PRE-TERMS
Towards typed terms

In order define typed terms, we slightly modify the previous definition of
λ-terms and add type annotations to λ-abstractions.

Variables Any x ∈ V is a pre-term.
Function Application If M,N are pre-terms, then (MN) is a pre-term.
Function Abstraction If x ∈ V , M is a pre-term, A is a type

then (λxA.M) is a pre-term.

As before we shall identify α-equivalent pre-terms, i.e. we consider α-equivalence
classes (even though we shall not write [· · ·]α explicitly).

Pre-terms are candidates for typed terms. Next we define when a pre-term
can become a typed term. This will be the case if it can pass a typing test.

27

TYPING
Typing judgments

Typing judgments have the form

x1 : A1, · · · , xn : An � M : A

where

• x1, · · · , xn ∈ V

• A1, · · · , An, A are types

• M is a pre-term.

One can think of the left-hand-side of the judgment (called the context) as

a typing declaration for variables that might occur freely in M .

Indeed, the following invariant will be maintained: fv(M) ⊆ {x1, · · · , xn}.

27

TYPING RULES
Typing rules

x1 : A1, · · · , xn : An � xi : Ai
1 ≤ i ≤ n

Γ � M : A→ B Γ � N : A

Γ � MN : B

Γ, x : A � M : B

Γ � λxA.M : A→ B

28

PROPERTIESSome properties

Uniqueness: If Γ � M : A and Γ � M : B then A = B.

Weakening: If Γ � M : A, y �∈ Γ and B is a type then Γ, y : B � M : A.

Substitution: If Γ � N : B and Γ, x : B � M : A then Γ � M [N/x] : A.

Subject Reduction: If Γ � M : A and M −→βη N then Γ � N : A.

Type inference I: There exists an algorithm that, given Γ and pre-term
M , decides whether there exists A such that Γ � M : A and returns
such A.

Type inference II: There exists an algorithm that, given an untyped term
M , decides whether M can be annotated with types so that for the
resultant pre-term M � there exist Γ and A such that Γ � M � : A.
There are ways to infer the most general such A (principal type).

30

WEAK NORMALIZABILITY
Weak normalizability

In the untyped λ-calculus it is undecidable whether a term is weakly normal-
izing, i.e. whether it reduces to a normal term. This changes dramatically
with types: all terms have a normal form.

Some useful definitions.

• The degree of a type is defined by

d(o) = 0
d(A → B) = 1 + max(d(A), d(B))

• The degree of a redex (λxA.M)N is the degree of the type of λxA.M .

• The degree of a term is equal to the highest degree of a redex occurring
in it.

45

A NORMALIZATION ROUTINE
Normalizability procedure

Given a term Γ � M proceed as follows.

• Let d be the degree of M .

• Consider all redexes of degree d in M and pick from among these a
redex

· · · (λxA.M �)N � · · ·

such that all redexes in M � and N � have degree less than d, i.e. inner-
most redex of the highest degree.

• Fire it!

46

WHAT’S HAPPENED
what happened?

· · · (λxA.M �)N � · · ·

• Thanks to our choice (innermost), there is now one fewer redex of
degree d.

• There may be new redexes, but their degree will be that of the type of
M � or N �, both of which are strictly smaller than d.

• The procedure can be iterated until there are no redexes of degree d
left.

• The whole routine can be repeated for the resultant term. Note that
the degree of the term will now be strictly smaller than d. This implies
termination.

47

ONE-STEP BOUNDS
some bounds

The length of a term is defined as follows.

l(x) = 1
l(MN) = 1 + l(M) + l(N)

l(λx.M) = 1 + l(M)

Let M be a term whose degree is d. There exists a term M � of degree strictly
smaller than d such that:

• M −→β M � in at most l(M) steps,

• l(M �) ≤ 2l(M).

48

UPPER BOUNDSUpper bounds for reduction

Let 2mn represent the following tower of exponentials

22
··
2m

with n occurrences of 2.

Suppose M has degree d.

1. Its normal form has length 2l(M)
d .

2. Its normal form can be reached in 2l(M)
d−1 steps.

These bounds can be matched. β-reduction is not elementary (Statman)!

49

STRONG NORMALIZABILITY

Strong normalizability

Weak normalizability was initially regarded as more interesting, as it was all
one needed to demonstrate consistency. In the context of computers, strong
normalizability becomes a safety guarantee.

In the untyped λ-calculus it is undecidable whether a term is strongly
normalizing. This also changes with types: all typed terms are strongly
normalizing. It is not so easy to come up with a proof of this fact.

Exercise: Try a naive inductive proof to see what happens!

31

REDUCIBILITY (TAIT)

Reducibility

We define reducibility sets RedA as follows.

Redo = { (Γ,M) | Γ � M : o, M is strongly normalizing}
RedA→B = { (Γ,M) | Γ � M : A → B,

(Γ ∪∆,MN) ∈ RedB for all (Γ ∪∆, N) ∈ RedA }

Then it is not hard to show that

• If (Γ,M) ∈ RedA then M is strongly normalizing.

• For all Γ, if (x : A) ∈ Γ then (Γ, x) ∈ RedA.

51

STRONG NORMALIZABILITY

By induction on the structure of M one can show the following.

Given x1 : A1, · · · , xn : An � M : A, if (Γ, Ni) ∈ RedAi for any
i = 1, · · · , n then (Γ,M [N1/x1, · · · , Nn/xn]) ∈ RedA.

By setting Ni = xi we finally arrive at:

if Γ � M : A then (Γ,M) ∈ RedA.

Since being in RedA implies strong normalizability (previous slide), we can
conclude that any term is strongly normalizing.

52

REPRESENTABILITY
Representability

Church numerals can be typed. Let us write n for λf o→o.λxo.fn(x) and
observe that

� n : (o → o) → (o → o).

Let us write N for (o → o) → (o → o). As in the untyped case, we can define
a notion of representability for (total) numeric functions:

� M : N → · · · → N� �� �
k

→ N

represents f : Nk → N iff

Mn1 · · · nk =βη f(n1, · · · , nk)

for all (n1, · · · , nk) ∈ Nk. In the untyped case we could represent all recur-
sive functions in the same way. Now only the extended polynomials can be
represented (Schwichtenberg).

32

EXTENDED POLYNOMIALS
Extended polynomials E
Let us fix a set VN = {n1, n2, · · · } of (numeric) variables (for constructing
polynomials). The set of extended polynomials is the smallest set E satisfying
the rules below.

0, 1 ∈ E
n ∈ VN
n ∈ E

P1, P2 ∈ E
(P1 + P2) ∈ E

P1, P2 ∈ E
(P1 · P2) ∈ E

P1, P2, P3 ∈ E
ifzero(P1, P2, P3) ∈ E

The ifzero function is defined by: ifzero(m, m0, m1) =

�
m0 m = 0
m1 m > 0

Examples

1. (n1 + (n1 · n2))

2. (n1 · ifzero(n1 + n2, 0, n3 · (1 + 1)))

33

ALTERNATIVES
Other notions of representability

The previous notion uses the type N for representing both the arguments and

the result. A more general notion is possible. Let

NA = (A→ A)→ (A→ A)

so that No = N. We have � λfA→A.λxA.fn(x) : NA.

One can use different A’s for arguments and the result. This turns out to

extend the class of functions that can be represented, e.g. predecessor and

exponentiation become representable. Equality and substraction are not,

though.

S. Fortune, D. Leivant, M. O’Donnell. The Expressiveness of Simple and

Second-Order Type Structures. Journal of the ACM 30(1): 151-185 (1983)

34

LOWER BOUNDS
Lower bounds

nA = λfA→AxA.fnx : NA

Note that
mA→A nA =βη (nm)A

Consider the big terms:

bigA,0 = 0A
bigA,n+1 = bigA→A,n 2A

Then bigo,n is of degree n+ 2, length linear in n, and

bigA,n −→β (20n)A.

58

SOME HARD PROBLEMS
Some difficult problems

Many undecidable problems were associated with the untyped λ-calculus.

Here are some problems that are have proved hard to solve in the typed case.

Unification: Suppose x1, · · · , xn � M, N . Do there exist terms Q1, · · · , Qn

such that M [Q1/x1, · · · , Qn/xn] =βη N [Q1/x1, · · · , Qn/xn]?

Matching: Same as above except that N must be closed.

Unification is undecidable (Goldfarb). Matching (for G = {o}) is decid-

able (Stirling). Curiously, it is undecidable when =βη is replaced with =β

(Loader).

48

MODELS
Models

The typed λ-calculus can be given a natural set-theoretic interpretation,
consistent with our intuition about functions.

• Each type A will be interpreted by a set, written �A�.

• Each term-in-context Γ � M : A will be interpreted by a function,
written �Γ � M : A�. Let Γ = {x1 : A1, · · · , xn : An}.

– The domain of the function will be �A1�× · · ·× �An�.
– Its codomain will be �A�.

× stands for the Cartesian product of sets. Note that a closed term
� M : A will be interpreted by a function in 1 → �A�, i.e. an element
of �A�.

37

SET-THEORETIC MODELThe set-theoretic model

To get off the ground with the interpretation, we need an assignment of sets
to all ground types, e.g. �o� = {0, 1, 2, 3}. Starting from sets �A� for any
A ∈ G, we can interpret the remaning types inductively by

�A→ B� = �A�⇒ �B�,

where ⇒ stands for the set-theoretic function space, i.e. the set of all func-
tions from �A� to �B�.

Let Γ = {x1 : A1, · · · , xn : An}, (a1, · · · , an) ∈ �A1�×· · ·×�An� and a ∈ �A�.
The interpretation of terms is defined by induction on the structure of their
typing derivations as follows.

• �x1 : A1, · · · , xn : An � xi : Ai� (a1, · · · , an) = ai

• �Γ � MN� (a1, · · · , an) = (�Γ � M�(a1, · · · , an))(�Γ � N�(a1, · · · , an))

• (�Γ � λxA.M� (a1, · · · , an)) (a) = �Γ, x : A � M� (a1, · · · , an, a)

38

SOUNDNESS
Soundness

If Γ � M, N : B and M =βη N , then �Γ � M : B� = �Γ � N : B�.

How about the converse? Consider the following cases.

1. �o� = {�}

2. �o� = {0, · · · , n}

3. �o� = N

Different Church numerals are not βη-equivalent, so for the converse to hold

�N� must be infinite.

39

COMPLETENESS

Completeness

We write �Γ � M�X for �Γ � M� obtained by setting �o� = X.

Friedman: If �Γ � M�N = �Γ � N�N then M =βη N .

Plotkin: If �Γ � M�{0,··· ,n} = �Γ � N�{0,··· ,n} for all n ∈ N, then M =βη N .

40

DEFINABILITY
Definability

If �o� is finite, so is �A� for any type.

• Suppose �o� = {0, 1}. Then the set �o→ o� = {0, 1} ⇒{ 0, 1} has four
elements. What can �� M : o→ o� be?

• The only normal form (with respect to βη) at this type is λxo.x, which
is interpreted by the identity function.

• The other three elements are not λ-definable, i.e. they are not inter-
pretations of any terms.

In general it is undecidable whether a function is λ-definable, a surprising
result due to Loader.

41

CARTESIAN-CLOSED CAT’SCartesian Closed Categories

The set-theoretic interpretation and the associated soundness result are in-

stances of a more general category-theoretic interpretation in Cartesian Closed

Categories, i.e. categories with products and function spaces. The typed λ-

calculus can itself be organized into such a category.

• Objects are types.

• Morphisms are terms.

A morphism between A and B is a =βη-equivalence class

of x : A � M : B. The identity morphism is defined by

x : A � x : A.

• Composition is substitution.

Any (standard) interpretation of the typed lambda calculus in a cartesian

closed category can be factorized through the syntactic interpretation above.

42

CURRY-HOWARD
Curry-Howard Correspondence

Let us consider a few selected terms and their types.

Term Type

λxA.x A→ A

λxA.λyB.x A→ (B → A)

λxA→(B→C).λyA→B.λzA.xz(yz) (A→ (B → C))→ ((A→ B)→ (A→ C))

Think of → as implication in propositional logic. Are the types tautologies?

43

LOGIC OF TYPING
Curry-Howard Correspondence

Let us revisit the typing rules, but with terms erased.

A1, · · · , An � Ai
1 ≤ i ≤ n

Γ � A→ B Γ � A

Γ � B

Γ, A � B

Γ � A→ B

The rules turn out to correspond to provability in (implication-only) intu-
itionistic logic, which is a proper subset of classical logic.

44

CORRESPONDENCEThe Correspondence

LOGIC PROGRAMMING

intuitionistic logic λ-calculus

formulas types
proofs terms

simplification reduction
provability inhabitation

Can be useful in both directions!

66

PEIRCE’S LAW
Peirce’s law

A = ((α → β) → α) → α is provable in classical logic. Let us see through

the lens of the λ-calculus whether it is provable in intuitionistic logic. For a

change we need to set G = {α, β}.

• Assume that A is provable in intuitionistic logic. Then there exists a

term M such that � M : A. Hence, there exists a βη-normal term M
such that � M : A.

• M must have the shape λx(α→β)→α.N , i.e. x : (α → β) → α � N : α.

N must then be of the form xQ, where x � Q : α→ β. Thus, Q must

have the shape λyα.R and

x : (α→ β)→ α, y : α � R : β.

Is this possible with R in normal form?

46

APPLIED LAMBDA CALCULI
Applied Lambda Calculi

We saw that the internal notion of representability in the typed λ-calculus
is rather weak. But, of course, we would like to have typed languages that
are Turing-strong. What can we do?

Types: introduce “meaningful” ground types

Terms: allow ground values and primitive operations as constants

Reduction: add suitable reduction rules

69

PCF
PCF

Ground types

G = {nat}

Constants

n ∈ N
� n : nat � succ : nat → nat � pred : nat → nat

� ifzeroA : nat → (A → (A → A)) � YA : (A → A) → A

70

BETA RECAP
beta-recap

Basic rule

(λx.M)N −→ M [N/x]

Contextual rules

M −→ M �

λx.M −→ λx.M �
M −→ M �

MN −→ M �N

M −→ M �

NM −→ NM �

A basic step can be made anywhere inside the term (this will be restricted
in what follows in favour of the leftmost-outermost strategy).

71

CALL-BY-NAME EVALUATION
CBN Evaluation

Basic rules

pred 0 −→ 0
pred (n+ 1) −→ n

succ n −→ n+ 1

ifzeroA 0 M0 M1 −→ M0

ifzeroA (n+ 1) M0 M1 −→ M1

(λx.M)N −→ M [N/x]
YAM −→ M(YAM)

Contextual rules

M −→ M �

predM −→ predM �
M −→ M �

succM −→ succM �
M −→ M �

ifzeroA M −→ ifzeroA M �

M −→ M �

MN −→ M �N

72

CALL-BY-VALUE EVALUATIONCBV Evaluation

Let V stand for n, λx.M or YA→B.

Basic rules

pred 0 −→ 0
pred (n+ 1) −→ n

succ n −→ n+ 1

ifzeroA 0 M0 M1 −→ M0

ifzeroA (n+ 1) M0 M1 −→ M1

(λx.M)V −→ M [V/x]
YA→BV −→ λxA.V (YA→BV)x

Contextual rules

M −→ M �

predM −→ predM �
M −→ M �

succM −→ succM �
M −→ M �

ifzeroA M −→ ifzeroA M �

M −→ M �

MN −→ M �N

M −→ M �

VM −→ VM �
M −→ M �

YA→B M −→ YA→B M �

73

