
Opposition-based Particle Swarm Algorithm with
Cauchy Mutation

Hui Wang
School of Computer Science

China University of Geosciences
Wuhan, 430074 China

wanghui_cug@yahoo.com.cn
Sanyou Zeng

School of Computer Science
China University of Geosciences

Wuhan, 430074 China
sanyou-zeng@263.net

Yong Liu
University of Aizu

Tsuruga, Ikki-machi, Aizu-Wakamatsu
Fukushima 965-8580 Japan

yliu@u-aizu.ac.jp
Changhe Li

School of Computer Science
China University of Geosciences

Wuhan, 430074 China
lch_wfx@yahoo.com.cn

Abstract—Particle Swarm Optimization (PSO) has shown its
fast search speed in many complicated optimization and search
problems. However, PSO could often easily fall into local optima.
This paper presents an Opposition-based PSO (OPSO) to
accelerate the convergence of PSO and avoid premature
convergence. The proposed method employs opposition-based
learning for each particle and applies a dynamic Cauchy
mutation on the best particle. Experimental results on many well-
known benchmark optimization problems have shown that
OPSO could successfully deal with those difficult multimodal
functions while maintaining fast search speed on those simple
unimodal functions in the function optimization.

Ⅰ. INTRODUCTION
Particle Swarm Optimization (PSO) was firstly introduced

by Kennedy and Eberhart in 1995 [1]. It is a simple
evolutionary algorithm which differs from other evolutionary
algorithms in which it is motivated the simulation of social
behavior. PSO has shown good performance in finding good
solutions to optimization problems [2], and turned out to be
another powerful tool besides other evolutionary algorithms
such as genetic algorithms [3].

Like other evolutionary algorithms, PSO is also a
population-based search algorithm and starts with an initial
population of randomly generated solutions called particles [4].
Each particle in PSO has a position and a velocity. PSO
remembers both the best position found by all particles and the
best positions found by each particle in the search process. For
a search problem in an n-dimensional space, a potential
solution is represented by a particle that adjusts its position
and velocity according to Eqs. (1) and (2):

(1) () ()

1
()

2

* * ()* ()

* ()* ()

t t t
i i 1 i i

t
2 i

V w V c rand pbest X

c rand gbest X

+ = + −

+ −
 (1)

(1) () (1)t t t
X X Vi i i

+ +
= + (2)

where Xi and Vi are the position and velocity of particle i,
pbesti and gbest are previous best particle for the ith particle
and the global best particle found by all particles so far
respectively, and w is an inertia factor proposed by Shi and
Eberhart [5], and rand1() and rand2() are two random numbers
independently generated within the range of [0,1], and c1 and
c2 are two learning factors which control the influence of the
social and cognitive components.

One problem found in the standard PSO is that it could
easily fall into local optima in many optimization problems.
Some research has been done to tackle this problem [6-9]. The
standard PSO was inspired by the social and cognitive
behavior of swarm. According to equation (1), particles are
largely influenced by its previous best particles and the global
best particle. Once the best particle has no change in a local
optimum, all the rest particles will quickly converge to the
position of the best particle. So enhancing the mutated
probability of particles will lead to some changes of the best
particle. These changes could help the best particle escape
from local optima. In this paper, a new opposition-based PSO
algorithm called OPSO is proposed. It avoids premature
convergences and allows OPSO to continue search for global
optima by applying opposition-based learning [10-11] and a
dynamic Cauchy mutation operator with local search [12]. The
main idea of OPSO makes use of the estimate and opposite
estimate at the same time to achieve a better approximation for
each particle, and mutates the global best particle. It is to hope
that the long jump from Cauchy mutation could get the best
position out of the local optima where it has fallen. OPSO has
been tested on both unimodal and multimodal function
optimization problems. Comparison bas been conducted
between OPSO and standard PSO.

The rest of the paper is organized as follows: Section 2
describes the new OPSO algorithm. Section 3 defines the
benchmark continuous optimization problems used in the
experiments, and gives the experimental settings. Section 4
presents and discusses the experimental results. Finally,
Section 5 concludes with a summary and a few remarks.

Ⅱ. OPPOSITION-BASED PSO ALGORITHM

A. Opposition-based learning method
Opposition-based learning (OBL), originally introduced by

Hamid R. Tizhoosh [13-15], has proven to be an effective
method to differential evolution (ODE) in some optimization
problems [10-11]. When evaluating a solution x to a given
problem, we can guess the opposite solution of x to get a
better solution x'. By doing this, the distance of x from optima
solution can be reduced. For instance, if x is -10 and the
optimum solution is 30, then the opposite solution x' is 10 and
the distance of x from the optimum solution is 40. But the
distance of x' from the optimum solution is only 20. So the
opposite solution x' is closer to the optimum solution. The
opposite solution x' can be calculated as follows [13]:

 'x a b x= + − (3)

where x∈R within an interval of [a, b].
If the solution x is a multidimensional vector, we can

generalize the opposition-based learning method analogously.
Assume P(x1, x2, … , xn) is a solution in n-dimensional space
with x1, x2, … , xn∈R and xi∈[ai , bi] {1, 2 , ... }i n∀ ∈ . The
opposite solution OP(x1

', x2
', … , xn

') is defined below [13]:

 '
i i i ix a b x= + − (4)

B. Opposition-based method used in PSO
Assume f(x) is fitness function to a given problem. Let

Pi(x1, x2, … , xn) be a particle in n-dimension space with xi∈
[ai , bi] {1, 2 , ... }i n∀ ∈ . OPi(x1

', x2
', … , xn

') is the opposite
position of Pi . If f(OPi) is better than f(Pi), then update Pi with
OPi .

In order to control the step size of opposition, ai and bi
should be updated dynamically in term of the search space of
current population. It means, the minimum and maximum
values of each dimension in current population ([ap

i, bp
i]) are

used to calculate the opposite solution instead of predefined
interval boundaries ([ai , bi]). The dynamic opposition will
help particles search better positions, and accelerate the
convergence. The new opposition-based method is computed
as:
 , ,

p p
i j j j i jOP a b P= + − (5)

where Pi,j is the jth position vector of the ith particle in the
population, OPi,j is the opposite position of Pi,j , ap

j and bp
j are

the minimum and maximum values of the jth dimension in
current population respectively.

C. Dynamic Cauchy mutation operator
Some theoretical results have shown that the particle in

PSO will oscillate between their pervious best particle and the
global best particle found by all particles so far before it
converges [12-13]. If the searching neighbors of the global
best particle would be added in each generation, it would
extend the search space of the best particle. It is helpful for the
whole particles to move to the better positions. This can be
accomplished by having a Cauchy mutation [12] on the global

best particle in every generation. The one-dimensional Cauchy
density function centered at the origin is defined by:

() 1
2 2

t
f x

t xπ
=

+
, x−∞< <∞ (6)

where t > 0 is a scale parameter [16]. The Cauchy
distributed function is

1 1
() arctan

2
xF xt tπ

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (7)

The reason for using such a mutation operator is to increase
the probability of escaping from a local optimum [17]. The
Cauchy mutation operator used in OPSO is described as
follows:

1
() [] [] /

P o p S iz e

j
W i V j i P o p S iz e

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑ (8)

where V[j][i] is the ith velocity vector of the jth particle in
the population, PopSize is the population size. W(i) is a
weight vector within [-Wmax, Wmax], and Wmax is set to 1 in this
paper.

min max= + * (,) 'gbest (i) gbest(i) w(i) N X X (9)

where N is a Cauchy distributed function with the scale
parameter t = 1, and N(Xmin , Xmax) is a random number within
[Xmin , Xmax], which is a defined domain of a test function. The
main steps of OPSO algorithm are as follows:

Table 1. The main steps of OPSO algorithm.

Begin

n = population size;
P = current population
OP = the opposite population of P
xp

j ∈ [ap
j , bp

j]; //interval boundaries of the jth dimension in current population
 po = opposite probability;
best_fitness_value_so_far = the fitness value of the best particle found by

all particles so far
VTR = value to reach;
MaxNFC = maximum number of function calls (NFC)

while (best_fitness_value_so_far > VTR and NFC <= MaxNFC)

if(rand(0,1)< po)
Update the interval boundaries [ap

j , bp
j] in current population;

for i = 1 to n
Calculate the opposite particle OPi according to equation (5);

for end
Calculate fitness value of each particle in OP;
Select n fittest particles in P and OP as a new current population;

 Update pbesti, gbest if needed;
else

for each particle Pi
Calculate particle velocity according to equation (1);
Update particle position according to equation (2);
Calculate fitness value of particle Pi ;
Update pbesti, gbest if needed;

for end
if end
for i = 1 to n

Update W[i] according to equation (8)
if fabs(W[i] > Wmax) W[i] = Wmax
If end

for end
Mutate gbest according to equation (9);
if the fitness value of gbest' is better than gbest

gbest = gbest'
if end

while end
End

Ⅲ. EXPERIMENTS

A. Benchmark problems
8 well-known test functions used in [17-18] have been

chosen in our experimental studies. They are high-dimensional

problems, in which functions f1 to f4 are unimodal functions,
and functions f5 to f8 are multimodal functions. All the
functions used in this paper are to be minimized.

Table 2. The 8 test functions used in our experimental studies, where n is the dimension of the functions, fmin is the minimum
values of the function, and X⊆Rn is the search space.

Test Function n X fmin
2

1 1
() n

ii
f x x

=
= ∑ 30 [5.12,5.12]− 0

2
2 1
() *n

ii
f x i x

=
=∑ 30 [5.12,5.12]− 0

4
3 1

* [0,1)n
ii

f i x random
=

= +∑
30 [1.28,1.28]− 0

2 2 2 2
4 11
() [100() (1)]n

i i ii
f x x x x+=

= − + −∑ 30 [30,30]− 0

5 1
*sin(| |)n

i ii
f x x

=
= − −∑ 30 [500,500]− –12569.5

2
6 1

[10cos(2) 10]n
i ii

f x xπ
=

= − +∑ 30 [5.12,5.12]− 0

()

2
7 1

1

12 0 * e x p 0 .2 *

1e x p c o s 2 2 0

n
ii

n
ii

f x
n

x e
n

π

=

=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− + +⎜ ⎟
⎝ ⎠

∑

∑

30 [32,32]− 0

2
8 1 1

1 cos() 1
4000

nn i
ii i

xf x
i= =

= − +∑ ∏
30 [600,600]− 0

B. Parameter settings
The selection of the parameters w, c1, c2 of Eq. (1) is very

important. It can greatly influence the performance of PSO
algorithms and its variations. By following the suggestions
given in [19], c1 =c2 =1.49618, w= 0.72984 and the
maximum velocity Vmax was set to the half range of the search
space on each dimension [20]. To evaluate the performance of
convergence, the average number of function calls (NFC) [10-
11] was employed. All common parameters of PSO and OPSO
are set the same to have a fair comparison. The specific
parameter settings are listed as follows.

Table 3. The specific parameter settings

PopSize Maximum number of function
calls (MAXNFC)

Wmax Po

10 100,000 1 0.3

C. Experimental setup
The algorithms used for comparison were PSO and OPSO.

Each algorithm was tested with all of the numerical
benchmarks shown in Table 2. For each algorithm, the
maximum number of function calls (MAXNFC) allowed was
set to 100,000. If the fitness value of the best particle found by
all particles so far (best_fitness_value_so_far) is reach to a

approximate value VTR (-12569.5 for f5 and 10-25 for the rest
functions), we consider the current population has converged
to the optimum, and the algorithm is terminated. All the
experiments were conducted 50 times with different random
seeds, and the average fitness of the best particles throughout
the optimization run was recorded. The results below 10-25
will be reported as 0.

Ⅳ. EXPERIMENTAL RESULTS

A. Comparisons between PSO and OPSO
Table 4 shows the comparison between PSO and OPSO for

function f1 to f8, where "Mean Best" indicates the mean best
function values found in the last generation, and "Std Dev"
stands for the standard deviation ,and "Best" and "Worst"
shows the best value and the worst value achieved by different
algorithms over 50 trials respectively. It is obvious that OPSO
performs better than standard PSO. However, OPSO behaves
badly on f6, but better than PSO. Figure 1 shows performance
comparison between standard PSO and OPSO.

The significant improvement achieved by OPSO can be
contributed to the opposition-based learning and the search
ability of dynamic Cauchy mutation operator. The opposition-
based learning adds the changing probability of particles, and
the Cauchy mutation operator extends the search space of the
best particles. Such enhanced mutated probability and
extended neighbor search space will greatly help particles

move to better positions. In some cases, the extended
neighbors have included the global optima. Therefore, OPSO

had reached better solutions than the standard PSO.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

A
ve

ra
ge

 B
es

t F
itn

es
s

(L
O

G
)

Number of Function Calls (f1)

 PSO
 OPSO

0 10000 20 000 30000 4000 0 5 0000 60000 700 00 80000 9000 0 100000
-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

A
ve

ra
ge

 B
es

t F
itn

es
s

(L
O

G
)

Number o f Function Calls (f2)

 PSO
 OPSO

f1 f2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Av
er

ag
e

B
es

t F
itn

es
s

(L
O

G
)

Number of Function Calls (f3)

 PSO
 OPSO

0 10000 20 000 30000 4000 0 5 0000 60000 700 00 80000 9000 0 100000

-60

-50

-40

-30

-20

-10

0

10

20

A
ve

ra
ge

 B
es

t F
itn

es
s

(L
O

G
)

N um be r o f Functio n Cal ls (f4)

 P S O
 O PS O

 f3 f4

0 100 00 20000 30000 40 000 50000 6000 0 70 000 80000 900 00 10000 0
-12 000

-11 000

-10 000

-9 000

-8 000

-7 000

-6 000

-5 000

-4 000

-3 000

-2 000

-1 000

A
ve

ra
ge

 B
es

t F
itn

es
s

Num ber of F unction Ca lls (f5)

 P SO
 OP S O

0 10000 20 000 30000 4000 0 5 0000 60000 700 00 80000 9000 0 100000
0

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 B
es

t F
itn

es
s

Num ber o f F unc tion C alls (f6)

 P S O
 O PS O

 f5 f6

0 10000 20 000 30000 4000 0 5 0000 60000 700 00 8 0000 9000 0 100000

0

2

4

6

8

10

12

14

16

18

20

22

A
ve

ra
ge

 B
es

t F
itn

es
s

Number o f Function Calls (f7)

 PSO
 O PSO

0 10000 20 000 30000 4000 0 5 0000 60000 700 00 8 0000 9000 0 100000
-4

-3

-2

-1

0

1

2

3

4

5

6

7

Av
er

ag
e

B
es

t F
itn

es
s

(L
O

G
)

N umber of Functio n Cal ls (f8)

 PSO
 OPSO

f7 f8

Fig. 1. Performance comparison between Standard PSO and OPSO. The horizontal axis is the average number of function calls and the vertical axis is the average

best fitness value over 50 trials

Table 4. The results achieved for f1 to f8 using different algorithms.

PSO OPSO Function

Mean Best Std Dev Best Worst Mean Best Std Dev Best Worst
f1 6.06e-7 2.07e-6 1.98e-19 8.95e-6 0 0 0 0
f2 3.50e-005 1.60e-4 1.26e-18 8.66e-4 0 0 0 0
f3 9.75e-2 7.03e-2 1.33e-2 0.282 1.84e-2 5.36e-3 1.14e-2 3.29e-2
f4 2.87 6.31 3.02e-4 21.46 0 0 0 0
f5 -6705.1 631.2 -8621.4 -5303.6 -10986.7 207.344 -11250.6 -10674.5
f6 62.22 12.70 34.82 83.58 49.95 11.29 36.81 59.70
f7 7.49 2.08 4.17 12.83 1.19 1.06 0 3.35
f8 0.659 1.15e-4 0.896 3.82 4.72e-2 4.33e-2 0 0.176

B. Average number of evaluations
However, the opposite population used in the OPSO will

increase its computational complexity. So investigating the
average number of function calls for each algorithm will be
very meaningful for evaluating the performance of PSO and

OPSO. All the results are given in Table 5. By contrast
standard PSO, OPSO does not only cost fewer evaluations, but
also achieves better solutions on f1, f2, f4, f7 and f8. On
multimodal function f3, f5 and f6, though OPSO and PSO have
the same average number of evaluations, but OPSO gets better
solutions than PSO.

Table 5. The average number of function calls (NFC).

Function f1 f2 f3 f4 f5 f6 f7 f8
NFC (PSO) 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000

NFC (OPSO) 57,977 59,089 100,001 85,960 100,001 100,001 87,571 96,442

C. Improvement probability
The OPSO is composed of opposition-based learning

operator and standard PSO operator. Though the opposition
operator occurred with a probability (Po = 0.3) in OPSO, it
showed good performance from the above result. So it is very
important to observe the effects of opposition method. In this
experiment, improvement probability of generated offspring

by opposition operator in OPSO was calculated every 500
evaluations. The improvement probability is computed as:

/Imp_prob(i) Num_Winner Num_OP= (10)

where Num_Winner is the number of offspring which are
better than its parents in the ith 500 evaluations, and Num_OP
is the number of opposition what had happened in the ith 500
evaluations.

0 5000 1 0000 150 00 20000 25 000 30000 3 5000 4000 0 45000 500 00 55000
-0 .02

0 .00

0 .02

0 .04

0 .06

0 .08

0 .10

0 .12

0 .14

0 .16

0 .18

Im
pr

ov
em

en
t p

ro
ba

bi
lit

y

Numbe r of Evaluations (f1)

0 100 00 20000 30000 40 000 50000 6000 0 70 000 80000 900 00 10000 0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Im
pr

ov
em

en
t p

ro
ba

bi
lit

y

N um be r o f Eva lua tion s (f
5
)

f1 f5

Fig. 2. The improvement probability of OPSO

Because of the limited number of pages, only the evolution
process of the improvement probability of opposition-based
operator on functions f1 and f5 is shown in Fig. 2. For f1, it
could be found that opposition-based operator had rather low
improvement probability. It is because that current population
(P) and its opposite population (OP) had the same function
values for the initial boundary a and b. With updating the
boundaries dynamically, opposition-based operator could be
able to make OP different to P so that it is possible to find
better OP than P. For f5, the opposition-based operator was
able to find better particles at the very beginning with rather
higher probabilities since OP and P had different values from
the initial boundary values. The results suggest that it is
essential to make OP be different to P in order to find better
particles. Besides having different values, it is also important
to control the step size of the opposition-based operator so that

opposition-based operator could continue to find better
particles.

D. The operator probability Po in OPSO
To investigate the effects of the probability of the

opposition-based method used in OPSO, different values of Po
are used in the following experiments. Po is set to 0, 0.3, 0.5,
0,7 and 1.0 separately and the algorithms are run 50 times for
each Po. Table 6 shows the performance comparisons under
different values of Po. "Mean" indicates the mean best
function values found in the last generation, and NFC stands
for the average number of function calls over 50 trials. It
suggests that Po between 0 and 0.7 is best for the proposed
algorithm. For Po = 0, opposition-based learning does not
occur at all in the OPSO, but the results still outperform
standard PSO because of the search ability of Cauchy
mutation operator on the best particle.

Table 6. Different values of Po used in the OPSO.

Po = 0 Po = 0.3 Po = 0.5 Po = 0.7 Po = 1.0 Test
Function Mean NFC Mean NFC Mean NFC Mean NFC Mean NFC

f1 8.55e-8 58,341 0 57,977 0 96,111 5.14e-12 100,001 34.45 100,001
f2 0 58,671 0 59,089 0 96,769 2.08e-11 100,001 464.05 100,001
f3 0.107 100,001 1.84e-2 100,001 4.47e-2 100,001 8.93e-2 100,001 8.71 100,001
f4 1.42e-6 100,001 0 85,960 2.12e-15 100,001 6.21e-8 100,001 2336.3 100,001
f5 -9584.8 100,001 -10986.7 100,001 -10887.1 100,001 -10893.7 100,001 -10834.7 100,001
f6 56.51 100,001 49.95 100,001 37.86 100,001 199.21 100,001 248.32 100,001
f7 5.04 100,001 1.19 87,571 0.568 100,001 0.832 100,001 8.65 100,001
f8 9.94e-2 100,001 4.72e-2 96,442 6.19e-2 100,001 0.248 99,987 0.727 100,001

V. CONCLUSIONS
The idea of OPSO is to use an opposition-based learning

method and a dynamic Cauchy mutation operator to help
avoid local optima and accelerate the convergence of PSO. By
estimating positions and the opposite positions, and applying a
Cauchy mutaiton on the best particle found by all particles so
far in each generation, OPSO could find better solutions than
PSO.

OPSO has been compared with the standard PSO on both 4
unimodal functions and 4 multimodal functions. The results
have shown that OPSO could have faster convergence on
those simple unimodal functions, and better global search
ability on those multimodal functions compared to the
standard PSO. However, there are still fewer cases where
OPSO had fallen in the local optima as what had happened on
OPSO for the function f6. It suggests that the proposed mthod
might not be enough to prevent the search from falling in the
local optima. Further study will foucs on how to improve the
efficiency of the opposition-based method and the Cauchy
mutation operator.

REFERENCES
[1] J. Kennedy and R. Eberhart, Particle Swarm Optimization, IEEE

International Conference on Neural Networks, Perth, Australia. 1995.
[2] K. E Parsopoulos, V. P. Plagianakos, G. D. Magoulas, M. N. Vrahatis,

Objective Function “stretching” to Alleviate Convergence to Local
Minima, Nonlinear Analysis TMA 47, 3419-3424, 2001.

[3] R. Eberhart and Y. Shi, Comparison between Genetic Algorithms and
Particle Swarm Optimization, The 7th Annual Conference on
Evolutionary Programming, San Diego, USA, 69-73, 1998

[4] X.. Hu, Y. Shi and R. Eberhart, Recentt Advenes in Particle Swarm,
Congress on Evolutionary Computation, Portland, Oregon, June 19-23,
90-97, 2004

[5] Y. Shi and R. Eberhart, A Modified Partilce Swarm Optimzer,
Proceedings of the IEEE Congress on Evolutionary Computation (CEC
1998), Piscataway, NJ. 69-73, 1998.

[6] F. van den Bergh, A. P. Engelbrecht, Cooperative Learning in Neural
Networks using Particle Swarm Optimization, South African Computer
Journal, 84-90, Nov. 2000.

[7] X, Xie, W, Zhang, Z, Yang, Hybrid Particle Swarm Optimizer with Mass
Extinction, International Conf. on Communication, Circuits and Systems
(ICCCAS), Chengdu, China. 1170-1174, 2002.

[8] M. Lovbjerg, T. Krink, Extending Particle Swarm Optimisers with Self-
Organized Criticality, Proceedings of Fourth Congress on Evolutionary
Computation, vol. 2, 1588-1593, 2002.

[9] L. S. Coelho, and R. A. Krohling, Predictive controller tuning using
modified particle swarm optimization based on Cauchy and Gaussian

distributions, in Proceedings of the 8th On-Line World Conference on
Soft Computing in Industrial Applications. WSC8, 2003.

[10] S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama, Opposition-based
dufferential evolution algorithms, IEEE Congress on Evolutionary
Computation, Vancourver, BC, Canada, 2006

[11] S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama, Opposition-based
dufferential evolution for optimization of noisy problems, IEEE
Congress on Evolutionary Computation, Vancourver, BC, Canada, 2006

[12] Hui Wang, Yong Liu, Changhe Li, Sanyou Zeng, A hybrid particle
swarm algorithm with Cauchy mutation, IEEE Swarm Intelligence
Symposimu 2007 (SIS 2007), Honolulu, Hawaii, USA, 2006, in press.

[13] H. R. Tizhoosh, Opposition-based learning,: A new scheme for machine
intelligence, International Conference on Computational Intelligence for
Modeling Control and Automation – CIMCA 2005, Vienna, Austria, val.
I, 695-701, 2005

[14] H. R. Tizhoosh, Reinforcement learning based on actions and opposite
actions, ICGST International Conference on Artificial Intelligence and
Machine Learning (AIML 05), Cairo, Egypt, 2005.

[15] H. R. Tizhoosh, Opposition-based reinforcement learning, Journal of
Advanced Computational Intelligence and Intelligent Informatics, vol.
10, no. 3, 2006.

[16] W. Feller, An Introduction to Probability Theory and Its Applications,
volume 2, John Wiley & Sons, Inc., 2nd edition, 1971.

[17] X. Yao, Y. Liu and G. Lin, Evolutionary Programing Made Faster, IEEE
Transacations on Evolutionary Computation, vol. 3, 82-102, July 1999.

[18] K. Veeramachaneni, T. Peram, C. Mohan, L. A. Osadciw, Optimization
Using Particle Swarms with Near Neighbor Interactions, Proc. Genetic
and Evolutionary Computation (GECCO 2003), vol. 2723,110-121,
2003.

[19] F. van den Bergh, An Analysis of Particle Swarm Optimizers. PhD
thesis, Department of Computer Science, University of Pretoria, South
Africa, 2002.

[20] Wenjun Zhang, Xiaofeng Xie, DEPSO: Hybrid particle swarm with
differential evoluion operator, IEEE Int. Conf. on System, Man &
Cybernetics (SMCC), Washington, USA, 3816-3821, 2003.

