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Abstract—Particle Swarm Optimization (PSO) has shown its 
fast search speed in many complicated optimization and search 
problems. However, PSO could often easily fall into local optima. 
This paper presents an Opposition-based PSO (OPSO) to 
accelerate the convergence of PSO and avoid premature 
convergence. The proposed method employs opposition-based 
learning for each particle and applies a dynamic Cauchy 
mutation on the best particle. Experimental results on many well-
known benchmark optimization problems have shown that 
OPSO could successfully deal with those difficult multimodal 
functions while maintaining fast search speed on those simple 
unimodal functions in the function optimization. 

Ⅰ.    INTRODUCTION 
Particle Swarm Optimization (PSO) was firstly introduced 

by Kennedy and Eberhart in 1995 [1]. It is a simple 
evolutionary algorithm which differs from other evolutionary 
algorithms in which it is motivated the simulation of social 
behavior. PSO has shown good performance in finding good 
solutions to optimization problems [2], and turned out to be 
another powerful tool besides other evolutionary algorithms 
such as genetic algorithms [3].  

Like other evolutionary algorithms, PSO is also a 
population-based search algorithm and starts with an initial 
population of randomly generated solutions called particles [4]. 
Each particle in PSO has a position and a velocity. PSO 
remembers both the best position found by all particles and the 
best positions found by each particle in the search process. For 
a search problem in an n-dimensional space, a potential 
solution is represented by a particle that adjusts its position 
and velocity according to Eqs. (1) and (2): 
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where Xi and Vi are the position and velocity of particle i, 
pbesti and gbest are previous best particle for the ith particle 
and the global best particle found by all particles so far 
respectively, and w is an inertia factor proposed by Shi and 
Eberhart [5], and rand1() and rand2() are two random numbers 
independently generated within the range of [0,1], and c1 and 
c2 are two learning factors which control the influence of the 
social and cognitive components. 

One problem found in the standard PSO is that it could 
easily fall into local optima in many optimization problems. 
Some research has been done to tackle this problem [6-9]. The 
standard PSO was inspired by the social and cognitive 
behavior of swarm. According to equation (1), particles are 
largely influenced by its previous best particles and the global 
best particle. Once the best particle has no change in a local 
optimum, all the rest particles will quickly converge to the 
position of the best particle. So enhancing the mutated 
probability of particles will lead to some changes of the best 
particle. These changes could help the best particle escape 
from local optima. In this paper, a new opposition-based PSO 
algorithm called OPSO is proposed. It avoids premature 
convergences and allows OPSO to continue search for global 
optima by applying opposition-based learning [10-11] and a 
dynamic Cauchy mutation operator with local search [12]. The 
main idea of OPSO makes use of the estimate and opposite 
estimate at the same time to achieve a better approximation for 
each particle, and mutates the global best particle. It is to hope 
that the long jump from Cauchy mutation could get the best 
position out of the local optima where it has fallen. OPSO has 
been tested on both unimodal and multimodal function 
optimization problems. Comparison bas been conducted 
between OPSO and standard PSO. 

The rest of the paper is organized as follows: Section 2 
describes the new OPSO algorithm. Section 3 defines the 
benchmark continuous optimization problems used in the 
experiments, and gives the experimental settings. Section 4 
presents and discusses the experimental results. Finally, 
Section 5 concludes with a summary and a few remarks.  



Ⅱ.    OPPOSITION-BASED PSO ALGORITHM 

A.   Opposition-based learning method 
Opposition-based learning (OBL), originally introduced by 

Hamid R. Tizhoosh [13-15], has proven to be an effective 
method to differential evolution (ODE) in some optimization 
problems [10-11]. When evaluating a solution x to a given 
problem, we can guess the opposite solution of x to get a 
better solution x'. By doing this, the distance of x from optima 
solution can be reduced. For instance, if x is -10 and the 
optimum solution is 30, then the opposite solution x' is 10 and 
the distance of x from the optimum solution is 40. But the 
distance of x' from the optimum solution is only 20. So the 
opposite solution x' is closer to the optimum solution. The 
opposite solution x' can be calculated as follows [13]:  

      'x a b x= + −                          (3) 

where x∈R within an interval of [a, b]. 
If the solution x is a multidimensional vector, we can 

generalize the opposition-based learning method analogously. 
Assume P(x1, x2, … , xn) is a solution in n-dimensional space 
with x1, x2, … , xn∈R and xi∈[ai , bi] {1, 2 , ... }i n∀ ∈ . The 
opposite solution OP(x1

', x2
', … , xn

') is defined below [13]: 

                            '
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B.   Opposition-based method used in PSO 
Assume f(x) is fitness function to a given problem. Let 

Pi(x1, x2, … , xn) be a particle in n-dimension space with  xi∈
[ai , bi] {1, 2 , ... }i n∀ ∈ . OPi(x1

', x2
', … , xn

') is the opposite 
position of Pi . If f(OPi) is better than f(Pi), then update Pi with 
OPi . 

In order to control the step size of opposition, ai and bi 
should be updated dynamically in term of the search space of 
current population. It means, the minimum and maximum 
values of each dimension in current population ([ap

i, bp
i]) are 

used to calculate the opposite solution instead of predefined 
interval boundaries ([ai , bi]). The dynamic opposition will 
help particles search better positions, and accelerate the 
convergence. The new opposition-based method is computed 
as: 
                               , ,

p p
i j j j i jOP a b P= + −                         (5) 

where Pi,j is the jth position vector of the ith particle in the 
population, OPi,j is the opposite position of Pi,j , ap

j and bp
j are 

the minimum and maximum values of the jth dimension in 
current population respectively. 

C.   Dynamic Cauchy mutation operator 
Some theoretical results have shown that the particle in 

PSO will oscillate between their pervious best particle and the 
global best particle found by all particles so far before it 
converges [12-13]. If the searching neighbors of the global 
best particle would be added in each generation, it would 
extend the search space of the best particle. It is helpful for the 
whole particles to move to the better positions. This can be 
accomplished by having a Cauchy mutation [12] on the global 

best particle in every generation. The one-dimensional Cauchy 
density function centered at the origin is defined by: 
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where t > 0 is a scale parameter [16]. The Cauchy 
distributed function is 
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The reason for using such a mutation operator is to increase 
the probability of escaping from a local optimum [17]. The 
Cauchy mutation operator used in OPSO is described as 
follows:  
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where V[j][i] is the ith velocity vector of the jth particle in 
the population, PopSize is the population size. W(i) is a 
weight vector within [-Wmax, Wmax], and Wmax is set to 1 in this 
paper. 

min max= + * ( , ) 'gbest (i) gbest(i) w(i) N X X      (9) 

where N is a Cauchy distributed function with the scale 
parameter t = 1, and N(Xmin , Xmax) is a random number within 
[Xmin , Xmax], which is a defined domain of a test function. The 
main steps of OPSO algorithm are as follows: 

Table 1. The main steps of OPSO algorithm. 
 
Begin 

n = population size; 
P = current population 
OP = the opposite population of P 
xp

j ∈ [ap
j , bp

j];  //interval boundaries of the jth dimension in current population  
 po = opposite probability;  
best_fitness_value_so_far = the fitness value of the best particle found by 

all particles so far 
VTR = value to reach; 
MaxNFC = maximum number of function calls (NFC) 
 
while (best_fitness_value_so_far > VTR and NFC <= MaxNFC) 

if(rand(0,1)< po) 
Update the interval boundaries [ap

j , bp
j] in current population;  

for i = 1 to n 
Calculate the opposite particle OPi according to equation (5); 

for end 
Calculate fitness value of each particle in OP; 
Select n fittest particles in P and OP as a new current population; 

      Update pbesti, gbest if needed; 
else 

for each particle Pi 
Calculate particle velocity according to equation (1); 
Update particle position according to equation (2); 
Calculate fitness value of particle Pi ;  
Update pbesti, gbest if needed; 

for end 
if end 
for i = 1 to n 

Update W[i] according to equation (8) 
if fabs(W[i] > Wmax)  W[i] = Wmax 
If end 

for end 
Mutate gbest according to equation (9); 
if the fitness value of gbest' is better than gbest 

gbest = gbest'  
if end 

while end 
End 
 



Ⅲ.    EXPERIMENTS 

A.   Benchmark problems 
8 well-known test functions used in [17-18] have been 

chosen in our experimental studies. They are high-dimensional 

problems, in which functions f1 to f4 are unimodal functions, 
and functions f5 to f8 are multimodal functions. All the 
functions used in this paper are to be minimized. 

Table 2.  The 8 test functions used in our experimental studies, where n is the dimension of the functions, fmin is the minimum 
values of the function, and X⊆Rn is the search space. 
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B.   Parameter settings  
The selection of the parameters w, c1, c2 of Eq. (1) is very 

important. It can greatly influence the performance of PSO 
algorithms and its variations. By following the suggestions 
given in [19],   c1 =c2 =1.49618, w= 0.72984 and the 
maximum velocity Vmax was set to the half range of the search 
space on each dimension [20]. To evaluate the performance of 
convergence, the average number of function calls (NFC) [10-
11] was employed. All common parameters of PSO and OPSO 
are set the same to have a fair comparison. The specific 
parameter settings are listed as follows. 

Table 3. The specific parameter settings 

PopSize Maximum number of function 
calls (MAXNFC) 

Wmax Po 

10 100,000 1 0.3
 

C.   Experimental setup 
The algorithms used for comparison were PSO and OPSO. 

Each algorithm was tested with all of the numerical 
benchmarks shown in Table 2. For each algorithm, the 
maximum number of function calls (MAXNFC) allowed was 
set to 100,000. If the fitness value of the best particle found by 
all particles so far (best_fitness_value_so_far) is reach to a 

approximate value VTR (-12569.5 for f5 and 10-25 for the rest 
functions), we consider the current population has converged 
to the optimum, and the algorithm is terminated. All the 
experiments were conducted 50 times with different random 
seeds, and the average fitness of the best particles throughout 
the optimization run was recorded. The results below 10-25 
will be reported as 0. 

Ⅳ.    EXPERIMENTAL RESULTS 

A.   Comparisons between PSO and OPSO 
Table 4 shows the comparison between PSO and OPSO for 

function f1 to f8, where "Mean Best" indicates the mean best 
function values found in the last generation, and "Std Dev" 
stands for the standard deviation ,and "Best" and "Worst" 
shows the best value and the worst value achieved by different 
algorithms over 50 trials respectively. It is obvious that OPSO 
performs better than standard PSO. However, OPSO behaves 
badly on f6, but better than PSO. Figure 1 shows performance 
comparison between standard PSO and OPSO.   

The significant improvement achieved by OPSO can be 
contributed to the opposition-based learning and the search 
ability of dynamic Cauchy mutation operator. The opposition-
based learning adds the changing probability of particles, and 
the Cauchy mutation operator extends the search space of the 
best particles. Such enhanced mutated probability and 
extended neighbor search space will greatly help particles 



move to better positions. In some cases, the extended 
neighbors have included the global optima. Therefore, OPSO 

had reached better solutions than the standard PSO. 
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Fig. 1. Performance comparison between Standard PSO and OPSO. The horizontal axis is the average number of function calls and the vertical axis is the average 

best fitness value over 50 trials 



 

Table 4.  The results achieved for f1 to f8 using different algorithms. 

 
PSO OPSO Function 

Mean Best Std Dev Best Worst Mean Best Std Dev Best Worst 
f1 6.06e-7 2.07e-6 1.98e-19 8.95e-6 0 0 0 0 
f2 3.50e-005 1.60e-4 1.26e-18 8.66e-4 0 0 0 0 
f3 9.75e-2 7.03e-2 1.33e-2 0.282 1.84e-2 5.36e-3 1.14e-2 3.29e-2
f4 2.87 6.31 3.02e-4 21.46 0 0 0 0 
f5 -6705.1 631.2 -8621.4 -5303.6 -10986.7 207.344 -11250.6 -10674.5
f6 62.22 12.70 34.82 83.58 49.95 11.29 36.81 59.70 
f7 7.49 2.08 4.17 12.83 1.19 1.06 0 3.35 
f8 0.659 1.15e-4 0.896 3.82 4.72e-2 4.33e-2 0 0.176 

 
 

B.   Average number of evaluations 
However, the opposite population used in the OPSO will 

increase its computational complexity. So investigating the 
average number of function calls for each algorithm will be 
very meaningful for evaluating the performance of PSO and 

OPSO. All the results are given in Table 5. By contrast 
standard PSO, OPSO does not only cost fewer evaluations, but 
also achieves better solutions on f1, f2, f4, f7 and f8. On 
multimodal function f3, f5 and f6, though OPSO and PSO have 
the same average number of evaluations, but OPSO gets better 
solutions than PSO.  

 

Table 5. The average number of function calls (NFC). 

Function f1 f2 f3 f4 f5 f6 f7 f8 
NFC (PSO) 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 

NFC (OPSO) 57,977 59,089 100,001 85,960 100,001 100,001 87,571 96,442 

 
 

C.   Improvement probability  
The OPSO is composed of opposition-based learning 

operator and standard PSO operator. Though the opposition 
operator occurred with a probability (Po = 0.3) in OPSO, it 
showed good performance from the above result. So it is very 
important to observe the effects of opposition method. In this 
experiment, improvement probability of generated offspring 

by opposition operator in OPSO was calculated every 500 
evaluations. The improvement probability is computed as: 
 

/Imp_prob(i) Num_Winner Num_OP=            (10) 
 

where Num_Winner is the number of offspring which are 
better than its parents in the ith 500 evaluations, and Num_OP 
is the number of opposition what had happened in the ith 500 
evaluations. 
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Fig. 2. The improvement probability of OPSO 

  



Because of the limited number of pages, only the evolution 
process of the improvement probability of opposition-based 
operator on functions f1 and f5 is shown in Fig. 2. For f1, it 
could be found that opposition-based operator had rather low 
improvement probability. It is because that current population 
(P) and its opposite population (OP) had the same function 
values for the initial boundary a and b. With updating the 
boundaries dynamically, opposition-based operator could be 
able to make OP different to P so that it is possible to find 
better OP than P. For f5, the opposition-based operator was 
able to find better particles at the very beginning with rather 
higher probabilities since OP and P had different values from 
the initial boundary values. The results suggest that it is 
essential to make OP be different to P in order to find better 
particles. Besides having different values, it is also important 
to control the step size of the opposition-based operator so that 

opposition-based operator could continue to find better 
particles. 

D.   The operator probability Po in OPSO 
To investigate the effects of the probability of the 

opposition-based method used in OPSO, different values of Po 
are used in the following experiments. Po is set to 0, 0.3, 0.5, 
0,7 and 1.0 separately and the algorithms are run 50 times for 
each Po. Table 6 shows the performance comparisons under 
different values of Po. "Mean" indicates the mean best 
function values found in the last generation, and NFC stands 
for the average number of function calls over 50 trials. It 
suggests that Po between 0 and 0.7 is best for the proposed 
algorithm. For Po = 0, opposition-based learning does not 
occur at all in the OPSO, but the results still outperform 
standard PSO because of the search ability of Cauchy 
mutation operator on the best particle. 

 

Table 6. Different values of Po used in the OPSO. 

Po = 0 Po = 0.3 Po = 0.5 Po = 0.7 Po = 1.0 Test 
Function Mean NFC Mean NFC Mean NFC Mean NFC Mean NFC 

f1 8.55e-8 58,341 0 57,977 0 96,111 5.14e-12 100,001 34.45 100,001
f2 0 58,671 0 59,089 0 96,769 2.08e-11 100,001 464.05 100,001
f3 0.107 100,001 1.84e-2 100,001 4.47e-2 100,001 8.93e-2 100,001 8.71 100,001
f4 1.42e-6 100,001 0 85,960 2.12e-15 100,001 6.21e-8 100,001 2336.3 100,001
f5 -9584.8 100,001 -10986.7 100,001 -10887.1 100,001 -10893.7 100,001 -10834.7 100,001
f6 56.51 100,001 49.95 100,001 37.86 100,001 199.21 100,001 248.32 100,001
f7 5.04 100,001 1.19 87,571 0.568 100,001 0.832 100,001 8.65 100,001
f8 9.94e-2 100,001 4.72e-2 96,442 6.19e-2 100,001 0.248 99,987 0.727 100,001

 
 

 

V.     CONCLUSIONS  
The idea of OPSO is to use an opposition-based learning 

method and a dynamic Cauchy mutation operator to help 
avoid local optima and accelerate the convergence of PSO. By 
estimating positions and the opposite positions, and applying a 
Cauchy mutaiton on the best particle found by all particles so 
far in each generation, OPSO could find better solutions than 
PSO. 

OPSO has been compared with the standard PSO on both 4 
unimodal functions and 4 multimodal functions. The results 
have shown that OPSO could have faster convergence on 
those simple unimodal functions, and better global search 
ability on those multimodal functions compared to the 
standard PSO. However, there are still fewer cases where 
OPSO had fallen in the local optima as what had happened on 
OPSO for the function f6. It suggests that the proposed mthod 
might not be enough to prevent the search from falling in the 
local optima. Further study will foucs on how to improve the 
efficiency of the opposition-based method and the Cauchy 
mutation operator. 
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