
Fast Multi-swarm Optimization for Dynamic Optimization Problems

Changhe Li
Department of Computer Science

University of Leicester
University Road, Leicester LE1 7RH, UK

cl160@le.ac.uk

Shengxiang Yang
Department of Computer Science

University of Leicester
University Road, Leicester LE1 7RH, UK

s.yang@mcs.le.ac.uk

Abstract

In the real world, many applications are non-stationary
optimization problems. This requires that the optimization
algorithms need to not only find the global optimal solution
but also track the trajectory of the changing global best so-
lution in a dynamic environment. To achieve this, this pa-
per proposes a multi-swarm algorithm based on fast parti-
cle swarm optimization for dynamic optimization problems.
The algorithm employs a mechanism to track multiple peaks
by preventing overcrowding at a peak and a fast particle
swarm optimization algorithm as a local search method to
find the near optimal solutions in a local promising region
in the search space. The moving peaks benchmark function
is used to test the performance of the proposed algorithm.
The numerical experimental results show the efficiency of
the proposed algorithm for dynamic optimization problems.

1 Introduction

Most research in evolutionary computation focuses on
static optimization problems. However, many real-world
problems are dynamic optimization problems (DOPs),
where changes occur over time. This requires optimiza-
tion algorithms to not only find the optimal solution in
a short time but also track the optimal solution in a dy-
namic environment. Hence, optimization methods that are
capable of continuously adapting the solution to a chang-
ing environment are needed. Particle swarm optimization
(PSO) is a versatile population-based stochastic optimiza-
tion technique. Similar to other evolutionary algorithms
(EAs) in many respects, PSO has been shown to perform
well for many static problems [14], and several PSO based
algorithms have been recently proposed to address DOPs
[1, 4, 10, 16].

It is difficult for the standard PSO to optimize DOPs. The
difficulties lie in two aspects: one is the outdated memory

due to the changing environment and the other is the diver-
sity loss due to convergence. Of these two difficulties, the
diversity loss is by far more serious [4]. It has been demon-
strated that the time taken for a partially converged swarm
to re-diversify, find the shifted peak, and then re-converge
is quite deleterious to the performance of PSO [2].

This paper introduces a multi-swarm method to maintain
the diversity through the run. One parent swarm maintains
the diversity and detects the promising search area in the
whole search space using the fast evolutionary program-
ming (FEP) algorithm [17], and a group of child swarms
explore the local area to search for the local optima using
a fast PSO (FPSO)[12] algorithm. This mechanism makes
the child swarms spread out over the highest multiple peaks,
as many as possible, and FPSO[12] guarantees to converge
onto a local optimum in a short time.

2 Relevant Work

2.1 Particle Swarm Optimization

PSO was first introduced by Kennedy and Eberhart in
1995 [11, 8]. Each particle is represented by a position and a
velocity. The velocity is updated according to the following
equation:

~V ′
i = ω~Vi + η1r1(~Pi − ~Xi) + η2r2(~Pg − ~Xi) (1)

where ~Vi and ~V ′
i are the previous and the current velocity

of particle i, ~Xi is the position of particle i, and ~Pi and ~Pg

are the best so far position found by the individual and the
best so far position found by the whole swarm respectively.
ω (ω ∈ [0.0, 1.0)) is an inertia weight that determines how
much the previous velocity is preserved, η1 and η2 are ac-
celeration constants, r1 and r2 are random numbers in the
interval of [0.0, 1.0]. The position of particle i is modified
by the following equation:

~X ′
i = ~Xi + ~V ′

i , (2)



where ~X ′
i and ~Xi represent the current and previous posi-

tions of particle i respectively.
From the theoretical analysis of the trajectory of a PSO

particle [7], the trajectory of a particle ~Xi converges to a
weighted mean of ~Pi and ~Pg . Whenever the particle con-
verges, it will “fly” to the individual best position and the
global best position. According to the update equation, the
individual best position of the particle will gradually move
closer to the global best position. Therefore, all the parti-
cles will converge onto the global best particle’s position.
In fact, the particles usually converge on a local optimum.

FPSO[12] combines PSO with Cauchy mutation and
evolutionary selection strategy. Experimental results show
that it keeps the fast convergence speed characteristic of
PSO, and greatly overcomes the tendency of trapping into
local optimum of PSO.

2.2 Multiple Populations or Swarms

Many researchers have considered multi-populations as
a means of enhancing the diversity of EAs to address DOPs.
Branke et al. proposed a self organizing scouts (SOS) [6] al-
gorithm that has been shown to give excellent results on the
many peaks benchmark. Zeng et al. proposed an orthogonal
design based evolutionary algorithm, called ODEA, where
its population consists of “niches” and an orthogonal design
method is employed. ODEA borrows some ideas from the
SOS algorithm, however, the experimental results show that
the performance of ODEA is better than the SOS algorithm.

Parrott and Li developed a speciation based PSO (SPSO)
[13], which dynamically adjusts the number and size of
swarms by constructing an ordered list of particles, ranked
according to their fitness, with spatially close particles join-
ing a particular species.The atomic swarm approach has
been adapted to track multiple optima simultaneously with
multiple swarms in dynamic environment by Blackwell and
Branke [3, 4]. In their approach, a charged swarm is used
for maintaining the diversity of the swarm, and the exclu-
sion principle ensures that no more than one swarm sur-
rounds a single peak. This strategy is very efficient for the
moving peaks benchmark (MPB) function [5].

3 Fast Multi-Swarm Optimization

The multi-population idea is particular useful in multi-
modal environments, such as many peaks. Here, using
multi-swarm is to divide the whole search space into many
sub-spaces, each swarm converging on a promising peak in
a local environment. In FMSO, a parent swarm as a ba-
sic swarm is used to detect the most promising area when
the environment changes, and a group of child swarms are
used to search the local optimum in their own sub-spaces.
Here, we adopt the idea of radius in SPSO [13]. Each child

swarm has its own search region defined as a sphere of ra-
dius r and centers on its best particle ~s. Hence, a particle
~x with its distance less than r from ~s belongs to the child
swarm. The distance d(~x,~s) between two points ~x and ~s in
the n-dimension space is defined as the Euclidean distance
as follows:

d(~x,~s) =

√√√√
n∑

i=1

(xi − si)2 (3)

According to our experimental experience, the more
peaks in the landscape, the more child swarms are relatively
needed. r is relative to the range of the landscape and the
width of peaks. In general, we set r according to the fol-
lowing equation:

r =

√√√√
n∑

i=1

(xu
i − xl

i)/(Wmin + c(Wmax −Wmin)), (4)

where xl
i and xu

i are the lower and upper bound on the i-th
dimension of the variable vector of n dimensions. Wmin

and Wmax are the minimum and maximum peak width,
c is a constant number in the range of (0, 1). Although
this method assumes that the minimum and maximum peak
widths are known, it is useful to MPB problems.

Child swarms will not overcrowd on a single peak be-
cause of no overlap among child swarms. On the contrary,
they will spread out over as many different peaks as possi-
ble. In FMSO, two search algorithms are used in the par-
ent swarm and child swarms respectively. The FEP algo-
rithm [17] has a good global search capability because of
its higher probability of making longer jumps. Using this
algorithm as a global search operator in the parent swarm is
favorable for maintaining diversity and detecting the most
promising search area. Fast convergence ratio of the FPSO
algorithm makes it suitable to be a local search operator.

FMSO starts with a single parent swarm searching
through the entire search space. With the iteration, if the
best particle of the parent swarm gets better, then a new
child swarm is generated around the center of the best par-
ticle with a radius r. If the distance between a particle
in the parent swarm and the center of the child swarm is
less than r, then the particle of the parent swarm is moved
to the child swarm and, correspondingly, a new particle is
randomly generated into the parent swarm. That is, if the
best particle in the parent swarm gets better, it means that a
promising search area may be found. Then a child swarm
is split off from the parent swarm and a sub-search region
is generated. Because of no overlap among child swarms, if
the distance between two child swarms is less then their ra-
dius, then remove the whole swarm of the worse one. This
guarantees that no more than one child swarm will spread
over a single peak.



In FMSO, each child swarm has a failure counter
which monitors the improvement of the fitness value
for the best particle of each child swarm. If there
is no improvement of the fitness, then the failure
counter is increased by one in each iteration un-
til this value achieves a pre-specified value, named
maximum failure counter. When the failure counter
becomes equal to the maximum failure counter, we use
a mutation operator for the best particle to make it jump to
a new position. The mutation operator for the best particle
is as follows:

~X ′ = ~X + ηN(0, 1), (5)

where η denotes a scale parameter and N(0, 1) is a random
number generated according to a Gaussian distribution.

The number of child swarms will increase with the best
particle being improved in the parent swarm. However,
it will not surpass a maximum number. When the num-
ber of child swarms increases to the maximum number of
child swarms and if the best particle is improved in the par-
ent swarm at this moment, then the child swarm with the
biggest failure counter is replaced by a new child swarm.
Generally speaking, the more peaks there are in the land-
scape, the bigger the maximum number of child swarms
will be. However, the size of child swarms is very small,
usually set to 5-10.

The major steps of FMSO are summarized as follows:

Step 1: Randomly initialize the parent swarm

Step 2: Evolve the parent swarm using the FEP operator

Step 3: If the best particle of the parent swarm turns bet-
ter, produce a child swarm around the best one (center
of the child swarm) with a radius r. If the number of
child swarms reaches the maximum number of child
swarms, replace the child swarm with the biggest fail-
ure counter by the new one

Step 4: Update the parent swarm. If any particle of the par-
ent swarm is within the earch area of a child swarm,
then move the particle into the child swarm and ran-
domly generate a new particle in the parent swarm

Step 5: Evolve the child swarms with the FPSO op-
erator. If the best[i] of swarm i gets better,
failure counter[i] = 0; else, failure counter[i] =
failure counter[i] + 1.

Step 6: For each child swarm i, if failurecounter[i] =
maximum failure counter, the mutation operator
is called

Step 7: Update each child swarm. If one child swarm is
within the search radius of another child swarm, de-
stroy the worse one

Step 8: If the termination criterion is satisfied, then stop;
otherwise, goto Step 2.

4 Experimental Study

4.1 Dynamic Test Function

Branke [5] suggested a dynamic benchmark problem,
called “moving peaks” benchmark (MPB) problem. It con-
sists of a multi-dimensional landscape with several peaks,
where the height, width and position of each peak is
altered a little every time an environmental change oc-
curs. We choose this dynamic function to construct our
test problems. This function is capable of generating a
given number of peaks in a given number of dimensions
that vary both spatially (position and shape of the peak)
and in terms of fitness. More details of the MPB func-
tion can be found at the website: http://www.aifb.uni-
karlsruhe.de/∼jbr/MovPeaks/.

The default settings and definion of the benchmark used
in the experiments can be found in Table 1. The term “eval-
uation” means that an individual is created and its fitness
is evaluated. Shift length s means that a peak p will move
within its neighborhood with a radius s after the next envi-
ronmental change. f denotes the change frequency, A de-
notes the minimum and maximum allele values, H denotes
the minimum and maximum heights of the peaks, W de-
notes the minimum and maximum peak width parameters,
and I denotes the initial peak heights for all peaks.

Table 1. Default settings for the moving peaks
benchmark

Parameter Value
m (number of peaks) 10

f every 5000 evaluations
height severity 7.0
width severity 1.0

peak shape cone
basic function no
shift length s 1.0

number of dimensions 5
A [0, 100]
H [30.0, 70.0]
W [1, 12]
I 50.0

4.2 Experimental Settings

In this study we compare the performance of FMSO with
the ODEA algorithm [18]. For FMSO, based on the previ-
ous experimental work by den Bergh [15], the acceleration
constants η1 and η2 were both set to 1.496180, and the in-
ertia weight ω = 0.729844. The default maximum number



of child swarms was set to 10 and the default value of r was
set to 25.0. The size of parent and child swarm was set to
100 and 10 for all the experiments respectively. In order to
fairly compare FMSO with ODEA, the parameter setting for
FMSO is the same as ODEA. Since each particle in FMSO
is evaluated twice at each generation, the evaluation number
for each particle increases by 2.

For evaluating the efficiency of the algorithms, we use
the offline performance measure as follows:

et =
ht

ft
, (6)

where ft is the best solution got by FMSO just before the
t-th environmental change, ht is the optimum value at time
t, and et is the relative value of ft and ht. The offline error
of an algorithm is defined as:

µ =
1
T

T∑
t=1

(ht − ft), (7)

where µ is the average of all differences between ht and
ft over the environmental changes and T is the number of
environmental changes.

4.3 Experimental Results

For all results reported here, we use an average over
50 runs (environment changes 50 times) of the FMSO al-
gorithm. The offline errors after 5,000 evaluations in the
FMSO algorithm are compared with those of the ODEA al-
gorithm. Tables 2, 3, and 4 show the effect of peak move-
ments, frequency of change, and the number of peaks, on
the performance of both the FMSO and ODEA algorithms
respectively. Table 5 shows the results of varying the radius
r of child swarms by the FMSO algorithm.

Table 2. The offline errors (µ) of FMSO and
ODEA for different shift lengths.

shift length FMSO ODEA
1.0 0.090467 1.95
2.0 0.120339 2.23
3.0 0.180055 2.38

The offline error of FMSO is much smaller than that of
ODEA in Table 2. By observing Table 2, we can easily see
that FMSO is more suitable to the largely dynamic environ-
ment (the position, height, and shape of the highest peak
change greatly between two runs) than ODEA. All the re-
sults show that FMSO can track the moving best solution
more accurately than the ODEA algorithm.

Table 3. The offline errors (µ) of FMSO and
ODEA for different number of individual eval-
uations between changes.

evaluations FMSO ODEA
10000 0.0106228 1.81
5000 0.0904674 1.95
2500 0.393887 2.19
1000 1.16768 2.43
500 2.5733 4.70

Table 4. The offline errors (µ) of FMSO
and ODEA for different number of peaks,
where Cmax is the maximum number of child
swarms.

number of peaks Cmax FMSO ODEA
1 5 0.00437849 0.68
10 10 0.183839 1.95
20 10 0.509487 1.93
30 10 0.69417 1.91
40 20 0.936065 1.82
50 20 0.937797 1.70

100 20 0.909333 1.31
200 30 1.18632 1.14

Table 5. The offline errors (µ) of FMSO for dif-
ferent radius r of child swarms.

r 5.0 15.0 25.0 35.0 40.0
µ 1.431 0.984 0.152 0.810 1.930

By observing the offline performance in Figs. 1 to 3, we
can easily see that the offline performance et is nearly equal
to 1 for most t. That is, FMSO is capable of tracking the
highest peaks when the environment changes.

Table 5 shows the sensitivity analysis results regarding
the radius of child swarms for the performance of FMSO.
We use radius r to control the search region of each child
swarm. Therefore, it plays a critical role in the performance
of FMSO. If r is too small,there is a potential problem that
the small isolated child swarms will converge on a local op-
timum, the diversity will lose and it hardly makes progress.
However, if r is too large, there will be more than one peaks
within the search region of a child swarm, and the number
of child swarms will decrease. When r is large enough to
cover the whole search space, FMSO degenerates to a stan-



dard PSO, which just uses a single swarm to locate a global
optimum. We test the performance of FMSO with r rang-
ing from 5.0 to 40.0 (we can adjust the constant number c
in Eq. (4) to get the corresponding r). By observing Table
5, the offline errors of both too small r values and too large
r values are relatively poor. When the value of r increases
form 5.0 to 25.0, the offline error turn to be the smallest.
When r further increases to 40.0, the offline error gets lager
again. Hence, the performance of FMSO is much sensitive
to the radius of child swarms.

5 Conclusions

This paper proposes a fast multi-swarm optimization al-
gorithm (FMSO) for dynamic optimization problems. Two
type of swarms are used in FMSO: one is the parent swarm
to detect the promising area in the whole search space and
the other is child swarms to explore the local optimum in a
local area found by the parent swarm. By using FEP and
FPSO operators in the parent swarm and child swarms re-
spectively, it can make the child swarms spread out over the
highest peaks and converge on the global optimum. The
experimental results show that FMSO can not only find the
global or near global optimum, but also track the moving
best solution in a dynamic environment.

References

[1] T. M. Blackwell. Swarms in dynamic environments.
Proc. of the 2003 Genetic and Evolutionary Computa-
tion Conference, LNCS 2723, pp. 1-12, 2003.

[2] T. M. Blackwel. Particle swarms and population di-
versity II: Experiments. Proc. of the 2003 Genetic and
Evol. Comput. Workshops, pp. 108-112, 2003.

[3] T. M. Blackwell and J. Branke. Multi-swarm opti-
mization in dynamic environments. In G. R. Raidl, ed-
itor, Applications of Evolutionary Computing, LNCS
3005, pp. 489-500, 2004.

[4] T. M. Blackwell and J. Branke. Multiswarms, ex-
clusion, and anti-convergence in dynamic environ-
ments. IEEE Transactions on Evolutionary Computa-
tion, 10(4): 459-472, 2006.

[5] J. Branke. Memory enhanced evolutionary algorithms
for changing optimization problems. Proc. of the 1999
Congr. on Evol. Comput., vol. 3, pp. 1875-1882, 1999.

[6] J. Branke, T. Kaußler, C. Schmidth, and H. Schmeck.
A multi-population approach to dynamic optimization
problems. Proc. 4th Int. Conf. on Adaptive Computing
in Design and Manufacturing, pp. 299-308, 2000.

[7] M. Clerc and J. Kennedy. The particle swarm: Explo-
sion, stability and convergence in a multi-dimensional
complex space. IEEE Trans. on Evolutionary Compu-
tation, 6: 58-73, 2002.

[8] R. C. Eberhart and J. Kennedy. A new optimizer using
particle swarm theory, Proc. of the 6th Int. Symp. on
Micro Machine and Human Science, pp. 39-43, 1995.

[9] D. Fogel. An introduction to simulated evolutionary
optimization. IEEE Trans. on Neural Networks, 5(1):
3-14, 1994.

[10] S. Janson and M. Middendorf. A hierachical particle
swarm optimizer for dynamic optimization problems.
In G. R. Raidl, editor, Applications of Evolutionary
Computing, LNCS 3005, pp. 513-524, 2004.

[11] J. Kennedy and R. C. Eberhart. Particle Swarm Opti-
mization. Proc. of the 1995 IEEE Int. Conf. on Neural
Networks, pp. 1942-1948, 1995.

[12] C. Li, Y. Liu, L. Kang and AM. Zhou,A Fast Par-
ticle Swarm Optimization Algorithm with Cauchy-
Mutation and Natural Selection Strategy. Springer
Press,ISICA2007, LNCS4683, pp.334 - 343.

[13] D. Parrott and X. Li. A particle swarm model for track-
ing multiple peaks in a dynamic environment using
speciation. Proc. of the 2004 IEEE Congress on Evo-
lutionary Computation, pp. 98-103, 2004.

[14] K. E. Parsopoulos and M. N. Vrahatis. Recent ap-
proaches to global optimization problems through par-
ticle swarm optimization. Natural Computing, 1(2-3):
235-306, 2002.

[15] F. van den Bergh. An analysis of particle swarm op-
timizers. PhD Thesis, Department of Computer Sci-
ence, University of Pretoria, South Africa, 2002.

[16] H. Wang, D. Wang, and S. Yang. Triggered memory-
based swarm optimization in dynamic environments.
Applications of Evolutionary Computing, LNCS 4448,
pp. 637-646, 2007.

[17] X. Yao and Y. Liu. Fast evolutionary programming.
Proc. of the 5th Annual Conference on Evolutionary
Programming, pp. 451-460, 1996.

[18] S. Zeng, H. de Garis, J. He, and L. Kang. A novel
evolutionary algorithm based on an orthogonal design
for dynamic optimization problems. Proc. of the 2005
IEEE Congress on Evol. Comput., vol. 2, pp. 1188 -
1195, 2005.


