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Abstract.The standard Particle Swarm Optimization (PSO) algorithm is a novel 
evolutionary algorithm in which each particle studies its own previous best solution 
and the group’s previous best to optimize problems. One problem exists in PSO is 
its tendency of trapping into local optima. In this paper, a fast particle swarm 
optimization (FPSO) algorithm is proposed by combining PSO and the Cauchy 
mutation and an evolutionary selection strategy. The idea is to introduce the Cauchy 
mutation into PSO in the hope of preventing PSO from trapping into a local 
optimum through long jumps made by the Cauchy mutation. FPSO has been 
compared with another improved PSO called AMPSO [12] on a set of benchmark 
functions. The results show that FPSO is much faster than AMPSO on all the test 
functions. 
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1.   Introduction 

Particle Swarm Optimization (PSO) was first introduced by Kennedy and Eberhart in 
1995 [1,2]. PSO is motivated from the social behavior of organisms, such as bird flocking 
and fish schooling. Particles “fly” through the search space by following the previous best 
positions of their neighbors and their own previous best positions. Each particle is 
represented by a position and a velocity which are updated as follows: 
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where Xid’ and Xid represent the current and the previous positions of idth particle,  Vid and 
Vid’ are the previous and the current velocity of idth particle, Pid and Pgd are the 
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individual's best position and the best position found in the whole swarm so far 
respectively. 10 <≤ ω is an inertia weight which determines how much the previous 
velocity is preserved, η1 and η2 are acceleration constants, rand() generates random 
number from interval [0,1]. 

In PSO, each particle shares the information with its neighbors.  The updating 
equations (1) and (2) show that PSO combines the cognition component of each particle 
with the social component of all the particles in a group. The social component suggests 
that individuals ignore their own experience and adjust their behavior according to the 
previous best particle in the neighborhood of the group. On the other hand, the cognition 
component treats individuals as isolated beings and adjusts their behavior only according 
to their own experience.  

Although the speed of convergence is very fast, many experiments have shown that 
once PSO traps into local optimum, it is difficult for PSO to jump out of the local 
optimum. Ratnaweera et.al.[3] state that lack of population diversity in PSO algorithms is 
understood to be a factor in their convergence on local optima. Therefore, the addition of 
a mutation operator to PSO should enhance its global search capacity and thus improve its 
performance. A first attempt to model particle swarms using the quantum model(QPSO) 
was carried out by Sun et.al. [4]. In a quantum model, particles are described by a wave 
function instead of the standard position and velocity. The quantum Delta potential well 
model and quantum harmonic oscillators are commonly used in particle physics to 
describe the stochastic nature of particles. In their studies[5], the variable of gbest (the 
global best particle ) and mbest (the mean value of all particles’ previous best position) is 
mutated with Cauchy distribution respectively, and the results show that QPSO with gbest 
and mbest mutation both performs better than PSO. The work of  R. A. Krohling 
et.al.[6][7] showed that how Gaussian and Cauchy probability distribution can improve 
the performance of the standard PSO. Recently, evolutionary programming with 
exponential mutation has also been proposed [8].  

In order to prevent PSO from falling in a local optimum, a fast PSO (FPSO) is 
proposed by introducing a Cauchy mutation operator in this paper. Because the 
expectation of Cauchy distribution does not exist, the variance of Cauchy distribution is 
infinite. Some researches [9][10] have indicated that the Cauchy mutation operator is 
good at the global search for its long jump ability. This paper shows that the Cauchy 
mutation is helpful in PSO as well. Besides the Cauchy mutation, FPSO chooses the 
natural selection strategy of evolutionary algorithms as the basic elimination strategy of 
particles. FPSO combines PSO with Cauchy mutation and evolutionary selection strategy. 
It has the fast convergence speed characteristic of PSO, and greatly overcomes the 
tendency of trapping into local optima of PSO. 

The rest of this paper is organized as follows. Section 2 gives the analysis of PSO. The 
detail of FPSO is introduced in Section 3. Section 4 describes the experiment setup and 
presents the experiment results. Finally, Section 5 concludes the paper with a brief 
summary. 

 



 

2.  Fast Particle Swarm Optimization Algorithm with Cauchy 
Mutation and Natural Selection Strategy 

2.1   Cauchy mutation 

From the mathematic theoretical analysis of the trajectory of a PSO particle [11], the 
trajectory of a particle Xid converges to a weighted mean of Pid and Pgd. Whenever the 
particle converges, it will “fly” to the personal best position and the global best particle’s 
position. According to the update equation, the personal best position of the particle will 
gradually move closer to the global best position. Therefore, all the particles will converge 
onto the global best particle’s position. This information sharing mechanism makes PSO 
have a very fast speed of convergence. Meanwhile, because of this mechanism, PSO can’t 
guarantee to find the global minimal value of a function. In fact, the particles usually 
converge to local optima. Without loss of generality, only function minimization is 
discussed here. Once the particles trap into a local optimum, in which Pid can be assumed 
to be the same as Pgd, all the particles converge on Pgd. At this condition, the velocity 
update equation becomes: 

idid VV ω='
 (3) 

When the iteration in the equation (3) goes to infinite, the velocity of the particle Vid 
will be close to 0 because of 0≤ω<1. After that, the position of the particle Xid will not 
change, so that PSO has no capability of jumping out of the local optimum. It is the reason 
that PSO often fails on finding the global minimal value. 

To overcome the weakness of PSO discussed at the beginning of this section, the 
Cauchy mutation is incorporated into PSO algorithm. The basic idea is that, the velocity 
and position of a particle are updated not only according to (1) and (2), but also according 
to Cauchy mutation as follows:  

)exp(' δidid VV =  (4) 
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where δ  and  δid denote Cauchy random numbers 

Since the expectation of Cauchy distribution doesn’t exist, the variance of Cauchy 
distribution is infinite so that Cauchy mutation could make a particle have a long jump. 
By adding the update equations of (4) and (5), FPSO greatly increases the probability of 
escaping from the local optimum. In standard PSO, the position of a particle is updated 
according to equations (1) and (2). That is, for each particle，there is nowhere to move 
but following the direction of the best particle, and the flying direction is nearly 
determinate through the generation. From the above analysis of PSO, the particles incline 
to converge on a local optimum.  

 



 

2.2   Natural selection strategy 

In the standard PSO, all particles are directly updated by their offspring no matter whether 
they are improved. If a particle moves to  a better position, it can be replaced by the 
updated. However if it moves to a worse position, it is still replaced by its offspring. In 
fact, the most particles fly to worse positions for most cases, therefore the whole swarm 
will converge on local optima. Like evolutionary algorithms, FPSO introduces an 
evolutionary selection strategy in which each particle survives according to a natural 
selection rule. Therefore, the particle’s position at the next step is not only due to the 
position update but also the evolutionary selection. Such strategy could greatly reduce the 
probability of trapping into local optimum.  

The evolutionary selection strategy is carried out as follows. Assume the size of the 
swarm is m, pair-wise comparison over the union of parents and offspring (1,2,…2m) is 
made. For each particle, q opponents are randomly chosen from all parents and offspring 
with equal probability. If the fitness of particle i is less then its opponent , it will receive a 
“win”. Then select m particles that have the more winnings to be the next generation. 
 The detail of the selection framework are as follows: 
Step1: For each particle of parent and offspring, assign win[i]=0. 
Step2: Randomly select q particles (opponents) for each particle in parent and offspring. 
Step3: For each particle, compare it with its q opponents. For particle i, if the fitness of its 

opponent j is larger than particle i , then win[i]++. 
Step4: Select m particles that have the more winnings to be the next generation. 

2.3   Algorithm framework 

The major steps of FPSO are as follows: 
Step1: Generate the initial particles by randomly generating the position and velocity for 

each particle. 
Step2: Evaluate each particle’s fitness. 
Step3: For each particle, if its fitness is smaller than its previous best(Pid) fitness, update 

Pid . 
Step4: For each particle, if its fitness is smaller than the best one (Pgd) of all the particles, 

update Pgd.   
Step5: For each particle ,do 
   1).Generate a new particle t according to the formula (1) and (2). 
   2).Generate a new particle t’ according to the formula (4) and (5). 
   3) Compare t with t’ ,chose the one with smaller fitness to be the offspring. 
Step6: Generate the next generation according to the above evolutionary selection strategy. 
Step7: if the stop criterion is satisfied, then stop, else goto Step 3. 

 



 

3   Experiments and Results 

Twelve benchmark functions (f1-f12) are used in this paper. Function f1-f9 are chosen from 
[12], and function f10-f12 from[9]. Functions f1-f4 are unimodal functions while functions f5-
f12 have many local optima. Generally speaking, multimodal functions are often regarded 
as the most difficult in function optimization. Table 1 gives the details of these functions. 

Algorithm parameters are as follows: acceleration constants of η1 and η2 are both set to 
be 1.496180, and  inertia weight ω=0.729844 as suggested by den Bergh [13]. In FPSO, a 
particle will be evaluated two times each generation, in order to be the same number of 
function evaluations to AMPSO [12] and PSO at each generation, the swarm size of FPSO 
is half of the size of AMPSO and PSO for all experiments. And the other parameters are 
given in the following experiments.  

Two groups of experiments are conducted in this section.  
Firstly, the proposed algorithm FPSO is compared with  another improved PSO called 

AMPSO [12] on nine problems. In the experiments, the number of particles is 20 ( 40 in 
AMPSO) and other parameters are the same as in [12]. For AMPSO, it stops when no 
improvement can be made. And then, the mean fitness obtained by AMPSO is calculated 
as the target value of FPSO, and FPSO will stop when it surpasses this target value. The 
mean and standard deviation of fitness values achieved and generations spent are shown 
in Table 2 based on 30 independent runs. The results show that FPSO could find the target 
values achieved by AMPSO in shorter function evaluations for all test functions except 
for f3, The function f3 is an easy function with integer object function values. Both FPSO 
and AMPSO could find the global minimum in one or a few generations.  It indicates that 
FPSO has the global search capability while AMPSO could only found the global 
minimum for functions f1,, f2, and f3, but failed on reaching the global minimum for the rest 
of functions including all multimodal functions. It can be known that FPSO not only has 
faster convergence, but also has better global search.  

Secondly, the dynamics of FPSO and PSO are discussed, and the contribution of 
Cauchy mutation in FPSO is studied as well. For all experiments in the second group, the 
number of runs is 50 times, the particles size m is 50 for FPSO (100 for PSO), and the 
tournament size (q=10) is chosen for FPSO. The left side in Fig 1 and Fig 2 shows how 
the best fitness of the particle evolves in the search process. It suggests that PSO could 
only improve the best fitness for simple unimodal functions but hardly decrease the best 
fitness for the multimodal functions. The results of f3,f4,f7,f8,f11 and f12 are not provided 
here due to space limitation. Table 3 shows the mean best values and the standard 
deviation got by FPSO and PSO for 50 runs.

 
 
 
 

 



 

Table 1.Details of test functions, where n is the dimension of the function, fmin is the minimum 
value of the function, and S⊆  Rn 
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 Fig 1 Evolution process of the best fitness in FPSO and PSO, and the survival rate in FPSO 
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Fig 2  Evolution process of the best fitness in FPSO and PSO, and the survival rate in FPSO  

 

Table 2. Comparison between FPSO and AMPSO, all results have been averaged over 30 runs, 
where f is the test function  

The right side in Fig 1 and Fig 2 shows the survival rate of Cauchy mutation in FPSO 
through the evolution process. The survival rate is the ratio of the number of 
successful Cauchy mutation to the total number of Cauchy mutations. The higher 
survival rate, the more particles generated from Cauchy mutation survive. The 
survival rate remains at a certain level through the whole search process for some test 
functions, while it decreased for other test functions after the objective values of these 
functions close to the global minimum had been found. It can be explained that when 
the particles are far away from the global minimum, long jump made by Cauchy 

Target Value Mean Evaluations f 
FPSO AMPSO FPSO AMPSO 

f1 0.00017748±1.6323e-5 0.000300±0 656 1088.8 
f2 2.83656e-5±2.5674e-6 0.000049±0.000107 858.4 64471.2 
f3 0.0±0.0 0.0±0.0 124 40 
f4 16.9737±0.57268 41.469003±1.922524 1801.2 32499.6 
f5 0.01501±0.00079774 0.024139±0.004212 446.4 312049 
f6 63.3212±0.634179 106.118084±4.398166 660 79524.4 
f7 19.4785±0.0242021 19.660458±0.056733 1444 33084.8 
f8 2058.51±24.6575 2198.368745±86.302836 2804 22173.2 
f9 214.475±1.5299 224.765413±35.262816 2632 18287.2 

 



 

mutation was helpful to find the particles with smaller objective values. Once the 
particles were getting closer to the global optimum, FPSO would have to depend on 
the small search steps decided by the equations (1) and (2) rather than the long jump 
made by Cauchy mutation in order to fine tune the solutions. By viewing the results 
of Table 3, we can easily see that the mean best values got by FPSO are obvious 
better than PSO for function f1,f2,f5,f6,f7 ,f10,f11,f12 , and slightly better for function f4. 
For function f3 and f9, the performance of FPSO are nearly the same to PSO. Only for 
function f8, the convergence speed of FPSO is slower than PSO, however if given 
more number of generation, FPSO will converge on the global optima. For most test 
cases, FPSO is more efficient than the standard PSO. 

Table 3 Comparison between FPSO and PSO on f1-f12, where “Mean Best” is mean best 
function values found in the last run, and “Std Dev” indicates the standard deviation. 

f Number of 
evaluations 

FPSO 
Mean Best     Std Dev 

PSO 
Mean Best     Std Dev 

f1 1.5e4 2.299e-17 9.784e-18 4224.77 201.038 
f2 2.5e3 0 0 1.145e-13 6.509e-14 
f3 300 0 0 0 0 
f4 1.5e4 3.668e-3 2.072e-4 4.63e-3 2.100e-4 
f5 1.5e4 0 0 0.005 6.848e-4 
f6 1.5e4 0.082 0.031 101.41 1.523 
f7 1.5e4 1.356e-09 4.141e-10 1.306 0.148 
f8 1.5e4 7.53016e-14 4.53682e-14 4.59643e-26 1.83991e-26 
f9 1.5e4 0 0 0 0 

f10 1.5e4 -12563.6 3.437 -4005.02 54.012 
f11 4000 -1.03163 0 -1.03162 4.05433e-6 
f12 4000 3 5.01747e-10 3.00004 6.87691e-6 

4   Conclusions 

By analyzing the advantage and disadvantage of the standard PSO, FPSO based on 
Cauchy mutation and evolutionary selection strategy is proposed in this paper. 
Although PSO has a fast convergence rate, it is likely to trap into the local optimum, 
and can’t guarantee converge to the global optimum. FPSO introduces Cauchy 
mutations into the position and velocity update equations in order to increase the 
probability of jumping out of the local optimum. FPSO was tested on 12 benchmark 
functions. From the experimental results of these functions, it can be seen that the 
FPSO performed much better than AMPSO  on the selected problems. Although 
FPSO needs more time to perform Cauchy mutation, it decreases the fitness 
evaluations remarkably comparing to AMPSO. 

Only functions with the dimension less than 30 were tested in this paper. Further 
research will focus on testing the performance of FPSO on higher dimensional 
problems in order to find whether FPSO would scale up well for the large function 

 



 

optimization problems.  
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