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Abstract. The standard Particle Swarm Optimization (PSO) algorithm is a novel 
evolutionary algorithm in which each particle studies its own previous best solution 
and the group’s previous best to optimize problems. One problem exists in PSO is 
its tendency of trapping into local optima. In this paper, a multiple swarms 
technique(FMSO) based on fast particle swarm optimization(FPSO) algorithm is 
proposed by bringing crossover operation. FPSO is a global search algorithm witch 
can prevent PSO from trapping into local optima by introducing Cauchy mutation. 
Though it can get high optimizing precision,  the convergence rate is not satisfied, 
FMSO not only can find satisfied solutions ,but also speeds up the search. By 
proposing a new information exchanging and sharing mechanism among swarms. 
By comparing the results on a set of benchmark test functions, FMSO shows a 
competitive performance with the improved convergence speed and high optimizing 
precision. 
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1.   Introduction 

Particle Swarm Optimization (PSO) was first introduced by Kennedy and Eberhart in 
1995 [1,2]. It is motivated from the social behavior of organisms, such as bird flocking 
and fish schooling. Particles “fly” through the search space by following the previous best 
positions of their neighbors and their own previous best positions. Each particle is 
represented by a position and a velocity which are updated as follows: 
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where Xid’ and Xid represent the current and the previous positions of idth particle,  Vid 



and Vid’ are the previous and the current velocity of idth particle, Pid and Pgd are the 
individual's best position and the best position found in the whole swarm so far 
respectively. 10 <≤ ω is an inertia weight which determines how much the previous 
velocity is preserved, η1 and η2 are acceleration constants, rand() generates random 
number from interval [0,1]. 

In PSO, each particle shares the information with its neighbors.  PSO combines the 
cognition component of each particle with the social component of all the particles in a 
group. Although the speed of convergence is very fast, Once PSO traps into local 
optimum, it is difficult to jump out of local optimum. Ratnaweera et.al.[3] state that lack 
of population diversity in PSO algorithms is understood to be a factor in their 
convergence on local optima. Therefore, the addition of a mutation operator to PSO 
should enhance its global search capacity and thus improve its performance. A first 
attempt to model particle swarms using the quantum model(QPSO) was carried out by 
Sun et.al. [4]. In a quantum model, particles are described by a wave function instead of 
the standard position and velocity. The quantum Delta potential well model and quantum 
harmonic oscillators are commonly used in particle physics to describe the stochastic 
nature of particles. In their studies[5], the variable of gbest (the global best particle ) and 
mbest (the mean value of all particles’ previous best position) is mutated with Cauchy 
distribution respectively, and the results show that QPSO with gbest and mbest mutation 
both performs better than PSO. The work of  R. A. Krohling et.al.[6][7] showed that how 
Gaussian and Cauchy probability distribution can improve the performance of the 
standard PSO. Recently, evolutionary programming with exponential mutation has also 
been proposed [8].  

In order to prevent PSO from falling in a local optimum, a fast PSO (FPSO) is 
proposed by introducing a Cauchy mutation operator in this paper. Besides the Cauchy 
mutation, FPSO chooses the natural selection strategy of evolutionary algorithms as the 
basic elimination strategy of particles. Although FPSO greatly overcomes the tendency of 
trapping into local optima of PSO, the convergence rate isn’t satisfied. Like distributed 
genetic algorithm, multiple swarms idea is a very useful for speeding up the search. In this 
paper, a multiple swarms algorithm(FMSO) based on FPSO is proposed by introducing a 
crossover operation, the new information exchanging and sharing mechanism of FMSO 
make it converge fast on the global optimum.    

The rest of this paper is organized as follows. Section 2 gives the analysis of PSO, and 
the detail of FPSO. Section 3 gives a brief review of the multi-population technique and 
then describe FMSO explicitly. Section 4 describes the experiment setup and presents the 
experiment results. Finally, Section 5 concludes the paper with a brief summary. 

2.  Fast Multi-swarm Optimization with Cauchy Mutation and 
Crossover operatio



2.1   Cauchy mutation 

From the mathematic theoretical analysis of the trajectory of a PSO particle [9], the 
trajectory of a particle Xid converges to a weighted mean of Pid and Pgd. Whenever the 
particle converges, it will “fly” to the personal best position and the global best particle’s 
position. This information sharing mechanism makes PSO have a very fast speed of 
convergence. Meanwhile, because of this mechanism, PSO can’t guarantee to find the 
global minimal value of a function. In fact, the particles usually converge to local optima. 
Without loss of generality, only function minimization is discussed here. Once the 
particles trap into a local optimum, in which Pid can be assumed to be the same as Pgd, all 
the particles converge on Pgd. At this condition, the velocity update equation becomes: 

idid VV ω='  (3) 

When the iteration in the equation (3) goes to infinite, the velocity of the particle Vid 
will be close to 0 because of 0≤ω<1. After that, the position of the particle Xid will not 
change, so that PSO has no capability of jumping out of the local optimum. It is the reason 
that PSO often fails on finding the global minimal value. 

To overcome the weakness of PSO discussed at the beginning of this section, the 
Cauchy mutation is incorporated into PSO algorithm. The basic idea is that, the velocity 
and position of a particle are updated not only according to (1) and (2), but also according 
to Cauchy mutation as follows:  
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where δ  and  δid denote Cauchy random numbers 
Since the expectation of Cauchy distribution doesn’t exist, the variance of Cauchy 

distribution is infinite so that Cauchy mutation could make a particle have a long jump. 
By adding the update equations of (4) and (5), FPSO greatly increases the probability of 
escaping from the local optimum.  

2.2   Natural selection strategy 

In the standard PSO, all particles are directly updated by their offspring no matter whether 
they are improved. If a particle moves to  a better position, it can be replaced by the 
updated. However if it moves to a worse position, it is still replaced by its offspring. In 
fact, the most particles fly to worse positions for most cases, therefore the whole swarm 
will converge on local optima. Like evolutionary algorithms, FPSO introduces an 
evolutionary selection strategy in which each particle survives according to a natural 



selection rule. Therefore, the particle’s position at the next step is not only due to the 
position update but also the evolutionary selection. Such strategy could greatly reduce the 
probability of trapping into local optimum.  

The evolutionary selection strategy is carried out as follows. Assume the size of the 
swarm is m, pair-wise comparison over the union of parents and offspring (1,2,…2m) is 
made. For each particle, q opponents are randomly chosen from all parents and offspring 
with equal probability. If the fitness of particle i is less then its opponent , it will receive a 
“win”. Then select m particles that have the more winnings to be the next generation.  

The major steps of FPSO are as follows: 
Step1: Generate the initial particles by randomly generating the position and velocity for 

each particle. 
Step2: Evaluate each particle’s fitness. 
Step3: For each particle, if its fitness is smaller than its previous best(Pid), update Pid . 
Step4: For each particle, if its fitness is smaller than the best one (Pgd) of all particles, 

update Pgd.   
Step5: For each particle ,do 
   1).Generate a new particle t according to the formula (1) and (2). 
   2).Generate a new particle t’ according to the formula (4) and (5). 
   3) Compare t with t’ ,chose the one with smaller fitness to be the offspring. 
Step6: Generate next generation according to the above evolutionary selection strategy. 
Step7: if the stop criterion is satisfied, then stop, else goto Step 3. 

3.   Multiple swarms optimization technique 

In order to escape from the local optima and avoid premature convergence, the search for 
global optimum should be diverse. Many researchers have improved the performance of 
the PSO by enhancing its ability with a more diverse search. Specifically, some have 
introduced using multiple swarms, and then exchange information among them. The fast 
converging behavior of the PSO makes this issue so critical for multimodal problems. 
Al-Kazemi and Mohan [10] divided the population into two sets to achieve a more diverse, 
one set moving to the gbest while another moving in opposite direction. After some 
generations, if the gbest would not improve, the particles would switch their group. Two 
cooperating swarms was used by Baskar and Suganthan [11] to search concurrently for a 
solution along with sharing the gbest information of two swarms. The two swarms track 
the gbest if it improves. Each swarm using different update equation: One uses the 
standard PSO while the other uses the Fitness-to-Distance ratio PSO [12]. Their approach 
improved the performance in solving single objective optimization problems. Then an 
improved algorithm was proposed by El-Abd and Kamel [13] through adding a twoway 
flow of information between two swarms. After running a fixed generations, if the best p 
particles improve, then they willl replace the worst p particles in the other swarm. This 
guarantees exchanging new information from the other swarm’s experience for the two 



swarms. 
In this study, A new learning mechanism is introduced  among swarms. At each 

iteration, the particles not only update themselves according to the best particle of their 
own swarm, but also learn information from the best particle of other swarms. The 
information sharing and learning mechanism make swarm extend their search space and 
speedup the convergence speed. The information sharing and learning mechanism that we 
call it crossover operation is described as follows: 
Step1: for each particle of swarm k, randomly select a best particle p’ from a random 
swarm. 
Strp2: for each dimension i of particle p’s position px[i] and velocity pv[i] , if rand()<qc, 
     crossover particle p with p’ as follows: 

px[i]=(1-α)*px[i]+ α*p’x[i]. 
pv[i]=rand()*(p’x[i]-px[i]).  

Step3: if all particles of swarm k are updated, end the operator, else go to Step 1.  
where qc is crossover rate , α is a random number of (0,1). 

4   Experiments and Results 

Eight benchmark functions (f1-f8) are used in this paper. Table 1 gives the details of these 
functions. Algorithm parameters are as follows for all experiments: acceleration constants 
of η1 and η2 are both set to be 1.496180, and inertia weight ω=0.729844 as suggested by 
den Bergh [14], crossover rate qc is 0.8, running time is 50. In order to be the same 
number of function evaluations to PSO, a particle will be evaluated two times each 
generation in FPSO and FMSO. The other parameters are given in the following 
experiments.  

Two groups of experiments are carried out in this section.  
Firstly, FMSO is compared with standard PSO and FPSO to show the performance of 

FMSO algorithm on 10 problems. In the experiments, the number of population is 60 , the 
tournament size (q=10) is chosen for FPSO. 3 swarms are used in FMSO, swarm size is 
20, the tournament size (q=5) is chosen and crossover rate qc is 0.6 for FMSO. The other 
parameters are the same as the above. Fig 1 shows the comparison results of the process 
with the same evaluations and table 3 show the statistical results for all test problems over 
50 runs. By viewing the results of Fig 1 and table 3, we can easily see that FPSO show 
better performance than PSO on function f2, f3, f6 and f7. All the results of FMSO are better 
than PSO. The results of Table 3 demonstrate that FMSO finds the global optima for 
function f2, f3, f5, f6, f7  and  f8 , especially for function f2, f3 and,f7, the global optima of 
them are fond for each run over 50 runs. From the comparison results, we can know that 
Cauchy mutation is helpful for some problems, and the multiple swarms technique works 
for all test problems. It indicates that FMSO not only speeds up the search, but also 
improves the optimizing precision.  



Table 1.Details of test functions, where n is the dimension of the function, fmin is the minimum 
value of the function, S⊆ Rn 

Test function n S fmin
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Secondly, the aim of group 2 is to analyze the effect of different swarms and swarm 
size( m*n) for a same population size 80. Function f1,f4,f6,f8 are chosen to test. the 
maximum generation is 1000, m and n are respectively the number of swarms and swarm 
size. 4 sets experiments are conducted, Table 2 shows the value of m and n. All the other 
parameters are the same as above. By viewing the comparison results of Table 4, the more 
number swarms is better for function f4 and f6 ,however , it isn’t the case for function f1 
and f8. That is to say, although multiple swarms can speed up the convergence rate, not the 
more the better. it is hard to find a optimal swarm size and number of swarms for general 
problems. Actually, the optimal swarm size and swarm numbers depend on the 
distributions of optimal solutions and number of optimal solutions. For functions with a 
few optimum, small number of swarms might be enough. However, for functions with a 
lot of optimum, large swarms might be needed. 

      Table 2 The value of swarms(m) and swarm size(n),q is the tournament size 
 Set 1 Set 2 Set 3 Set 4 
m 2 4 8 16 
n(q) 40(6) 20(5) 10(4) 5(3) 
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Fig1. Comparison of the process of the mean fitness of the best particle between FMSO, FPSO and 
PSO for 50 runs, the vertical axis is the function value and the horizontal axis is the number of 
evaluations. 

 



Table 3 The maximum(Max) ,minimum(Min) and average(Avg) best fitness over 50 runs. Std is the 
standard deviation  

F evaluations PSO FPSO FMSO 
Max 3.42138E-20 8.8762e-009 3.87449e-039 
Min 1.24857E-23 5.53311e-014 1.08821e-042 
Avg 5.06623E-21 3.73898e-010 3.4003e-040 

f1 6*104 

std 8.87525e-021 1.48328e-009 6.55003e-040 
Max -2793.79   -12086.3   -12569.5    
Min -4836.19   -12569.5 -12569.5    
Avg -3682.48   -12506.2 -12569.5    

f2 6*104 

std 457.426 101.935 0 
Max 0 0 0 
Min 0 0 0 
Avg 0 0 0 

f3 6*250 

std 0 0 0 
Max 0.024044   0.0575288   0.009357   
Min 0.00349205  0.0101007   0.000910975 
Avg 0.0120778   0.0284553   0.00321394 

f4 6*104 

std 0.00527977 0.0109074   0.00156956 
Max 0.00971591  0.126991   0.00971591   
Min 0 0 0 
Avg 0.00641252  0.0100854 0.00233185 

f5 6*104 

std 0.00460249 0.0177373 0.00414948 
Max 140.958   2.16826   0.0245904   
Min 87.6869   2.68284e-011 0 
Avg 120.464   0.39966   0.00580988 

f6 6*104 

std 11.4045 0.528499 0.00774408 
Max 6.25549   0.000532368  0 
Min 3.12093e-007  5.90058e-007  0 
Avg 2.25332   5.85617e-005 0 

f7 6*104 

std 1.07449 0.000107675 0 
Max 9.60947e-010  1.31399e-005  4.25245e-028 
Min 5.7947e-015 2.24269e-009  0 
Avg 2.07824e-011 1.36425e-006  7.15891e-029 

f8 6*104 

std 1.34386e-010 2.76779e-006 8.37964e-029 
 



5   Conclusions 

By analyzing the advantage and disadvantage of the standard PSO, FPSO based on 
Cauchy mutation and evolutionary selection strategy is proposed in this paper. Although 
FPSO greatly overcomes the tendency of trapping into local optima of PSO, the 
convergence rate isn’t satisfied, so a multiple swarms algorithm(FMSO) based on FPSO is 
proposed by introducing a crossover operation, FMSO is tested on 8 benchmark functions. 
From the experimental results of these functions, it can be seen that the FMSO performed 
much better than PSO and FPSO on the selected problems.  

Only functions with the dimension less than 30 were tested in this paper. Further 
research will focus on testing the performance of FMSO on higher dimensional problems 
in order to find whether FMSO would scale up well for the large function optimization 
problems.  

Table 4 Comparison with different swarms and swarm size for FMSO over 50 runs, The 
maximum(Max) ,minimum(Min) and average(Avg) best fitness over 50 runs. Std is the standard 
deviation     

F  2 swarms*40 4 warms*20 8 swarms*10 16swarm*5 
Max 1.97774e-39 4.37499e-40 3.97464e-40 5.18094e-34 
Min 3.68037e-44 1.63423e-42 8.54154e-44 6.24203e-36 
Avg 1.36448e-40 4.47269e-41 2.01959e-41 1.11419e-34 

f1 

std 3.89216e-40 8.05011e-41 5.88923e-41 1.04846e-34 
Max 0.00573433 0.0050845  0.0050845   0.00284168  
Min 0.000839845   0.000748565 0.000748565 0.000767533 
Avg 0.00304075   0.00184794  0.00184794  0.00168235 

f4 

std 0.00110113 0.000686807 0.000686807 0.000493363 
Max 0.0513256  0.0319228 0.0343841 0.00739604 
Min 0   0    0    0    
Avg 0.00934373  0.00285618 0.00708914  0.000443762 

f6 

std 0.011266 0.00607201 0.00913191 0.00175646 
Max 1.57772e-028 3.59918e-028 6.40949e-29  4.47899e-21 
Min 0   0    0   1.95173e-23 
Avg 8.94864e-30   9.30856e-29 3.57452e-30  3.94318e-22 

f8 

std 2.75515e-29 7.01503e-29 1.22276e-29 6.52812e-22 
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