
Fast Multi-swarm Optimization with Cauchy Mutation
and Crossover operation

Qing Zhang1,2, Changhe Li1, Y. Liu3, Lishan Kang1

1China University of Geosciences, School of Computer, Wuhan, P.R.China, 430074
2Huanggang Normal University

3 The University of Aizu,Aizu-Wakamatsu, Fukushima, Japan, 965-8580
zhangqing@hgnc.net,lch_wfx@yahoo.com.cn ,yliu@u-aizu.ac.jp, kang_whu@yahoo.com

Abstract. The standard Particle Swarm Optimization (PSO) algorithm is a novel
evolutionary algorithm in which each particle studies its own previous best solution
and the group’s previous best to optimize problems. One problem exists in PSO is
its tendency of trapping into local optima. In this paper, a multiple swarms
technique(FMSO) based on fast particle swarm optimization(FPSO) algorithm is
proposed by bringing crossover operation. FPSO is a global search algorithm witch
can prevent PSO from trapping into local optima by introducing Cauchy mutation.
Though it can get high optimizing precision, the convergence rate is not satisfied,
FMSO not only can find satisfied solutions ,but also speeds up the search. By
proposing a new information exchanging and sharing mechanism among swarms.
By comparing the results on a set of benchmark test functions, FMSO shows a
competitive performance with the improved convergence speed and high optimizing
precision.

Keywords: Particle swarm optimization, Cauchy mutation, swarm intelligence

1. Introduction

Particle Swarm Optimization (PSO) was first introduced by Kennedy and Eberhart in
1995 [1,2]. It is motivated from the social behavior of organisms, such as bird flocking
and fish schooling. Particles “fly” through the search space by following the previous best
positions of their neighbors and their own previous best positions. Each particle is
represented by a position and a velocity which are updated as follows:

''
ididid VXX += (1)

)()(
)()(

2

1
'

idgd

idididid

XPrand
XPrandVV

−+
−+=

η
ηω

 (2)

where Xid’ and Xid represent the current and the previous positions of idth particle, Vid

and Vid’ are the previous and the current velocity of idth particle, Pid and Pgd are the
individual's best position and the best position found in the whole swarm so far
respectively. 10 <≤ ω is an inertia weight which determines how much the previous
velocity is preserved, η1 and η2 are acceleration constants, rand() generates random
number from interval [0,1].

In PSO, each particle shares the information with its neighbors. PSO combines the
cognition component of each particle with the social component of all the particles in a
group. Although the speed of convergence is very fast, Once PSO traps into local
optimum, it is difficult to jump out of local optimum. Ratnaweera et.al.[3] state that lack
of population diversity in PSO algorithms is understood to be a factor in their
convergence on local optima. Therefore, the addition of a mutation operator to PSO
should enhance its global search capacity and thus improve its performance. A first
attempt to model particle swarms using the quantum model(QPSO) was carried out by
Sun et.al. [4]. In a quantum model, particles are described by a wave function instead of
the standard position and velocity. The quantum Delta potential well model and quantum
harmonic oscillators are commonly used in particle physics to describe the stochastic
nature of particles. In their studies[5], the variable of gbest (the global best particle) and
mbest (the mean value of all particles’ previous best position) is mutated with Cauchy
distribution respectively, and the results show that QPSO with gbest and mbest mutation
both performs better than PSO. The work of R. A. Krohling et.al.[6][7] showed that how
Gaussian and Cauchy probability distribution can improve the performance of the
standard PSO. Recently, evolutionary programming with exponential mutation has also
been proposed [8].

In order to prevent PSO from falling in a local optimum, a fast PSO (FPSO) is
proposed by introducing a Cauchy mutation operator in this paper. Besides the Cauchy
mutation, FPSO chooses the natural selection strategy of evolutionary algorithms as the
basic elimination strategy of particles. Although FPSO greatly overcomes the tendency of
trapping into local optima of PSO, the convergence rate isn’t satisfied. Like distributed
genetic algorithm, multiple swarms idea is a very useful for speeding up the search. In this
paper, a multiple swarms algorithm(FMSO) based on FPSO is proposed by introducing a
crossover operation, the new information exchanging and sharing mechanism of FMSO
make it converge fast on the global optimum.

The rest of this paper is organized as follows. Section 2 gives the analysis of PSO, and
the detail of FPSO. Section 3 gives a brief review of the multi-population technique and
then describe FMSO explicitly. Section 4 describes the experiment setup and presents the
experiment results. Finally, Section 5 concludes the paper with a brief summary.

2. Fast Multi-swarm Optimization with Cauchy Mutation and
Crossover operatio

2.1 Cauchy mutation

From the mathematic theoretical analysis of the trajectory of a PSO particle [9], the
trajectory of a particle Xid converges to a weighted mean of Pid and Pgd. Whenever the
particle converges, it will “fly” to the personal best position and the global best particle’s
position. This information sharing mechanism makes PSO have a very fast speed of
convergence. Meanwhile, because of this mechanism, PSO can’t guarantee to find the
global minimal value of a function. In fact, the particles usually converge to local optima.
Without loss of generality, only function minimization is discussed here. Once the
particles trap into a local optimum, in which Pid can be assumed to be the same as Pgd, all
the particles converge on Pgd. At this condition, the velocity update equation becomes:

idid VV ω=' (3)

When the iteration in the equation (3) goes to infinite, the velocity of the particle Vid
will be close to 0 because of 0≤ω<1. After that, the position of the particle Xid will not
change, so that PSO has no capability of jumping out of the local optimum. It is the reason
that PSO often fails on finding the global minimal value.

To overcome the weakness of PSO discussed at the beginning of this section, the
Cauchy mutation is incorporated into PSO algorithm. The basic idea is that, the velocity
and position of a particle are updated not only according to (1) and (2), but also according
to Cauchy mutation as follows:

)exp(' δidid VV = (4)

idididid VXX δ'' += (5)

where δ and δid denote Cauchy random numbers
Since the expectation of Cauchy distribution doesn’t exist, the variance of Cauchy

distribution is infinite so that Cauchy mutation could make a particle have a long jump.
By adding the update equations of (4) and (5), FPSO greatly increases the probability of
escaping from the local optimum.

2.2 Natural selection strategy

In the standard PSO, all particles are directly updated by their offspring no matter whether
they are improved. If a particle moves to a better position, it can be replaced by the
updated. However if it moves to a worse position, it is still replaced by its offspring. In
fact, the most particles fly to worse positions for most cases, therefore the whole swarm
will converge on local optima. Like evolutionary algorithms, FPSO introduces an
evolutionary selection strategy in which each particle survives according to a natural

selection rule. Therefore, the particle’s position at the next step is not only due to the
position update but also the evolutionary selection. Such strategy could greatly reduce the
probability of trapping into local optimum.

The evolutionary selection strategy is carried out as follows. Assume the size of the
swarm is m, pair-wise comparison over the union of parents and offspring (1,2,…2m) is
made. For each particle, q opponents are randomly chosen from all parents and offspring
with equal probability. If the fitness of particle i is less then its opponent , it will receive a
“win”. Then select m particles that have the more winnings to be the next generation.

The major steps of FPSO are as follows:
Step1: Generate the initial particles by randomly generating the position and velocity for

each particle.
Step2: Evaluate each particle’s fitness.
Step3: For each particle, if its fitness is smaller than its previous best(Pid), update Pid .
Step4: For each particle, if its fitness is smaller than the best one (Pgd) of all particles,

update Pgd.
Step5: For each particle ,do
 1).Generate a new particle t according to the formula (1) and (2).
 2).Generate a new particle t’ according to the formula (4) and (5).
 3) Compare t with t’ ,chose the one with smaller fitness to be the offspring.
Step6: Generate next generation according to the above evolutionary selection strategy.
Step7: if the stop criterion is satisfied, then stop, else goto Step 3.

3. Multiple swarms optimization technique

In order to escape from the local optima and avoid premature convergence, the search for
global optimum should be diverse. Many researchers have improved the performance of
the PSO by enhancing its ability with a more diverse search. Specifically, some have
introduced using multiple swarms, and then exchange information among them. The fast
converging behavior of the PSO makes this issue so critical for multimodal problems.
Al-Kazemi and Mohan [10] divided the population into two sets to achieve a more diverse,
one set moving to the gbest while another moving in opposite direction. After some
generations, if the gbest would not improve, the particles would switch their group. Two
cooperating swarms was used by Baskar and Suganthan [11] to search concurrently for a
solution along with sharing the gbest information of two swarms. The two swarms track
the gbest if it improves. Each swarm using different update equation: One uses the
standard PSO while the other uses the Fitness-to-Distance ratio PSO [12]. Their approach
improved the performance in solving single objective optimization problems. Then an
improved algorithm was proposed by El-Abd and Kamel [13] through adding a twoway
flow of information between two swarms. After running a fixed generations, if the best p
particles improve, then they willl replace the worst p particles in the other swarm. This
guarantees exchanging new information from the other swarm’s experience for the two

swarms.
In this study, A new learning mechanism is introduced among swarms. At each

iteration, the particles not only update themselves according to the best particle of their
own swarm, but also learn information from the best particle of other swarms. The
information sharing and learning mechanism make swarm extend their search space and
speedup the convergence speed. The information sharing and learning mechanism that we
call it crossover operation is described as follows:
Step1: for each particle of swarm k, randomly select a best particle p’ from a random
swarm.
Strp2: for each dimension i of particle p’s position px[i] and velocity pv[i] , if rand()<qc,
 crossover particle p with p’ as follows:

px[i]=(1-α)*px[i]+ α*p’x[i].
pv[i]=rand()*(p’x[i]-px[i]).

Step3: if all particles of swarm k are updated, end the operator, else go to Step 1.
where qc is crossover rate , α is a random number of (0,1).

4 Experiments and Results

Eight benchmark functions (f1-f8) are used in this paper. Table 1 gives the details of these
functions. Algorithm parameters are as follows for all experiments: acceleration constants
of η1 and η2 are both set to be 1.496180, and inertia weight ω=0.729844 as suggested by
den Bergh [14], crossover rate qc is 0.8, running time is 50. In order to be the same
number of function evaluations to PSO, a particle will be evaluated two times each
generation in FPSO and FMSO. The other parameters are given in the following
experiments.

Two groups of experiments are carried out in this section.
Firstly, FMSO is compared with standard PSO and FPSO to show the performance of

FMSO algorithm on 10 problems. In the experiments, the number of population is 60 , the
tournament size (q=10) is chosen for FPSO. 3 swarms are used in FMSO, swarm size is
20, the tournament size (q=5) is chosen and crossover rate qc is 0.6 for FMSO. The other
parameters are the same as the above. Fig 1 shows the comparison results of the process
with the same evaluations and table 3 show the statistical results for all test problems over
50 runs. By viewing the results of Fig 1 and table 3, we can easily see that FPSO show
better performance than PSO on function f2, f3, f6 and f7. All the results of FMSO are better
than PSO. The results of Table 3 demonstrate that FMSO finds the global optima for
function f2, f3, f5, f6, f7 and f8 , especially for function f2, f3 and,f7, the global optima of
them are fond for each run over 50 runs. From the comparison results, we can know that
Cauchy mutation is helpful for some problems, and the multiple swarms technique works
for all test problems. It indicates that FMSO not only speeds up the search, but also
improves the optimizing precision.

Table 1.Details of test functions, where n is the dimension of the function, fmin is the minimum
value of the function, S⊆ Rn

Test function n S fmin

∑ =
=

n

i ixxf
1

2
1)(30 (-5.12,5.12) 0

∑=
−=

n

i ii xxxf
12)sin()(30 (-500,500) -12569.5

⎣ ⎦∑ =
⋅=

5

13 6)(
i ixxf 30 (-5.12, 5.12) 0

()1,0)(4
14 Uxixf i

n

i
+⋅= ∑ = 30 (-1.28,1.28) 0

5.0
))(001.00.1(
5.0)(sin

)(222

222

5 +
++
−+

=
yx

yx
xf 2 (-100.0,100.0) 0

1)
100

cos(

)100(
4000

1)(

1

1
2

6

+
−

−

−=

∏

∑

=

=

n

i
i

n

i i

i
x

xxf

 30 (-300.0,300.0) 0

ex
n

x
n

xf

n

i i

n

i i

++⋅⋅−

⋅−⋅−=

∑

∑

=

=

20))2cos(1exp(

)12.0exp(20)(

1

1
2

7

π
 30 (-30.0,30.0) 0

∑ = + −+−=
n

i iii xxxxf
1

222
18))1()((100)(30 (-2.048,2.048) 0

Secondly, the aim of group 2 is to analyze the effect of different swarms and swarm
size(m*n) for a same population size 80. Function f1,f4,f6,f8 are chosen to test. the
maximum generation is 1000, m and n are respectively the number of swarms and swarm
size. 4 sets experiments are conducted, Table 2 shows the value of m and n. All the other
parameters are the same as above. By viewing the comparison results of Table 4, the more
number swarms is better for function f4 and f6 ,however , it isn’t the case for function f1
and f8. That is to say, although multiple swarms can speed up the convergence rate, not the
more the better. it is hard to find a optimal swarm size and number of swarms for general
problems. Actually, the optimal swarm size and swarm numbers depend on the
distributions of optimal solutions and number of optimal solutions. For functions with a
few optimum, small number of swarms might be enough. However, for functions with a
lot of optimum, large swarms might be needed.

 Table 2 The value of swarms(m) and swarm size(n),q is the tournament size
 Set 1 Set 2 Set 3 Set 4
m 2 4 8 16
n(q) 40(6) 20(5) 10(4) 5(3)

0 200 400 600 800 1000
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

be
st

 fi
tn

es
s(

Lo
g)

evaluationX60

 PSO
 FPFO
 FMSO

0 200 400 600 800 1000

-12000

-10000

-8000

-6000

-4000

-2000

evaluationX60

be
st

 fi
tn

es
s

 PSO
 FPSO
 FMSO

 f1 f2

0 5 10 15 20 25

-2

-1

0

1

2

3

4

5

6

evaluationX60

be
st

 fi
tn

es
s(

Lo
g)

 PSO
 FPSO
 FMSO

0 200 400 600 800 1000

-6

-4

-2

0

2

4

6

eva lua tionX 60

be
st

 fi
tn

es
s(

Lo
g)

 P S O
 F P S O
 F M S O

f3 f4

0 200 400 600 800 1000
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0

evaluationX60

be
st

 fi
tn

es
s(

Lo
g)

 PSO
 FPSO
 FMSO

0 200 400 600 800 1000

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

eva luationX 60

be
st

 fi
tn

es
s(

Lo
g) P S O

 F P S O
 FM S O

f5 f6

-100 0 100 200 300 400 500 600 700 800

-35
-30
-25
-20
-15
-10

-5
0
5

evaluationX60

be
st

 fi
tn

es
s(

Lo
g)

 PSO
 FPSO
 FMSO

0 200 400 600 800 1000
-70
-60
-50
-40
-30
-20
-10

0
10

evaluationX60

be
st

 fi
tn

es
s(

Lo
g)

 PSO
 FPSO
 FM SO

 f7 f8

Fig1. Comparison of the process of the mean fitness of the best particle between FMSO, FPSO and
PSO for 50 runs, the vertical axis is the function value and the horizontal axis is the number of
evaluations.

Table 3 The maximum(Max) ,minimum(Min) and average(Avg) best fitness over 50 runs. Std is the
standard deviation

F evaluations PSO FPSO FMSO
Max 3.42138E-20 8.8762e-009 3.87449e-039
Min 1.24857E-23 5.53311e-014 1.08821e-042
Avg 5.06623E-21 3.73898e-010 3.4003e-040

f1 6*104

std 8.87525e-021 1.48328e-009 6.55003e-040
Max -2793.79 -12086.3 -12569.5
Min -4836.19 -12569.5 -12569.5
Avg -3682.48 -12506.2 -12569.5

f2 6*104

std 457.426 101.935 0
Max 0 0 0
Min 0 0 0
Avg 0 0 0

f3 6*250

std 0 0 0
Max 0.024044 0.0575288 0.009357
Min 0.00349205 0.0101007 0.000910975
Avg 0.0120778 0.0284553 0.00321394

f4 6*104

std 0.00527977 0.0109074 0.00156956
Max 0.00971591 0.126991 0.00971591
Min 0 0 0
Avg 0.00641252 0.0100854 0.00233185

f5 6*104

std 0.00460249 0.0177373 0.00414948
Max 140.958 2.16826 0.0245904
Min 87.6869 2.68284e-011 0
Avg 120.464 0.39966 0.00580988

f6 6*104

std 11.4045 0.528499 0.00774408
Max 6.25549 0.000532368 0
Min 3.12093e-007 5.90058e-007 0
Avg 2.25332 5.85617e-005 0

f7 6*104

std 1.07449 0.000107675 0
Max 9.60947e-010 1.31399e-005 4.25245e-028
Min 5.7947e-015 2.24269e-009 0
Avg 2.07824e-011 1.36425e-006 7.15891e-029

f8 6*104

std 1.34386e-010 2.76779e-006 8.37964e-029

5 Conclusions

By analyzing the advantage and disadvantage of the standard PSO, FPSO based on
Cauchy mutation and evolutionary selection strategy is proposed in this paper. Although
FPSO greatly overcomes the tendency of trapping into local optima of PSO, the
convergence rate isn’t satisfied, so a multiple swarms algorithm(FMSO) based on FPSO is
proposed by introducing a crossover operation, FMSO is tested on 8 benchmark functions.
From the experimental results of these functions, it can be seen that the FMSO performed
much better than PSO and FPSO on the selected problems.

Only functions with the dimension less than 30 were tested in this paper. Further
research will focus on testing the performance of FMSO on higher dimensional problems
in order to find whether FMSO would scale up well for the large function optimization
problems.

Table 4 Comparison with different swarms and swarm size for FMSO over 50 runs, The
maximum(Max) ,minimum(Min) and average(Avg) best fitness over 50 runs. Std is the standard
deviation

F 2 swarms*40 4 warms*20 8 swarms*10 16swarm*5
Max 1.97774e-39 4.37499e-40 3.97464e-40 5.18094e-34
Min 3.68037e-44 1.63423e-42 8.54154e-44 6.24203e-36
Avg 1.36448e-40 4.47269e-41 2.01959e-41 1.11419e-34

f1

std 3.89216e-40 8.05011e-41 5.88923e-41 1.04846e-34
Max 0.00573433 0.0050845 0.0050845 0.00284168
Min 0.000839845 0.000748565 0.000748565 0.000767533
Avg 0.00304075 0.00184794 0.00184794 0.00168235

f4

std 0.00110113 0.000686807 0.000686807 0.000493363
Max 0.0513256 0.0319228 0.0343841 0.00739604
Min 0 0 0 0
Avg 0.00934373 0.00285618 0.00708914 0.000443762

f6

std 0.011266 0.00607201 0.00913191 0.00175646
Max 1.57772e-028 3.59918e-028 6.40949e-29 4.47899e-21
Min 0 0 0 1.95173e-23
Avg 8.94864e-30 9.30856e-29 3.57452e-30 3.94318e-22

f8

std 2.75515e-29 7.01503e-29 1.22276e-29 6.52812e-22

References

[1] J. Kennedy and R. C. Eberhart, Particle Swarm Optimization, IEEE International
Conference on Neural Networks, pp.1942-1948, 1995.

[2] R. C. Eberhart and J. Kennedy, A New Optimizer Using Particle Swarm Theory,
Proceedings of the 6th International Symposium on Micro Machine and Human
Science, pp.39-43, 1995.

[3] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients, IEEE
Transactions on Evolutionary Computation, vol. 8,no. 3, pp. 240–255, 2004.

[4] J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum
behavior, in Proceedings of the IEEE Congress on Evolutionary Computation,
Portland, Oregon USA, pp. 325-331, 2004.

[5] Jing Liu, Wenbo Xu, Jun Sun, Quantum-behaved particle swarm optimization with
mutation operator. Proceedings of the 17th IEEE International Conference on Tools
with Artificial Intelligence Pages: 237 - 240 , 2005

[6] R. A. Krohling, Gaussian particle swarm with jumps, in Proceedings of the IEEE
Congress on Evolutionary Computation, Edinburgh, UK,pp. 1226-1231, 2005.

[7] R. A. Krohling, L. dos Santos Coelho, PSO-E: Particle Swarm with Exponential
Distribution , in Proceedings of the IEEE Congress on Evolutionary Computation,
pp1428- 1433, July 2006.

[8] H. Narihisa, T. Taniguchi, M. Ohta, and K. Katayama, Evolutionary Programming
with Exponential Mutation, in Proceedings of the IASTED Artificial Intelligence and
soft Computing, Benidorn, Spain, pp. 55-50, 2005.

[9] M. Clerc and J. Kennedy, The Particle Swarm: Explosion, Stability and Convergence
in a Multi-Dimensional Complex Space, IEEE Trans. on Evolutionary Computation,
Vol.6,pp:58-73,2002.

[10] B. Al-Kazemi and C. K. Mohan, “Multi-phase discrete particle swarm optimization”
In Proc. of 4th Int. Workshop on Frontiers on Evolut.Alg., Research Triangle Park,
NC, 2002.

[11] S. Baskar, and P. N. Suganthan, “A novel concurrent particle swarm optimization,”
In Proc. of Cong. on Evolut. Comput., Portland, OR, pp. 792-796, 2004.

[12] T. Peram, K. Veeramachaneni, and C. K. Mohan, “Fitness-distanceratio based
particle swarm optimization,” In Proc. of IEEE Swarm Intell. Symp., Indianapolis,
IN, pp. 88-94, 2003.

[13] M. El-Abd, and M. Kamel, “Information exchange in multiple cooperating swarms,”
In Proc. of Cong. on Evolut. Comput., Edinburgh, UK, pp. 138-142, 2005.

[14] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis,
Department of Computer Science, University of Pretoria, South Africa, 2002.

