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Abstract

Genetic algorithms (GAs) are a class of stochastic optimization methods inspired by the
principles of natural evolution. Adaptation of strategy parameters and genetic operators has
become an important and promising research area in GAs. Many researchers are applying
adaptive techniques to guide the search of GAs toward optimum solutions. Mutation is a key
component of GAs. It is a variation operator to create diversity for GAs. This paper investigates
several adaptive mutation operators, including population level adaptive mutation operators and
gene level adaptive mutation operators, for GAs and compares their performance based on a set
of uni-modal and multi-modal benchmark problems. The experimental results show that the gene
level adaptive mutation operators are usually more efficient than the population level adaptive
mutation operators for GAs.

1 Introduction

Genetic algorithms (GAs) are powerful search methods. They are inspired by the Darwin’s theory
of survival of the fittest. GAs were first introduced by John Holland in 1960s in USA. Nowadays,
GAs have been successfully applied for solving many optimization problems due to the properties
of easy-to-use and robustness for finding good solutions to difficult problems [6]. The efficiency of
GAs depends on many parameters, such as the initial population, the representation of individuals,
the selection strategy, and the recombination (crossover and mutation) operators. Mutation is used
to maintain the diversity of the entire population by changing individuals bit by bit with a small
probability pm ∈ [0, 1]. Usually, the mutation probability has a significant effect on the performance
of GAs.

Many researchers have suggested different static mutation probabilities for GAs. These static
mutation probabilities are derived from experience or by trial-and-error. De Jong proposed pm =
0.001 in [9]. Grefenstette proposed pm = 0.01 [7]. According to Schaffer, pm should be set to
[0.001, 0.005] [13]. In [2], Bäck suggested pm = 1.75/(N ∗ L1/2), where N means the population
size and L denotes the length of individuals. This equation is based on Schaffer’s results [13]. In
[11], it is suggested that pm = 1/L should be generally “optimal”. It is very difficult, though not
impossible, to find an appropriate parameter setting for pm for the optimal performance.
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The operator adaptation techniques in GAs can be classified into three categories, i.e., population
level, individual level, and component level adaptation [1]. Operator adaptation depends on how
operators are updated. At the population level, parameters are adapted globally by using the
feedback information from the current population. Individual level adaptation changes parameters
for each individual in the population. Component level adaptation is done separately on some
components or genes of an individual in the population.

This paper focuses on the comparative analysis of different population-level and gene-level adap-
tive mutation operators for GAs based on a set of benchmark optimization problems. The experi-
mental results show that the performance of different adaptive mutation operators depends on the
test problem and that the gene level adaptive mutation operators are usually more efficient than
the population level adaptive mutation operators for GAs.

The rest of this paper is organized as follows. Section 2 briefly reviews the population level
adaptation and gene level adaptation mutation operators in the literature. Section 3 presents the
experimental study of comparing the performance of several GAs with different gene level and
population level adaptive mutation operators and a particle swarm optimization (PSO) algorithm
with a population level adaptive mutation operator. Finally, some conclusions are given in Section 4.

2 Adaptation in Mutation Operators

Adaptation of strategy parameters and genetic operators has become an important and promising
area of research on GAs. Many researchers are focusing on solving optimization problems by using
adaptive techniques, e.g., probability matching, adaptive pursuit method, numerical optimization,
and graph coloring algorithms [16, 17, 12]. The value of parameters and genetic operators are
adjusted in GAs. Parameter setting and adaptation in mutation was first introduced in evolutionary
strategies [13]. The classification of parameter settings has been introduced differently by the
researchers [5, 4, 15].

Basically, there are two main type of parameter settings: parameter tuning and parameter con-
trol. Parameter tuning means to set the suitable parameters before the run of algorithms and the
parameters remain constant during the execution of algorithms. Parameter control means to assign
initial values to parameters and then these values adaptively change during the execution of algo-
rithms. According to [5], parameters are adapted according to one of three methods: deterministic
adaptation adjusts the values of parameters according to some deterministic rule without using any
feedback information from the search space; adaptive adaptation modifies the parameters using the
feedback information from the search space; and self-adaptive adaptation adapts the parameters by
the GA itself.

There are two main groups of adaptive mutation operators, one group are the population-level
adaptive mutation (PLAM) operators and the other are the gene-level adaptive mutation (GLAM)
operators.

2.1 Population-Level Adaptive Mutation Operators

In [10], we designed a mutation operator that can adaptively select the most suitable mutation
operator for particle swarm optimization (PSO) for a specific problem. It is difficult to find the
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best result by using only a single mutation operator, so various mutation operators may be used
at different levels on a single problem to achieve the best result. The PSO proposed in [10] uses a
population-level adaptive mutation operator, which will be denoted PLAM PSO in this paper.

PLAM PSO uses three mutation operators, the Cauchy mutation operator, the Gaussian mu-
tation operator, and the Levy mutation operator. All mutation operators have an equal initial
selection ratio of 1/3. Each mutation operator is applied according to its selection ratio and its
offspring fitness is evaluated. Gradually, the most suitable mutation operator will be chosen auto-
matically and control all the mutation behavior in the whole PSO. In order to explain an updating
equation for the adaptive mutation operator in PSO, progi(t) of operator i at generation t is defined
as follows:

progi(t) =

Mi
∑

j=1

f(pi
j(t)) − min (f(pi

j(t)), f(ci
j(t))), (1)

where pi
j(t) and ci

j(t) denote a parent and its child produced by mutation operator i at generation
t respectively, and Mi is the number of particles that select mutation operator i to mutate.

The reward value rewardi(t) of operator i at generation t is defined as follows:

rewardi(t) = exp(
progi(t)

∑N
j=1

progj(t)
α +

si

Mi
(1 − α)) + cipi(t) − 1 (2)

where si is the number of particles whose children have a better fitness than themselves after being
mutated by mutation operator i, pi(t) is the selection ratio of mutation operator i at generation t,
α is a random weight between (0, 1), N is the number of mutation operators, and ci is a penalty
factor for mutation operator i, which is defined as follows:

ci =

{

0.9, if si = 0 and pi(t) = maxN
j=1

(pj(t))

1, otherwise
(3)

If the previous best operator has no contribution at the current generation, then the selection ratio
of the current best operator will decrease.

With the above definitions, the selection ratio of mutation operator i is updated according to
the following equation:

pi(t + 1) =
rewardi(t)

∑N
j=1

rewardj(t)
(1 − N ∗ γ) + γ, (4)

where γ is the minimum selection ratio for each mutation operator, which is set 0.01 for all the
experiments in this paper. This selection ratio update equation considers four factors: the progress
value, the ratio of successful mutations, previous selection ratio, and the minimum selection ratio.
Another important parameter for the adaptive mutation operator is the frequency of updating the
selection ratios of mutation operators. That is, the selection ratio of each mutation operator can
be updated at a fixed frequency, e.g., every Uf generations, instead of every generation.

In [8], a GA with a population based adaptive mutation operator, denoted PLAM GA in this
paper, was proposed. This algorithm uses four mutation operators (M1–M4). The M1 operator
inverts the bit value 0 to 1 and 1 to 0, the M2 operator swaps any two bits in a single individual, the
third one reverses the interval order of bits in an individual, and the last one (M4) just changes one
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bit in an individual. These four mutation operators are used adaptively in the GA. All mutation
ratios of these operators are assigned initial values, e.g, 0.1. Each mutation operator is applied by
its mutation ratio. After the mutation operation,the progress value is calculated using the following
equation

progressi(t) =

Mi
∑

j=1

max (f(pi
j(t)), f(ci

j(t)) − f(pi
j(t))) (5)

where progressi(t) is the progress value of operator i at generation t, f is the fitness of an individual,
pi

j(t) and ci
j(t) are the parent and its offspring produced by mutation operator i at generation(t),

and Mi represent the total number of individuals that select the mutation operator i to mutate. The
mutation ratio of operator i is updated according to their average progress value at generation(t),
according to the following equation:

pi(t + 1) =
progressi(t)

∑N
j=1

progressj(t)
(Pmutation − N ∗ δ) + δ (6)

where pi(t) is the mutation ratio of mutation operator i at generation t, N is the total number
of mutation operators, δ = 0.01 is the minimum mutation ratio for each mutation operator and
Pmutation means the initial mutation probability. The key idea behind PLAM is to apply more than
one mutation operator on different stages to achieve the best result for a specific problem, at the
same time the mutation ratio of the operator is updated by using the above formula.

2.2 Gene-Level Adaptation Mutation Operators

In [20], a statistics-based adaptive non-uniform mutation (SANUM) was proposed for GAs, which is
a gene level adaptive mutation operator. SANUM calculates the frequency of ones for each locus in
the current population to adapt the mutation probability for that locus during the execution of the
GA. If the amount of ones in alleles for a gene locus is increased (or decreased) over the population,
that gene locus is called 1-inclined (or 0-inclined). A gene locus is called non-inclined if there is
no trend of increasing or decreasing of 1’s in the gene locus. The probability of mutation for each
locus i at generation t is adjusted by using following equation.

pm(i, t) = Pmax − 2 ∗ |f1(i, t) − 0.5| ∗ (Pmax − Pmin) (7)

where f1(i, t) represent the frequency of 1’s in the locus i over the population at generation t,
|x| returns the absolute value of x, Pmax and Pmin are the maximum and minimum value of the
mutation probability for a locus.

In paper [19], the authors used an unparallel adaptive technique on each locus of a chromosome,
called Gene Based Adaptive Mutation (GBAM). In GBAM, each gene locus has two different
mutation probabilities: pm1 is used for those loci that have the value of 1 and pm0 is used for those
loci that have the value of 0. Initially, all mutation probabilities are assigned to a value, e.g, 0.02.
The probabilities of pm1 and pm0 are automatically updated based on the feedback information
from the search space, according to the relative success or failure of those chromosomes having a
“1” or “0” at that locus for each generation. The new mutation probability for each locus i at
generation t + 1 is updated using the following equations in the case of a maximization problem.

pm0(i, t + 1) =

{

pm0(i, t) + γ, if G1
avg(i, t) > Pavg

pm0(i, t) − γ, otherwise
(8)
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pm1(i, t + 1) =

{

pm1(i, t) − γ, if G1
avg(i, t) > Pavg

pm1(i, t) + γ, otherwise
(9)

where γ is the updated value for the mutation rate, G1
avg(i, t) is the average fitness of individuals

with allele “1” for locus i at generation t, and Pavg(t) is the average fitness of the population at
generation t. The above update mechanism is used for each locus separately.

Another gene based adaptive mutation method, called GBAM FAD, was proposed by Yang and
Uyar [21]. This method constructs probabilities of each gene locus with the combination information
of fitness and allele distribution. GBAM FAD also uses two different mutation probabilities for each
gene locus, just as in GBAM. The probabilities of each gene locus are adaptively updated based
on the correlated feedback information from the search process, according to the relative success
or failure of individuals. The new mutation probabilities for each locus i at generation t + 1 are
updated using the following equations in the case of maximization problems.

pm0(i, t + 1) = pm0(i, t) + γ ∗ sgn((G1

avg(i, t) − Pavg(t))(f1(i, t) − 0.5)) (10)

pm1(i, t + 1) = pm1(i, t) − γ ∗ sgn((G1

avg(i, t) − Pavg(t))(f1(i, t) − 0.5)) (11)

where G1
avg(i, t) and Pavg(t) have the same meaning as in Eqs. (8) and (9), f1(i, t) is calculated

frequency of ones in the alleles in the locus i over the population at generation t and the method
sgn(x) returns the value 1, 0, or -1 if x > 0, x = 0, and x < 0, respectively. The GBAM FAD
algorithm efficiently solves deception problems.

The aforementioned GLAM operators have already been investigated on simple uni-modal func-
tions (OneMax and Royal Road), multi-modal functions (Deceptive and 4-Peak problems), and
random L-SAT functions [19, 20, 21]. The PLAM operators have also been investigated on vari-
ous multi-dimensional problems [8, 10]. These operators are implemented on different benchmark
optimization problems. It is very difficult to say that which operator is more suitable for which
problem. In order to better understand these operators, we compare their performance on a set of
benchmark problems in this paper. The experimental study is described below.

3 Experimental Study

3.1 Design of Experiments

Experiments were carried out to compare the performance of several GAs with adaptive mutation
operators. They are the PLAM GA and the three GAs with SANUM, GBAM, and GBAM FAD
respectively, which are described in Section 2. We also tested the PLAM PSO algorithm. The
experiments were conducted on 12 different benchmark optimization functions with two or more
dimensions. Some of these functions are unimodal and some are multi-modal. Functions f1 to f6

are maximization problems and functions f7 to f12 are minimization problems. These functions are
widely used in the literature for comparison, analysis and assessment of various algorithms. They
are shown in Table 1.

For the presentation of GAs and PLAM PSO, we use the gray encoding scheme and real coding,
respectively. The parameters of PLAM PSO were set as suggested in [3] as follows: the acceleration
constants η1 = η2 = 1.496180 and the inertia weight ω = 0.729844. For all the GAs, the genetic
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Table 1: The test functions, where n and D are the number of variables (dimensions) and the
domain of a problem (D ∈ Rn) respectively, f1–f6 are maximization functions, and f7–f12 are
minimization functions.

Test problem n D

f1(x) =
∑n

i=1
x3

i 30 [0.0, 16.384]
f2(x) =

∑n
i=1

x4

i | sin(πxi)| 30 [0.0, 16]
f3(x) = x1 − x2 + x3 3 [0.0, 1023.0]
f4(x) = x1 ∗ x2 + x3 3 [0.0, 1023]
f5(x) = x1/(x2 + 1) + x3 3 [0.0, 1023]
f6(x) = x1 ∗ x2 ∗ x3 − 100x1 ∗ x2 3 [−512, 512]
f7(x) =

∑n
i=1

x2

i 30 [−5.12, 5.12]
f8(x) = 100(x2

1
− x2)

2 + (1 − x1)
2 2 [−2.048, 2.048]

f9(x) =
∑n

i=1
int(xi) 30 [−5.12, 5.12]

f10(x) =
∑n

i=1
x4

i + Gauss(0, 1) 30 [−1.28, 1.28]

f11(x) =
∑n

i=1
−xi sin (

√

|xi|) 30 [−512, 512]

f12(x) =
∑n

i=1
(xi)

2/4000 − ∏n
i=1

cos (xi/
√

i) + 1 30 [−512, 512]

operators were set as follows: the tournament selection with tournament size of 2, elitism of size
1, 2-point crossover with a probability 1.0 and the population size N = 250. The initial selection
ratio was 1/3 for each adaptive mutation operator and the minimum selection ratio γ was set to
0.001 for each adaptive mutation operator, the update frequency Uf was set to 5 and T in [10] was
set to 10 for PLAM PSO. For PLAM GA, the initial probability was set to Pmutation = 0.1 and
δ = 0.01. For SANUM, the parameters were fixed as: (α, β) = (0.05, 0.04) and Pmin = 0.0001 (i.e,
pm(i, t) ∈ [0.0001, 0.05] for each locus i). For GBAM and GBAM FAD, the following parameters
were used: γ = 0.001, [Pmin, Pmax] = [0.0001, 0.2], and initially pm1(i, 0) = pm0(i, 0) = 0.01 for
each gene i.

3.2 Experimental Results and Analysis

This section presents the average result of 50 independent runs of each algorithm on the test func-
tions. For each run of an algorithm on a function, 100 generations were allowed. The experimental
results are shown in Table 2.

From Table 2, several results can be seen. Firstly, the performance of PLAM PSO is better than
other all mutation algorithms on all optimization benchmark functions. Especially the efficiency
of PLAM PSO, GBAM FAD and GBAM is much better than other mutation algorithms on f1,
and f2 (see Fig. 1). On function f3, GBAM and both PLAM operators are better than other two
mutation algorithms. The performacne of PLAM PSO algorithm is good, GBAM and GBAM FAD
obtain the same results on function f4. The GBAM algorithm gets the optimum result on function
f5, GBAM FAD and PLAM PSO gets closer result to GBAM on the same function. It can be
seen that among the four algorithms with adaptive mutation operators, PLAM PSO, GBAM, and
PLAM GA obtain the same results but better than GBAM FAD and SANUM on function f6.
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Table 2: Average result over 50 independent runs of algorithms on the test functions.

Test function PLAM PSO GBAM FAD GBAM SANUM PLAM GA

f1 131710 130454 131451 92664 108900
f2 1.73e+06 1.717e+06 1.720e+06 1.076e+06 1.264e+06
f3 2045.95 2045.83 2045.99 2033.77 2045.97
f4 1.048e+06 1.047e+06 1.047e+06 1.045e+06 1.047e+06
f5 2034.84 2043.77 2045.87 1695.16 2027.99
f6 1.604e+8 1.603e+08 1.604e+08 1.574e+08 1.604e+08
f7 0.03144 0.104391 0.082496 0.629343 0.226689
f8 0.00092 0.0110618 0.0118705 0.150079 0.0373568
f9 0 0 0 0 0
f10 0.000678 0.00407724 0.00509537 0.0661653 0.0143548
f11 -12305.6 -10286.2 -10270 -8728.76 -10052.6
f12 0.476 5.33026 5.32015 51.6891 13.8288

Secondly, on minimum optimization functions, the performance of PLAM PSO, GBAM and
GBAM FAD is also better than other algorithms with adaptive mutation operators in all tested
functions. For function f7, the performance of adaptive mutation operators is ranked in the following
sequence: PLAM PSO, GBAM, GBAM FAD, PLAM GA, and SANUM. The result of PLAM PSO
and GBAM FAD are better than the other three adaptive mutation algorithms on function f8. All
five mutation algorithms obtain the global minimum optimum result after a few generations on f9.
PLAM PSO is more efficient than the other four adaptive mutation operators on f10. PLAM PSO,
GBAM FAD and GBAM are more efficient than the other two adaptive mutation operators on f11

and f12 (see Fig. 1).

Thirdly, statistical analysis of five mutation operators in two groups (population-level adaptive
mutation and Gene-level adaptive mutation operator) is carried out using the two-tailed t-test
with a 98 degree of freedom at a 0.05 level of significance. Table 3 shows the t-test results for
pairs of algorithms, where the result is shown as “+”, “−”, or “∼” if the first algorithm in a
pair is significantly better than, significantly worse than, or statistically equivalent to the second
algorithm, respectively. The PLAM PSO, GBAM FAD and GBAM algorithms are statistically
better than other two adaptive approaches for finding the optimum value.

The performances of the five adaptive mutation algorithms are reasonably good except SANUM.
Generally speaking, PLAM PSO, GBAM FAD and GBAM are the most efficient on both the min-
imum and maximum optimization problems.

4 Conclusions

This paper presents a comparative study of a population-level adaptive mutation operator with a
gene-level adaptive mutation operator on multi-dimensional benchmark functions. The performance
of different adaptive mutation operators varies on different functions. From the experimental results,
it can be concluded that PLAM PSO, GBAM FAD and GBAM mutation algorithms perform well
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Figure 1: Experimental results of adaptive mutation operators.

on different functions. With PLAM PSO, GBAM FAD and GBAM, the population rapidly con-
verges in a relatively short period of time to a near-optimal solution even for multi-modal functions.
PLAM PSO, GBAM FAD and GBAM are statistically better than other adaptive approaches for
finding the optimum value.

In general, the experimental results indicate that gene level mutation operators provide better
solutions with reduced number of generations as compared with the PLAM GA operator except
PLAM PSO. There is one drawback with the GLAM operators. It takes some time to calculate new
mutation probabilities for each gene locus i at generation t. Generally speaking, the PLAM PSO
algorithm is better than other adaptive algorithms for finding the good result.
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Table 3: Statistical comparison of adaptive mutation operators on the test functions.

Test function: f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

PLAM PSO – GBAM FAD + + + + − + + + + + + +
PLAM PSO – GBAM + + − + − ∼ + + ∼ + + +
PLAM PSO – SANUM + + + + + + + + + + + +
PLAM PSO – PLAM GA + + − + + ∼ + + + + + +
GBAM FAD – GBAM − ∼ − ∼ − − ∼ ∼ + ∼ ∼ ∼
GBAM FAD – SANUM + + + + + + + + + ∼ + +
GBAM FAD – PLAM GA + + − ∼ ∼ − + + + ∼ + +
GBAM – SANUM + + + + + + + + + ∼ + +
GBAM – PLAM GA + + ∼ + ∼ ∼ + + + ∼ + +
SANUM – PLAM GA − − − − − − − − − ∼ − −
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