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Abstract. Evolutionary computation has become an important prob-
lem solving methodology among the set of search and optimization tech-
niques. Recently, more and more different evolutionary techniques have
been developed, especially hybrid evolutionary algorithms. This paper
proposes an island based hybrid evolutionary algorithm (IHEA) for op-
timization, which is based on Particle swarm optimization (PSO), Fast
Evolutionary Programming (FEP), and Estimation of Distribution Al-
gorithm (EDA). Within IHEA, an island model is designed to cooper-
atively search for the global optima in search space. By combining the
strengths of the three component algorithms, IHEA greatly improves
the optimization performance of the three basic algorithms. Experimen-
tal results demonstrate that IHEA outperforms all the three component
algorithms on the test problems.

1 Introduction

Evolutionary computation has become an important search and optimization
technique for many researchers. The population-based parallel computation, col-
lective learning process, self-adaptation, and robustness are some of the key fea-
tures of evolutionary algorithms (EAs). EAs have been widely applied for solving
important practical problems in engineering, business, and commerce, etc., yet
in practice sometimes they deliver only marginal performance. There is little
reason to expect that one can find a uniformly optimal algorithm for solving all
optimization problems. This is in accordance with the No Free Lunch theorem
[1], which explains that for any algorithm, any elevated performance over one
class of problems is exactly paid for in performance over another class. Recently,
the hybridization of EAs is becoming more and more popular due to their ca-
pabilities in handling several real world problems that involve complexity, noisy
environments, imprecision, uncertainty, and vagueness.

As reported in the literature, several heuristical techniques have been used to
improve the general efficiency of EAs. Zmuda et al. [2] introduced a hybrid evolu-
tionary learning scheme for synthesizing multi-class pattern recognition systems.
Wang [3] developed a hybrid approach to improve the performance of EAs for
a simulation optimization problem. A hybrid evolutionary Particle Swarm Op-
timization (PSO) method was proposed by Shi et al. [4]. The hybrid approach



executes two systems simultaneously and selects P individuals from each system
for exchanging after the designated N iterations. The individuals with a larger
fitness have more opportunities of being selected. A hybrid technique that com-
bines GA and PSO, called genetic swarm optimization (GSO), was proposed by
Grimaldi et al. [5] for solving an electromagnetic optimization problem. Li and
Wang et al. [6, 7] proposed a hybrid PSO using Cauchy mutation to reduce the
probability of trapping local optima for PSO.

In this paper, an island based hybrid evolutionary algorithm(IHEA) is pro-
posed based on Particle Swarm Optimization (PSO), Fast Evolutionary Pro-
gramming (FEP) and Estimation of Distribution Algorithm (EDA). An island
model using different evolutionary strategies is designed for improving the opti-
mization performance of the component algorithms. A set of function optimiza-
tion benchmark problems are tested in this paper.

The rest of the paper is organized as follows. Section 2 briefly describes
PSO, FEP, and EDA optimization techniques. The proposed algorithm, IHEA,
is presented in details in Section 3. Experimental results are shown in Section 4.
Finally, some conclusions are given in Section 5.

2 Three Different Evolutionary Techniques

2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) was first introduced by Kennedy and Eber-
hart in 1995 [8, 9]. PSO is motivated from the social behavior of organisms, such
as bird flocking and fish schooling. Particles “fly” through the search space by
following the previous best positions of their neighbors and their own previ-
ous best positions. There are several main versions of the PSO algorithms. The
following version modified by Shi and Eberhart [10] is used in this paper. Each
particle is represented by a position and a velocity, which are updated as follows:

V ′i = ωV i + η1r1(P i −Xi) + η2r2(P g −Xi) (1)

X ′i = Xi + V ′i (2)

where X ′i and X represent the current and previous positions of particle i, V i

and V ′i are the previous and current velocity of particle i, P i and P g are the
best-so-far position of particle i and the best position found in the whole swarm
so far respectively. ω ∈ (0, 1] is an inertia weight which determines how much
the previous velocity is preserved, η1 and η2 are acceleration constants, and r1

and r2 are random numbers generated from the interval [0.0, 1.0].
The framework of the PSO algorithm is given as follows:

Step 1: Generate the initial particles by randomly generating the position and
velocity for each particle.

Step 2: Evaluate the fitness of each particle.
Step 3: For each particle i, if its fitness is smaller than the fitness of its previous

best position (P i), update P i.



Step 4: For each particle, if its fitness is smaller than the fitness of the best
position (pg) of all particles, update P g.

Step 5: Update each particle according to Eqs. (1) and (2).
Step 6: Stop if the stop criterion is satisfied; otherwise, go to Step 3.

From the mathematic theoretical analysis of the trajectory of a PSO particle
[11], the trajectory of a particle Xi converges to a weighted mean of P i and
P g. Whenever the particle converges, it will “fly” to the personal best posi-
tion and the global best particle’s position. This information sharing mechanism
makes PSO have a very fast speed of convergence. Meanwhile, because of this
mechanism, PSO can’t guarantee to find the global minimal value of a function.

2.2 Fast Evolutionary Programming

Fast Evolutionary Programming (FEP) was proposed by Yao [12] by introduc-
ing Cauchy mutation instead of Gaussian mutation in classical EP (CEP). The
framework of FEP is as follows:

Step 1. Generate initial population of µ individuals. Each individual is repre-
sented by a pair of real-valued vectors (xi, ηi),∀i ⊂ {1, 2, ..., µ}.

Step 2. Evaluate the fitness of each individual (xi, ηi).
Step 3. For each parent (xi, ηi),∀i ⊂ {1, 2, ..., µ}, create a single offspring

(x′i, η
′
i), ∀i ⊂ {1, 2, ..., µ} by:

x′i(j) = xi(j) + ηi(j)δj (3)

η′i(j) = ηi(j)exp(τ ′N(0, 1) + τNj(0, 1)) (4)

where xi(j), x′i(j), ηi(j), and η′i(j) denote the j−th component of individual
(xi, ηi) respectively. N(0, 1) denotes a normally distributed one-dimensional
random number with mean zero and standard deviation one. Nj(0, 1) indi-
cates that the random number is generated anew for each value of j. δj is a
Cauchy random variable with the scale parameter 1 and is generated anew
for each value of j. The factor τ and τ ′ are usually set to (

√
2
√
n)−1 and√

2n
−1

[13, 14].
Step 4. Calculate the fitness of each offspring (x′i, η

′
i), ∀i ⊂ {1, 2, ..., µ}.

Step 5. Conduct pairwise comparison over the union of parents (x′i, η
′
i) and off-

spring (x′i, η
′
i),∀i ⊂ {1, 2, ..., µ}. For each individual, q opponents are chosen

uniformly at random from all the parents and offspring. For each compari-
son, if the individual’s fitness is no smaller than the opponent’s, it receives
a “win”.

Step 6. Select µ individuals from the parents and offspring that have the most
wins to next generation.

Step 7. If stop criterion is satisfied, then stop; otherwise, go to Step 3.

Yao et al. [15] explains that Cauchy mutation performs better than Gaussian
mutation for most tested benchmark problems used in [15] because of its higher
probability of making longer jumps (the larger the search step size, the faster
the algorithm gets to the global optimum). However, the problem of FEP is that
a large step size may not be beneficial at all if the current search point is already
very close to the global optimum.



2.3 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [16, 17] are non-deterministic,
stochastic heuristic search strategies that form part of the evolutionary compu-
tation approaches. Within EDAs, a number of solutions or individuals are created
every generation according to a distribution model, which evolves generation by
generation until a satisfactory solution is achieved. In brief, the characteristic
that most differentiates EDAs from other evolutionary search strategies, such
as genetic algorithms, is that the evolution from a generation to the next one
is done by estimating the probability distribution of the fittest individuals, and
afterwards by sampling the induced model. This avoids the use of crossover or
mutation operators, and the number of parameters that EDAs require is reduced
considerably.

The framework of EDAs is as follows:

Step 1. Select M promising individuals from parent population to form the
parent set Q by a selection method (e.g., the truncation selection).

Step 2. Build a probabilistic model p(x) based on the statistical information
extracted from the parent set Q.

Step 3. Sample offspring according to the constructed probability model p(x).
Step 4. Fully or partly replace individuals in parent population by sampled

offspring to form the next generation.

In this paper, we use truncation selection method as most literatures used.
Another major issue in EDA is how to build a probability distribution model
p(x). we use Gaussian model with diagonal covariance matrix (GM/DCM) [17].
In GM/DCM, the joint density function of the k-th generation is described as
follows:

pk(x) =
n∏

i=1

N (xi;µki , σ
k
i ) (5)

where
N (xi;µki , σ

k
i ) =

1√
2πσi

e
1
2 (
xi−µi
σi

)2

(6)

In Equ(5), the n-dimensional joint probability distribution is factorized as a
product of n univariate and independent normal distributions. There are two
parameters for each variable required to be estimated in the k-th generation:
the mean µ̂ki , and the standard deviation, σ̂ki . They can be estimated as follows:

µ̂ki = X̄k
i =

1
M

M∑
t=1

xkt,i; σ̂
k
i =

√√√√ 1
M

M∑
t=1

(xkt,i − X̄k
i )2 (7)

where (xk1,i, x
k
2,i, ..., x

k
M,i) are values of the i-th variable of the selected M parent

individuals in the k-th generation.
Experimental results show that EDA gives distinctive performance on some

particular problems. However, it doesn’t help for the search on some other prob-
lems at all. In EDA, the search is mainly based on global information used for
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Fig. 1. Migration topology of IHEA.

guiding the exploration. However, too much exploration may cause no conver-
gence problem.

3 Island Based Hybrid Evolutionary Algorithm

The main idea of IHEA is that migration of individuals among different islands
can increase diversity of each island, so it can reduce the probability of premature
convergence. In IHEA, there are three subpopulation residing in three different
islands, which use PSO, FEP and EDA algorithms respectively to search global
optima in the whole shared search space. Since different islands use different
evolutionary techniques, they probably follow different search directions in the
whole shared search space, that is they explore different area in the whole search
space. However, they are not independent to search, they exchange their own
updated information periodically between each other by migration of promising
individuals. The information sharing mechanism is helpful to search unexplored
space where probably global optima is.

PSO in IHEA can be regarded as a fast local search operator for exploitation,
EDA is used for exploring new promising area in the whole search space. FEP
can be taken as mutation operator because of its long jump capability. The
cooperative search among the three islands is helpful for them to explore new
promising areas. It greatly reduces the probability of premature convergence,
hence the global search capability is improved.

The migration topology of IHEA is described in Fig. 1. The main framework
of IHEA is as follows:

Step 1. Initialize the three population, set k = 1.
Step 2. Use PSO, EDA and FEP to optimize each population.
Step 3. Compare the best individual of each population, if the best individual

of population p is better than the best of the other two population, migrate
individuals of population p to the other two population whose fitness is better
than those individuals of the other two population.

Step 4. Stop if stop criterion is true; otherwise, k = k + 1 and goto Step 2.

Another big issue in IHEA is the population resource allocation among differ-
ent islands. As we know, different problems may have totally different landscapes,



Table 1. Details of the test functions, where n and fmin are the dimension and the
minimum value of a function respectively and S ∈ Rn.

Test Function n S fmin

f1(x) =
∑n

i=1
x2
i 30 (−5.12, 5.12) 0

f2(x) = 100(x2
1 − x2)2 + (x1 − 1)2 2 (-2.048, 2.048) 0

f3(x) = 1
4000

∑n

i=1
(xi − 100)2 −∏n

i=1
cos(xi−100√

i
) + 1 30 (-300, 300) 0

f4(x) = −20 exp(−0.2
√

1
n

∑n

i=1
x2
i )− 30 (-30, 30) 0

exp( 1
n

∑n

i=1
cos(2πxi)) + 20 + e

f5(x) =
∑n

i=1
100(x2

i+1 − xi)2 + (xi − 1)2) 30 (-2.048, 2.048) 0
f6(x) =

∑n

i=1
(x2
i − 10 cos(2πxi) + 10) 30 (-5.12, 5.12) 0

f7(x) =
∑n

i=1
−xi sin (

√
|xi|) 30 (-500, 500) -12569.5

f8(x) = 418.9829 · n+
∑n

i=1
−xi sin (

√
|xi|) 30 (-500, 500) 0

Table 2. Population size of the three islands in IHEA algorithm

Island f1 f2 f3 f4 f5 f6 f7 f8

PSO 10 15 10 10 15 5 10 10
FEP(q) 5(3) 10(4) 15(5) 5(3) 10(4) 10(4) 15(5) 15(5)
EDA 15 5 5 15 5 15 5 5

such as the number of local or global optima, the difference among local optima,
the location of local or global optima, and so on. Different problems may need
different algorithms to solve it. This can be observed from the result presented in
Section 4.2. Hence, we should allocate different population resources on different
islands. For example, we can allocate the most population resources to the island
that is more effective than other algorithms to solve the problem.

4 Experimental study

4.1 Test problems and experimental settings

Eight benchmark functions (f1 − f8) are used in this paper. Functions f1 − f2

is unimodal functions while f3 − f8 have many local optima. Table 1 gives the
details of these functions. Algorithm parameters are set as follows: For PSO
algorithm, the acceleration constants of η1 and η2 are both set to be 1.496180
and the inertia weight ω = 0.729844 as suggested by den Bergh [18]. In FEP, the
tournament size is 5 for selection and initial standard deviation is 3.0 as used in
[12]. For all algorithms , population size is 30. The subpopulation size of FEP,
EDA and PSO is different for different problem in IHEA algorithm, details can
be seen from Table 2, however, the values of population size are just experimental
values not optima values. we run 50 times independently till generation 1500 for
all test problems.



Table 3. Comparison of PSO, EDA, FEP and IHEA. The results are mean best func-
tion values found at generation 1500 over 50 runs

Test function PSO EDA FEP IHEA

f1 1.218e-021 0 1.0219 0
f2 0 0.3835 3.26304e-005 0
f3 0.0291024 54.8026 1.29825 0.0559343
f4 2.09482 4.44089e-016 4.77732 4.44089e-016
f5 9.09728e-012 2545.73 80.2489 1.71309e-009
f6 50.7826 0 26.0043 0
f7 -7431.63 -2343.9 -12307 -12522.4
f8 5043.08 10348.7 314.947 71.0184

Table 4. The T-test results between IHEA and the other three algorithms,where “***”
means the results of each run is the same

f1 f2 f3 f4 f5 f6 f7 f8

PSO -1.17951 *** 3.13962 -12.9764 2.03565 -26.3966 -73.2857 -71.1316
EDA *** -13.8161 -108.133 0 -250.172 *** -137.587 -183.923
FEP -4.18079 -1.31905 -10.73 -14.7223 -9.02354 -21.3865 -6.90319 -7.33192

4.2 Performance Comparison

The average best results of the four algorithms are shown in Table 3. Table 4
shows the statistical comparison of the IHEA algorithm over the other three
algorithms, using the two-tailed T-test with 98 degrees of freedom at a 0.05 level
of significance. In all the T-test results of the paper, the performance difference
is significant if the absolute value of the T-test result is greater than 1.984.

From Table 3 and Table 4, we can see that PSO, EDA and FEP give quite
different performance on different test cases. PSO obtains the best results on
function f2, f3 and f5, EDA gives the best results on function f1, f4 and f6, while
FEP presents the best results on function f7 and f8. However, when compare the
three algorithms with IHEA, we can find that IHEA shows the best performance
on all test problems except function f3 and f5, which is slightly worse than the
results of PSO. IHEA greatly improves the performance of the three original
algorithms.

Fig 2 also shows the evolutionary process of the four algorithms. IHEA gives
the fastest convergence on most test problems. From the results of Table 3 and
Fig 2, we can conclude that IHEA reduces the probability of premature conver-
gence for most tested problems, especially for multimodal functions.

Table 5 and Table 6 show the average results of average mean best and T-test
results of all the test problems of 10 dimensions except function f2. Form the
results, we can see that all the results obtained by IHEA are better than that
of the other three algorithms except on function f5, where the result of IHEA is
slightly worse than that of PSO.
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Fig. 2. Evolution process of the average best particle of PSO, EDA, FEP, and IHEA.



Table 5. Comparison of PSO, EDA, FEP and IHEA on problems of 10 dimensions.
The results are mean best function values found at generation 1500 over 50 runs

Test function PSO EDA FEP IHEA

f1 6.98296e-072 0 0.00744029 0
f3 0.0866419 11.5354 0.18873 0.073003
f4 4.06785e-015 4.44089e-016 0.575907 4.44089e-016
f5 1.97215e-031 599.55 0.0918242 4.19082e-030
f6 6.18864 0 6.41484 0
f7 -3431.8 -1317.14 -4177.4 -4189.83
f8 725.257 2881.37 10.2413 0.000127276

Table 6. The T-test results between IHEA and the other three algorithms on problems
of 10 dimensions,where “***” means the results of each run is the same

f1 f3 f4 f5 f6 f7 f8

PSO -1.90455 -1.84457 -50.9999 3.20954 -15.5783 -21.8944 -20.3932
EDA *** -37.4252 0 -51.6912 *** -80.4453 -66.1889
FEP -1.94113 -2.24096 -4.50941 -1.67656 -11.619 -2.54557 -1.97234

5 Conclusions

This paper discusses an effective method to reduce the probability of trapping lo-
cal optima for evolutionary algorithm, which employs hybrid method to improve
algorithm performance. An island based hybrid algorithm (IHEA) is proposed
based on PSO, EDA and FEP algorithms. In IHEA, three different islands were
designed using PSO, EDA and FEP as their local search method respectively.
An information sharing mechanism is developed among the three islands. A set
of benchmark problems were tested. From the result, it can be seen that IHEA
greatly reduces the probability of becoming trapped at a local optimum. The
global search capability of IHEA is better than the three original algorithms.

In the future, we will focus on the further study of IHEA in deep level. There
are some issues that should be considered, such as, the resources distribution of
different islands, the migration topology and algorithms used on different islands.
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