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Abstract— Particle Swarm Optimization (PSO) has shown its 
fast search speed in many complicated optimization and search 
problems. However, PSO could often easily fall into local optima 
because the particles could quickly get closer to the best particle. 
At such situations, the best particle could hardly be improved. 
This paper proposes a new hybrid PSO (HPSO) to solve this 
problem by adding a Cauchy mutation on the best particle so 
that the mutated best particle could lead all the rest of particles 
to the better positions. Experimental results on many well-known 
benchmark optimization problems have shown that HPSO could 
successfully deal with those difficult multimodal functions while 
maintaining fast search speed on those simple unimodal functions 
in the function optimization. 

Ⅰ.  INTRODUCTION 
Particle Swarm Optimization (PSO) was firstly introduced 

by Kennedy and Eberhart in 1995 [1]. It is a simple 
evolutionary algorithm which differs from other evolutionary 
algorithms in which it is motivated form the simulation of 
social behavior. PSO has shown good performance in finding 
good solutions to optimization problems [2], and turned out to 
be another powerful tool besides other evolutionary 
algorithms such as genetic algorithms [3].  

Like other evolutionary algorithms, PSO is also a 
population-based search algorithm and starts with an initial 
population of randomly generated solutions called particles [4]. 
Each particle in PSO has a position and a velocity. PSO 
remembers both the best position found by all particles and the 
best positions found by each particle in the search process. For 
a search problem in an n-dimensional space, a potential 
solution is represented by a particle that adjusts its position 
and velocity according to Eqs. (1) and (2): 
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where Xi and Vi are the position and velocity of particle i, Pi 
and Pg are previous best particle for the ith particle and the 
global best particle found by all particles so far respectively, 
and w is an inertia factor proposed by Shi and Eberhart [5], 
and rand1() and rand2() are two random numbers 
independently generated within the range of [0,1], and c1 and 
c2 are two learning factors which control the influence of the 
social and cognitive components. 

One problem found in the standard PSO is that it could 
easily fall into local optima in many optimization problems. 
Some research has been done to tackle this problem [6-8]. One 
reason for PSO to converge to local optima is that  particles in 
PSO can quickly converge to the best position once the best 
position has no change in a local optimum. When all particles 
become similar, there is little hope to find a better position to 
replace the best position found so far. In this paper, a new 
hybrid PSO (HPSO) is proposed. HPSO uses an idea from fast 
evolutionary programming (FEP)[9] to mutate the best 
position by Cauchy mutation. It is to hope that the long jump 
from Cauchy mutation could get the best position out of the 
local optima where it has fallen. HPSO has been tested on 
both unimodal and multi-modal function optimization 
problems. Comparison has been conducted between HPSO 
and another improved PSO called FDR-PSO [10]. HPSO has 
also been compared to other evolutionary algorithms, such as 
classical EP (CEP) and FEP [9]. 

The rest of the paper is organized as follows: Section 2 
describes the new HPSO algorithm. Section 3 lists benchmark 
functions used in the experiments, and gives the experimental 
settings. Section 4 presents and discusses the experimental 
results. Finally, Section 5 concludes with a summary and a 
few remarks.  

Ⅱ.       HPSO ALGORITHM 
Some theoretical results have shown that the particle in 

PSO will oscillate between their pervious best particle and the 
global best particle found by all particles so far before it 
converges [11-12]. If the searching neighbors of the global 
best particle would be added in each generation, it would 



extend the search space of the best particle. It is helpful for the 
whole particles to move to the better positions. This can be 
accomplished by having a Cauchy mutation on the global best 
particle in every generation. The one-dimensional Cauchy 
density function centered at the origin is defined by:  
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where t>0 is a scale parameter [13]. The Cauchy distributed 
function is 
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The reason for using such a mutation operator is to 
increase the probability of escaping from a local optimum [9]. 
The Cauchy mutation operator used in HPSO is described as 
follows:  
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where V[j][i] is the ith velocity vector of the jth particle in the 
population, popsize is the population size. W(i) is a weight 
vector within [-Wmax , Wmax], and Wmax is set to 1 in this paper. 
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where N is a Cauchy distributed function with the scale 
parameter t=1, and N(Xmin , Xmax) is a random number within 
[Xmin , Xmax], which is a defined domain of a test function. The 
main steps of the HPSO algorithm are as follows: 

HPSO algorithm 
 

while iteration < = max-iterations do 
begin 

for each particle i do 
begin 

Calculate fitness value 
if the fitness value is better than its best fitness value in 

history 
then Update Pi
if the fitness value is better than the best fitness value in 

history 
then Update Pg
Calculate particle velocity according equation (1) 
Update particle position according to equation (2) 

end 
for j = 1 to the population size do 
begin 

Update W[j] according to equation (5) 
if fabs(W[j] > Wmax) then W[j] = Wmax

end 
Mutate Pg according to equation (6) for N times 
Select a best particle Pg

best from the N particles after having 
N mutations 
if the fitness value of Pg

best is better than Pg
then Pg = Pg

best

end 
 

Ⅲ. BENCHMARK PROBLEMS AND EXPERIMENTAL SETTINGS 
10 well-known test functions used in [9], [10] have been 

chosen in our experimental studies. The purpose is not to 
show that HPSO is better than any other improved PSO 
algorithms, but to explain that the idea of FEP is very useful 
for improving the performance of the standard PSO.  

The 10 test functions used in our experiments are listed in 
Tables 1 and 2. They are high-dimensional problems, in which 
functions f1 to f6 in Table 1 are unimodal functions, and 
functions f7 to f10 in Table 2 are multimodal functions. All the 
functions used in this paper are to be minimized.  

 

Table 1.  The 6 unimodal functions used in our experimental studies, where n is the dimension of the functions, fmin is the 
minimum values of the function, and X⊆Rn is the search space. 
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Table 2.  The 4 multimodal functions used in our experimental studies, where n is the dimension of the functions, fmin is the 
minimum values of the function, and X⊆Rn is the search space. 
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The selection of the parameters w, c1, c2 of Eq. (1) is very 

important. It can greatly influence the performance of PSO 
algorithms and its variations, By following the suggestions 
given in [14], c1, c2 and w are set in Table 3. However, there 
are a few differences for different problems. In this paper, Vmax 
in all related PSO algorithms is set to 2.0, and Wmax and N are 
set to 1 and 20 respectively. 

Table 3.  The specific parameter settings 

Test 
Function 

Number of  
Generations 

Popsize c1 = c2 w Wmax N

f1- f4 1000 10 1.49618 0.72984 1 20
f5 10000 50 1.49618 0.72984 1 20
f6 3000 50 1.49618 0.72984 1 20
f7 5000 50 1.49618 0.72984 1 20
f8 5000 50 1.49618 0.72984 1 20
f9 1000 50 1.49618 0.72984 1 20
f10 1000 50 1.49618 0.72984 1 20

 
In order to compare the different algorithms, the same 

settings have been used in FDR-PSO, CEP and FEP in our 
experiments. In HPSO and FDR-PSO, the same maximal 
generations and the same population size were used. In HPSO, 
CEP and FEP, less or the same maximal generations were 
used. 

Ⅳ. EXPERIMENTAL RESULTS 
Two comparisons have been conducted in this section. 

One is among HPSO, the standard PSO, and FDR-PSO [10]. 
The other is among HPSO, PSO, CEP and FEP [9].  

A.    Comparisons among HPSO, PSO, and FDR-PSO 
Table 4 shows the comparisons among HPSO, PSO, and 

the best FDR-PSO in [10] for functions f1 to f4. All results are 
averaged over 50 runs, where “Mean Best” indicates the mean 
best function values found in the last generation, and “Std 

Dev” stands for the standard deviation and “Minima” shows 
the minimum in the algorithm. It is obvious that HPSO 
performs better than both the standard PSO and FDR-PSO. 
From the results on f3, it could be seen that HPSO could find 
much better solutions. It suggests that the Cauchy mutation 
used in HPSO could speed up the search process. 

B.     Comparisons among HPSO, PSO, CEP, and FEP 
The average results of HPSO, PSO, CEP, and FEP on 

functions f5 to f10 over 50 runs are given in Table 5. On 
unimodal functions f5 and f6, HPSO has shown the fastest 
convergence among 4 tested algorithms. On multimodal 
functions f7 to f10, HPSO performed much better than both the 
standard PSO and CEP. It suggests HPSO is less likely to fall 
into local optima compared to the standard PSO and CEP. 
HPSO could perform equally well as FEP on f7 and f9, better 
than FEP on f10, but worse than FEP on f8.  

The significant improvement achieved by HPSO can be 
contributed to the search ability of Cauchy mutation operator, 
which extends the search space of the best particle. Such 
extended neighbor search space will greatly help particles 
move to better positions. In some cases, the extended 
neighbors have included the global optima. Therefore, HPSO 
had reached better solutions than the standard PSO.  

Table 4.  The results achieved for f1 to f4 using different 
algorithms 

HPSO PSO FDR-
PSO[10]

 
Function

Mean Best Std 
Dev 

Mean 
Best 

Std 
Dev 

Minima

f1 1.79e-7 3.51e-7 1.57e-6 5.11e-6 2.63e-7
f2 6.38e-7 1.98e-6 3.53e-6 1.55e-5 1.07e-5
f3 0.398 0.3082 17.5646 36.4659 0.9080
f4 2.53e-19 9.38e-19 1.84e-19 6.14e-19 5.3e-19

 

 



Table 5.  The results achieved for f5 to f10 using different algorithms 

HPSO PSO CEP [9] FEP [9] Function 
Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev 

f5 1.419 1.4256 1.8016 2.8389 6.17 13.61 5.06 5.87 
f6 4.37e-3 1.51e-3 4.57e-3 1.69e-3 1.8e-2 6.4e-3 7.6e-3 2.6e-3 
f7 -12558.9 6.2373 -6736.5 544.5 -7917.5 634.5 -12554.5 52.6 
f8 31.8005 9.1618 37.0721 9.7295 89.0 23.1 4.6e-2 2.1e-3 
f9 3.66e-2 3.19e-2 8.96e-2 0.2882 8.6e-2 0.12 1.6e-2 2.2e-2 
f10 8.86e-6 8.58e-2 1.1289 1.1298 9.2 2.8 1.8e-2 2.1e-3 

 
In order to find more differences between HPSO and the 

standard PSO, Figure 1 shows the evolution process of the 
mean of function values of the populations for HPSO and PSO. 
For the simple unimodal functions, HPSO and PSO performed 
equally well at the beginning because the particles at that time 
are not good enough so that both methods could improve well. 
Once the particles in the populations are close to the best 
particle, the convergence of PSO becomes slower because the 
search steps in PSO become smaller. It can be seen in Eq. (1) 
that the search steps are generally larger when the particles are 
further away from the best particle, while they become smaller 
when the particles get closer to the best particle. With the help 

of Cauchy mutation on the best particles, HPSO could move 
the best particle away from the rest of particles in the 
population so that the fast speed could remain through the 
whole evolution process.  For the difficult multimodal 
functions f5 and f7, Cauchy mutation on the best particle could 
move the best particle away from the local minimum once the 
best particle falls into it. Because of such mutations made on 
the best particle, HPSO could successfully find better 
solutions while maintaining fast search speed. On the other 
hand, PSO could be easily tracked into local minima without 
the mutation done on the best particle.  
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Fig. 1. Comparison between PSO and HPSO on f1, f3 , f5 and f7 . The horizontal axis is the number of generations and the vertical axis is the function value. 

C.    Number of Replacements 
To investigate how effective the Cauchy mutation operator 

used in HPSO is, the average number of replacements over 50 
runs is given in Table 6. Each replacement happens when the 
mutated Pg

' is better than Pg. The results have shown that the 
replacements had happened oftener. On the multimodal 

functions and some difficult unimodal functions such as f3, 
while the replacements had seldom taken place on simple 
unimodal functions. The reason is that PSO has more chances 
to fall into local minima for those difficult multimodal 
functions so that it would need more Cauchy mutations in 
order to move the best particles away from the local minima. 

 
 



Table 6.  The results are averaged over 50 runs, where “Number of Replacements” indicates the average number of replacements 
in the Cauchy mutation operator. 

Function f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Number of  
Replacements 

19.87 17.27 63.1 21.1 84.17 62.6 372.9 47.73 109.43 70.63 

 
 

Ⅴ.  CONCLUSIONS 
The idea of HPSO is to use a Cauchy mutation operator 

derived from FEP [9] to help PSO avoid local optima. By 
applying a Cauchy mutation on the best particle found by all 
particles so far in each generation, HPSO could find better 
solutions than PSO.  

HPSO has been compared with the standard PSO, an 
improved FDR-PSO, CEP, and FEP on both 6 unimodal 
functions and 4 multimodal functions. The results have shown 
that HPSO could have faster convergence on those simple 
unimodal functions, and better global search ability on those 
multimodal functions compared to the standard PSO. However, 
there are still fewer cases where HPSO had fallen in the local 
optima as what had happened on HPSO for the function f8. It 
suggests that a Cauchy mutation on the best particle alone 
might not be enough to prevent the search from falling in the 
local optima. As the Cauchy mutation introduced on the best 
particle, such mutation could be applied on all particles in the 
populations. It is expected that the Cauchy mutation on all 
particles could perform better for those extremely hard 
multimodal function optimization problems. 
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