
A Hybrid Particle Swarm Algorithm with Cauchy
Mutation

Hui Wang
School of Computer Science

China University of Geosciences
Wuhan, 430074 China

wanghui_cug@yahoo.com.cn
Changhe Li

School of Computer Science
China University of Geosciences

Wuhan, 430074 China
lchwfx@yahoo.com.cn

Yong Liu
University of Aizu

Tsuruga, Ikki-machi, Aizu-Wakamatsu
Fukushima 965-8580 Japan

yliu@u-aizu.ac.jp
Sanyou Zeng

School of Computer Science
China University of Geosciences

Wuhan, 430074 China
sanyou-zeng@263.net

Abstract— Particle Swarm Optimization (PSO) has shown its
fast search speed in many complicated optimization and search
problems. However, PSO could often easily fall into local optima
because the particles could quickly get closer to the best particle.
At such situations, the best particle could hardly be improved.
This paper proposes a new hybrid PSO (HPSO) to solve this
problem by adding a Cauchy mutation on the best particle so
that the mutated best particle could lead all the rest of particles
to the better positions. Experimental results on many well-known
benchmark optimization problems have shown that HPSO could
successfully deal with those difficult multimodal functions while
maintaining fast search speed on those simple unimodal functions
in the function optimization.

Ⅰ. INTRODUCTION
Particle Swarm Optimization (PSO) was firstly introduced

by Kennedy and Eberhart in 1995 [1]. It is a simple
evolutionary algorithm which differs from other evolutionary
algorithms in which it is motivated form the simulation of
social behavior. PSO has shown good performance in finding
good solutions to optimization problems [2], and turned out to
be another powerful tool besides other evolutionary
algorithms such as genetic algorithms [3].

Like other evolutionary algorithms, PSO is also a
population-based search algorithm and starts with an initial
population of randomly generated solutions called particles [4].
Each particle in PSO has a position and a velocity. PSO
remembers both the best position found by all particles and the
best positions found by each particle in the search process. For
a search problem in an n-dimensional space, a potential
solution is represented by a particle that adjusts its position
and velocity according to Eqs. (1) and (2):

(1) () ()
* * 1() * (1

()
* 2() * ()2

t t
V w V c rand P Xi i i

t
c rand P Xg i

+
= + −

+ −

)
t

i

t+

 (1)

(1) () (1)t t
X X Vi i i

+
= + (2)

where Xi and Vi are the position and velocity of particle i, Pi
and Pg are previous best particle for the ith particle and the
global best particle found by all particles so far respectively,
and w is an inertia factor proposed by Shi and Eberhart [5],
and rand1() and rand2() are two random numbers
independently generated within the range of [0,1], and c1 and
c2 are two learning factors which control the influence of the
social and cognitive components.

One problem found in the standard PSO is that it could
easily fall into local optima in many optimization problems.
Some research has been done to tackle this problem [6-8]. One
reason for PSO to converge to local optima is that particles in
PSO can quickly converge to the best position once the best
position has no change in a local optimum. When all particles
become similar, there is little hope to find a better position to
replace the best position found so far. In this paper, a new
hybrid PSO (HPSO) is proposed. HPSO uses an idea from fast
evolutionary programming (FEP)[9] to mutate the best
position by Cauchy mutation. It is to hope that the long jump
from Cauchy mutation could get the best position out of the
local optima where it has fallen. HPSO has been tested on
both unimodal and multi-modal function optimization
problems. Comparison has been conducted between HPSO
and another improved PSO called FDR-PSO [10]. HPSO has
also been compared to other evolutionary algorithms, such as
classical EP (CEP) and FEP [9].

The rest of the paper is organized as follows: Section 2
describes the new HPSO algorithm. Section 3 lists benchmark
functions used in the experiments, and gives the experimental
settings. Section 4 presents and discusses the experimental
results. Finally, Section 5 concludes with a summary and a
few remarks.

Ⅱ. HPSO ALGORITHM
Some theoretical results have shown that the particle in

PSO will oscillate between their pervious best particle and the
global best particle found by all particles so far before it
converges [11-12]. If the searching neighbors of the global
best particle would be added in each generation, it would

extend the search space of the best particle. It is helpful for the
whole particles to move to the better positions. This can be
accomplished by having a Cauchy mutation on the global best
particle in every generation. The one-dimensional Cauchy
density function centered at the origin is defined by:

() 1
2 2

t
f x

t xπ
=

+
, x−∞< <∞ (3)

where t>0 is a scale parameter [13]. The Cauchy distributed
function is

() 1 1
arctan

2

x
F xt

tπ
= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (4)

The reason for using such a mutation operator is to
increase the probability of escaping from a local optimum [9].
The Cauchy mutation operator used in HPSO is described as
follows:

 (5) ()() [][] /
1

popsize
W i V j i popsize

j
∑=
=

where V[j][i] is the ith velocity vector of the jth particle in the
population, popsize is the population size. W(i) is a weight
vector within [-Wmax , Wmax], and Wmax is set to 1 in this paper.

 (6) ('
() () () * , maxminP i P i W i N X Xg g= +)

where N is a Cauchy distributed function with the scale
parameter t=1, and N(Xmin , Xmax) is a random number within
[Xmin , Xmax], which is a defined domain of a test function. The
main steps of the HPSO algorithm are as follows:

HPSO algorithm

while iteration < = max-iterations do
begin

for each particle i do
begin

Calculate fitness value
if the fitness value is better than its best fitness value in

history
then Update Pi
if the fitness value is better than the best fitness value in

history
then Update Pg
Calculate particle velocity according equation (1)
Update particle position according to equation (2)

end
for j = 1 to the population size do
begin

Update W[j] according to equation (5)
if fabs(W[j] > Wmax) then W[j] = Wmax

end
Mutate Pg according to equation (6) for N times
Select a best particle Pg

best from the N particles after having
N mutations
if the fitness value of Pg

best is better than Pg
then Pg = Pg

best

end

Ⅲ. BENCHMARK PROBLEMS AND EXPERIMENTAL SETTINGS
10 well-known test functions used in [9], [10] have been

chosen in our experimental studies. The purpose is not to
show that HPSO is better than any other improved PSO
algorithms, but to explain that the idea of FEP is very useful
for improving the performance of the standard PSO.

The 10 test functions used in our experiments are listed in
Tables 1 and 2. They are high-dimensional problems, in which
functions f1 to f6 in Table 1 are unimodal functions, and
functions f7 to f10 in Table 2 are multimodal functions. All the
functions used in this paper are to be minimized.

Table 1. The 6 unimodal functions used in our experimental studies, where n is the dimension of the functions, fmin is the
minimum values of the function, and X⊆Rn is the search space.

Test Function n X fmin

2
1 1
() n

ii
f x x

=
=∑

20 [5.12,5.12]− 0

2
2 1
() *n

ii
f x i

=
=∑ x 20 [5.12,5.12]− 0

()2

3 1 1
() n i

ji j
f x x

= =
= ∑ ∑ 20 [65.536,65.636]− 0

1
4 1
() | |n i

ii
f x x +

=
= ∑ 20 [1,1]− 0

2 2 2 2
5 11
() [100() (1)]n

i i ii
f x x x x+=

= − + −∑ 30

[30,30]−

0

4
6 1

*n
ii

f i x random
=

= +∑ [0,1) 30

[1.28,1.28]−

0

Table 2. The 4 multimodal functions used in our experimental studies, where n is the dimension of the functions, fmin is the
minimum values of the function, and X⊆Rn is the search space.

Test Function n X fmin

7 1
*sin(| |)n

i ii
f x x

=
= − −∑

30 [500,500]− –12569.5

2
8 1

[10cos(2) 10]n
i ii

f x xπ
=

= − +∑
30 [5.12,5.12]− 0

2
9 1 1

1 cos() 1
4000

nn i
ii i

xf x
i= =

= −∑ ∏ +

30

[600,600]−

0

()

2
10 1

1

120 * exp 0.2 *

1exp cos 2 20

n
ii

n
ii

f x
n

x e
n

π

=

=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− +⎜ ⎟
⎝ ⎠

∑

∑ +

30

[32,32]−

0

The selection of the parameters w, c1, c2 of Eq. (1) is very

important. It can greatly influence the performance of PSO
algorithms and its variations, By following the suggestions
given in [14], c1, c2 and w are set in Table 3. However, there
are a few differences for different problems. In this paper, Vmax
in all related PSO algorithms is set to 2.0, and Wmax and N are
set to 1 and 20 respectively.

Table 3. The specific parameter settings

Test
Function

Number of
Generations

Popsize c1 = c2 w Wmax N

f1- f4 1000 10 1.49618 0.72984 1 20
f5 10000 50 1.49618 0.72984 1 20
f6 3000 50 1.49618 0.72984 1 20
f7 5000 50 1.49618 0.72984 1 20
f8 5000 50 1.49618 0.72984 1 20
f9 1000 50 1.49618 0.72984 1 20
f10 1000 50 1.49618 0.72984 1 20

In order to compare the different algorithms, the same

settings have been used in FDR-PSO, CEP and FEP in our
experiments. In HPSO and FDR-PSO, the same maximal
generations and the same population size were used. In HPSO,
CEP and FEP, less or the same maximal generations were
used.

Ⅳ. EXPERIMENTAL RESULTS
Two comparisons have been conducted in this section.

One is among HPSO, the standard PSO, and FDR-PSO [10].
The other is among HPSO, PSO, CEP and FEP [9].

A. Comparisons among HPSO, PSO, and FDR-PSO
Table 4 shows the comparisons among HPSO, PSO, and

the best FDR-PSO in [10] for functions f1 to f4. All results are
averaged over 50 runs, where “Mean Best” indicates the mean
best function values found in the last generation, and “Std

Dev” stands for the standard deviation and “Minima” shows
the minimum in the algorithm. It is obvious that HPSO
performs better than both the standard PSO and FDR-PSO.
From the results on f3, it could be seen that HPSO could find
much better solutions. It suggests that the Cauchy mutation
used in HPSO could speed up the search process.

B. Comparisons among HPSO, PSO, CEP, and FEP
The average results of HPSO, PSO, CEP, and FEP on

functions f5 to f10 over 50 runs are given in Table 5. On
unimodal functions f5 and f6, HPSO has shown the fastest
convergence among 4 tested algorithms. On multimodal
functions f7 to f10, HPSO performed much better than both the
standard PSO and CEP. It suggests HPSO is less likely to fall
into local optima compared to the standard PSO and CEP.
HPSO could perform equally well as FEP on f7 and f9, better
than FEP on f10, but worse than FEP on f8.

The significant improvement achieved by HPSO can be
contributed to the search ability of Cauchy mutation operator,
which extends the search space of the best particle. Such
extended neighbor search space will greatly help particles
move to better positions. In some cases, the extended
neighbors have included the global optima. Therefore, HPSO
had reached better solutions than the standard PSO.

Table 4. The results achieved for f1 to f4 using different
algorithms

HPSO PSO FDR-
PSO[10]

Function

Mean Best Std
Dev

Mean
Best

Std
Dev

Minima

f1 1.79e-7 3.51e-7 1.57e-6 5.11e-6 2.63e-7
f2 6.38e-7 1.98e-6 3.53e-6 1.55e-5 1.07e-5
f3 0.398 0.3082 17.5646 36.4659 0.9080
f4 2.53e-19 9.38e-19 1.84e-19 6.14e-19 5.3e-19

Table 5. The results achieved for f5 to f10 using different algorithms

HPSO PSO CEP [9] FEP [9] Function
Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev

f5 1.419 1.4256 1.8016 2.8389 6.17 13.61 5.06 5.87
f6 4.37e-3 1.51e-3 4.57e-3 1.69e-3 1.8e-2 6.4e-3 7.6e-3 2.6e-3
f7 -12558.9 6.2373 -6736.5 544.5 -7917.5 634.5 -12554.5 52.6
f8 31.8005 9.1618 37.0721 9.7295 89.0 23.1 4.6e-2 2.1e-3
f9 3.66e-2 3.19e-2 8.96e-2 0.2882 8.6e-2 0.12 1.6e-2 2.2e-2
f10 8.86e-6 8.58e-2 1.1289 1.1298 9.2 2.8 1.8e-2 2.1e-3

In order to find more differences between HPSO and the

standard PSO, Figure 1 shows the evolution process of the
mean of function values of the populations for HPSO and PSO.
For the simple unimodal functions, HPSO and PSO performed
equally well at the beginning because the particles at that time
are not good enough so that both methods could improve well.
Once the particles in the populations are close to the best
particle, the convergence of PSO becomes slower because the
search steps in PSO become smaller. It can be seen in Eq. (1)
that the search steps are generally larger when the particles are
further away from the best particle, while they become smaller
when the particles get closer to the best particle. With the help

of Cauchy mutation on the best particles, HPSO could move
the best particle away from the rest of particles in the
population so that the fast speed could remain through the
whole evolution process. For the difficult multimodal
functions f5 and f7, Cauchy mutation on the best particle could
move the best particle away from the local minimum once the
best particle falls into it. Because of such mutations made on
the best particle, HPSO could successfully find better
solutions while maintaining fast search speed. On the other
hand, PSO could be easily tracked into local minima without
the mutation done on the best particle.

f1 (Sphere Model) f3 (Rotated hyper-ellipsoid)

0 200 400 600 800 1000
-16

-12

-8

-4

0

4

8

LO
G

 HPSO
 PSO

0 200 400 600 800 1000

0

2

4

6

8

10
LO

G
 HPSO
 PSO

f5 (Rosenbrock’s function) f7 (Schwefel’s Problem)

0 2000 4000 6000 8000 10000
0

5

10

15

20

LO
G

 HPSO
 PSO

0 1000 2000 3000 4000 5000

-14000

-12000

-10000

-8000

-6000

-4000

-2000
 HPSO
 PSO

Fig. 1. Comparison between PSO and HPSO on f1, f3 , f5 and f7 . The horizontal axis is the number of generations and the vertical axis is the function value.

C. Number of Replacements
To investigate how effective the Cauchy mutation operator

used in HPSO is, the average number of replacements over 50
runs is given in Table 6. Each replacement happens when the
mutated Pg

' is better than Pg. The results have shown that the
replacements had happened oftener. On the multimodal

functions and some difficult unimodal functions such as f3,
while the replacements had seldom taken place on simple
unimodal functions. The reason is that PSO has more chances
to fall into local minima for those difficult multimodal
functions so that it would need more Cauchy mutations in
order to move the best particles away from the local minima.

Table 6. The results are averaged over 50 runs, where “Number of Replacements” indicates the average number of replacements
in the Cauchy mutation operator.

Function f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Number of
Replacements

19.87 17.27 63.1 21.1 84.17 62.6 372.9 47.73 109.43 70.63

Ⅴ. CONCLUSIONS
The idea of HPSO is to use a Cauchy mutation operator

derived from FEP [9] to help PSO avoid local optima. By
applying a Cauchy mutation on the best particle found by all
particles so far in each generation, HPSO could find better
solutions than PSO.

HPSO has been compared with the standard PSO, an
improved FDR-PSO, CEP, and FEP on both 6 unimodal
functions and 4 multimodal functions. The results have shown
that HPSO could have faster convergence on those simple
unimodal functions, and better global search ability on those
multimodal functions compared to the standard PSO. However,
there are still fewer cases where HPSO had fallen in the local
optima as what had happened on HPSO for the function f8. It
suggests that a Cauchy mutation on the best particle alone
might not be enough to prevent the search from falling in the
local optima. As the Cauchy mutation introduced on the best
particle, such mutation could be applied on all particles in the
populations. It is expected that the Cauchy mutation on all
particles could perform better for those extremely hard
multimodal function optimization problems.

REFERENCES
[1] J. Kennedy and R. Eberhart, Particle Swarm Optimization, IEEE

International Conference on Neural Networks, Perth, Australia. 1995.
[2] K. E Parsopoulos, V. P. Plagianakos, G. D. Magoulas, M. N. Vrahatis,

Objective Function “stretching” to Alleviate Convergence to Local
Minima, Nonlinear Analysis TMA 47, 3419-3424, 2001.

[3] R. Eberhart and Y. Shi, Comparison between Genetic Algorithms and
Particle Swarm Optimization, The 7th Annual Conference on
Evolutionary Programming, San Diego, USA. 1998

[4] X.. Hu, Y. Shi and R. Eberhart, Recentt Advenes in Particle Swarm,
Congress on Evolutionary Computation, Portland, Oregon, June 19-23,
90-97, 2004

[5] Y. Shi and R. Eberhart, A Modified Partilce Swarm Optimzer,
Proceedings of the IEEE Congress on Evolutionary Computation (CEC
1998), Piscataway, NJ. 69-73, 1998.

[6] F. van den Bergh, A. P. Engelbrecht, Cooperative Learning in Neural
Networks using Particle Swarm Optimization, South African Computer
Journal, 84-90, Nov. 2000.

[7] X, Xie, W, Zhang, Z, Yang, Hybrid Particle Swarm Optimizer with Mass
Extinction, International Conf. on Communication, Circuits and Systems
(ICCCAS), Chengdu, China. 1170-1174, 2002.

[8] M. Lovbjerg, T. Krink, Extending Particle Swarm Optimisers with Self-
Organized Criticality, Proceedings of Fourth Congress on Evolutionary
Computation, vol. 2, 1588-1593, 2002.

[9] X. Yao, Y. Liu and G. Lin, Evolutionary Programing Made Faster, IEEE
Transacations on Evolutionary Computation, vol. 3, 82-102, July 1999.

[10] K. Veeramachaneni, T. Peram, C. Mohan, L. A. Osadciw, Optimization
Using Particle Swarms with Near Neighbor Interactions, Proc. Genetic
and Evolutionary Computation (GECCO 2003), vol. 2723,110-121,
2003.

[11] E. Ozcan and C. K. Mohan, Particle Swarm Optimization: Surfing the
Waves, Proceedings of Congress on Evolutionary Computation
(CEC1999), Washington D.C., 1939-1944, 1999.

[12] F. van den Bergh, A. P. Engelbrecht, Effect of Swarm Size on
Cooperative Particle Swarm Optimizers, Genetic and Evolutionary
Computation Conference, San Francisco, USA, 892-899, 2001.

[13] W. Feller, An Introduction to Probability Theory and Its Applications,
volume 2, John Wiley & Sons, Inc., 2nd edition, 1971.

[14] F. van den Bergh, An Analysis of Particle Swarm Optimizers. PhD
thesis, Department of Computer Science, University of Pretoria, South
Africa, 2002.

	Ⅰ. Introduction
	Ⅱ. HPSO Algorithm
	Ⅲ. Benchmark Problems and Experimental Settings
	Ⅳ. Experimental Results
	A. Comparisons among HPSO, PSO, and FDR-PSO
	B. Comparisons among HPSO, PSO, CEP, and FEP
	
	C. Number of Replacements
	Ⅴ. Conclusions
	References

