
Choreographic Development of Message-Passing Applications

Alex Coto @ GSSI, IT

Roberto Guanciale @ KTH, SE

Emilio Tuosto @ GSSI, IT & UoL, UK

Coordination 2020 15-20 July 2020

Research partly supported by the EU H2020 RISE programme under the Marie
Sk lodowska-Curie grant agreement No 778233.

In the next 90 minutes...

Prologue An intuitive account

Act I Some definitions

Act II A tool

Act III A little exercise

Epilogue Work in progress

– Prologue –

[An intuitive account]

“Top-down”
Quoting W3C
“Using the Web Services Cho-

reography specification, a con-

tract containing a global defin-

ition of the common ordering

conditions and constraints under

which messages are exchanged,

is produced that describes, from

a global viewpoint [...] observ-

able behaviour of all the parties

involved. Each party can then

use the global definition to build

and test solutions that conform

to it. The global specification is

in turn realised by combination of

the resulting local systems [...]”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

bottom-up
Extract from each component its local viewpoint, combine the local view
points in a choreography...if that makes sense [Lange et al., 2015]

“Top-down”
Quoting W3C
“Using the Web Services Cho-

reography specification, a con-

tract containing a global defin-

ition of the common ordering

conditions and constraints under

which messages are exchanged,

is produced that describes, from

a global viewpoint [...] observ-

able behaviour of all the parties

involved. Each party can then

use the global definition to build

and test solutions that conform

to it. The global specification is

in turn realised by combination of

the resulting local systems [...]”

Choreography G
global viewpoint

Synchrony

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn
Asynchrony

Pro
jec

t

P
ro

je
ct

Project

bottom-up
Extract from each component its local viewpoint, combine the local view
points in a choreography...if that makes sense [Lange et al., 2015]

“Top-down”
Quoting W3C
“Using the Web Services Cho-

reography specification, a con-

tract containing a global defin-

ition of the common ordering

conditions and constraints under

which messages are exchanged,

is produced that describes, from

a global viewpoint [...] observ-

able behaviour of all the parties

involved. Each party can then

use the global definition to build

and test solutions that conform

to it. The global specification is

in turn realised by combination of

the resulting local systems [...]”

Choreography G
global viewpoint

Synchrony

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn
Asynchrony

Component1 Component1 Componentn

V
al

id
at

e

V
al

id
at

e V
alidate

Pro
jec

t

P
ro

je
ct

Project

bottom-up
Extract from each component its local viewpoint, combine the local view
points in a choreography...if that makes sense [Lange et al., 2015]

“Top-down” & “Bottom-up”
Quoting W3C
“Using the Web Services Cho-

reography specification, a con-

tract containing a global defin-

ition of the common ordering

conditions and constraints under

which messages are exchanged,

is produced that describes, from

a global viewpoint [...] observ-

able behaviour of all the parties

involved. Each party can then

use the global definition to build

and test solutions that conform

to it. The global specification is

in turn realised by combination of

the resulting local systems [...]”

Choreography G
global viewpoint

Synchrony

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn
Asynchrony

Component1 Component1 Componentn Component’1 Component’i Component’n

V
al

id
at

e

V
al

id
at

e V
alidate

Pro
jec

t

P
ro

je
ct

Project

evolve/replace/compose

bottom-up
Extract from each component its local viewpoint, combine the local view
points in a choreography...if that makes sense [Lange et al., 2015]

“Top-down” & “Bottom-up”
Quoting W3C
“Using the Web Services Cho-

reography specification, a con-

tract containing a global defin-

ition of the common ordering

conditions and constraints under

which messages are exchanged,

is produced that describes, from

a global viewpoint [...] observ-

able behaviour of all the parties

involved. Each party can then

use the global definition to build

and test solutions that conform

to it. The global specification is

in turn realised by combination of

the resulting local systems [...]”

Choreography G
global viewpoint

Synchrony

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn
Asynchrony

Component1 Component1 Componentn Component’1 Component’i Component’n

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

V
al

id
at

e

V
al

id
at

e V
alidate

Pro
jec

t

P
ro

je
ct

Project

evolve/replace/compose

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

bottom-up
Extract from each component its local viewpoint, combine the local view
points in a choreography...if that makes sense [Lange et al., 2015]

“Top-down” & “Bottom-up”
Quoting W3C
“Using the Web Services Cho-

reography specification, a con-

tract containing a global defin-

ition of the common ordering

conditions and constraints under

which messages are exchanged,

is produced that describes, from

a global viewpoint [...] observ-

able behaviour of all the parties

involved. Each party can then

use the global definition to build

and test solutions that conform

to it. The global specification is

in turn realised by combination of

the resulting local systems [...]”

Choreography G
global viewpoint

Synchrony

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn
Asynchrony

Component1 Component1 Componentn Component’1 Component’i Component’n

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

???

V
al

id
at

e

V
al

id
at

e V
alidate

Pro
jec

t

P
ro

je
ct

Project

evolve/replace/compose

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

bottom-up
Extract from each component its local viewpoint, combine the local view
points in a choreography...if that makes sense [Lange et al., 2015]

“Top-down” & “Bottom-up”
Quoting W3C
“Using the Web Services Cho-

reography specification, a con-

tract containing a global defin-

ition of the common ordering

conditions and constraints under

which messages are exchanged,

is produced that describes, from

a global viewpoint [...] observ-

able behaviour of all the parties

involved. Each party can then

use the global definition to build

and test solutions that conform

to it. The global specification is

in turn realised by combination of

the resulting local systems [...]”

Choreography G
global viewpoint

Synchrony

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn
Asynchrony

Component1 Component1 Componentn Component’1 Component’i Component’n

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

New choreography G′

global viewpoint

V
al

id
at

e

V
al

id
at

e V
alidate

Pro
jec

t

P
ro

je
ct

Project

evolve/replace/compose

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

Synthesise

bottom-up
Extract from each component its local viewpoint, combine the local view
points in a choreography...if that makes sense [Lange et al., 2015]

Global views, intuitively

g-choreographies [Tuosto and Guanciale, 2018]

source node

sink node

A−→B: m

G

G′

G G′

|

|

fork gate

join gate

G G′

+

+

branch gate

merge gate

empty interaction sequential parallel branching

Pomset or (Event Structurea)
aSee Ugo de’Liguoro’s talk @ ICE 2020

Local views, intuitively

Communicating systems [Brand and Zafiropulo, 1983]

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

Local views, intuitively

Communicating systems [Brand and Zafiropulo, 1983]

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

int

Local views, intuitively

Communicating systems [Brand and Zafiropulo, 1983]

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

intbool

Local views, intuitively

Communicating systems [Brand and Zafiropulo, 1983]

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

intbool

Local views, intuitively

Communicating systems [Brand and Zafiropulo, 1983]

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

bool

Local views, intuitively

Communicating systems [Brand and Zafiropulo, 1983]

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

bool

Local views, intuitively

Communicating systems [Brand and Zafiropulo, 1983]

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

bool bool

Local views, intuitively

Communicating systems [Brand and Zafiropulo, 1983]

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

bool bool bool

Well-formedness, intuitively

To G or not to G?
Ehm...in a distributed choice G1 + G2 + · · ·

there should be one active participant

any non-active participant should be passive decides which branch to take in a choice

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for through the information
received on each branch

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

Well-formedness, intuitively

To G or not to G?
Ehm...in a distributed choice G1 + G2 + · · ·

there should be one active participant

any non-active participant should be passive decides which branch to take in a choice

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for through the information
received on each branch

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

Well-formedness, intuitively

To G or not to G?
Ehm...in a distributed choice G1 + G2 + · · ·

there should be one active participant

any non-active participant should be passive decides which branch to take in a choice

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for through the information
received on each branch

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

Class test

Figure out the graphical structure of the following terms and for each of them say
which one is well-branched

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + 0

G3 = A−→B: int + A−→C: str

G4 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool



– Act I –

[Choregraphies, more precisely]

Syntax of g-choreographies

G ::= (o) empty∣∣ A−→B: m interaction∣∣ G | G fork∣∣ sel {G + · · · + G} choice∣∣ G; G sequential∣∣ repeat G iteration

Partially-ordered multisets [Pratt, 1986]

Isomorphism class of labelled partially-ordered sets


e1

A B!x
e2

A B?x

e3

A B!y
e4

A B?y

 ,


f 1

A B!x
f 2

A B?x

f 3

A B!y
f 4

A B?y




specify legit executions

sets of alternative executions

Language of a pomset

e1 e2 e3 e4 A B!x A B?x A B!y A B?y

f 3 f 1 f 2 f 4 A B!y A B!x A B?x A B!y

e1 e3 e2 e4 A B!x A B!y A B?x A B?y

Pomset semantics

The semantics of a g-choreography G

The basic idea

is a set of pomsets

each pomset in the set corresponds to
a branch of G

is defined by induction on the
structure of G

J(o)K = {ε}

JA−→B: mK =
{

[A B!m A B?m]
}

Jrepeat GK = JGK
q

G | G′y = {par(r , r ′)
∣∣ (r , r ′) ∈ JGK ×

q
G′y}

q
G; G′y = {seq(r , r ′)

∣∣ (r , r ′) ∈ JGK ×
q

G′y}
q

G + G′y = JGK ∪
q

G′y

Pomset semantics

The semantics of a g-choreography G

The basic idea

is a set of pomsets

each pomset in the set corresponds to
a branch of G

is defined by induction on the
structure of G

J(o)K = {ε}

JA−→B: mK =
{

[A B!m A B?m]
}

Jrepeat GK = JGK
q

G | G′y = {par(r , r ′)
∣∣ (r , r ′) ∈ JGK ×

q
G′y}

q
G; G′y = {seq(r , r ′)

∣∣ (r , r ′) ∈ JGK ×
q

G′y}
q

G + G′y = JGK ∪
q

G′y

JGK = · · · ,
[

...

]
, · · · JG′K = · · · ,

[
...

]
, · · ·

Pomset semantics

The semantics of a g-choreography G

The basic idea

is a set of pomsets

each pomset in the set corresponds to
a branch of G

is defined by induction on the
structure of G

J(o)K = {ε}

JA−→B: mK =
{

[A B!m A B?m]
}

Jrepeat GK = JGK
q

G | G′y = {par(r , r ′)
∣∣ (r , r ′) ∈ JGK ×

q
G′y}

q
G; G′y = {seq(r , r ′)

∣∣ (r , r ′) ∈ JGK ×
q

G′y}
q

G + G′y = JGK ∪
q

G′y

JGK = · · · ,
[

...

]
, · · · JG′K = · · · ,

[
...

]
, · · ·

JG | G′K = · · · ,
[

...
...

]
, · · ·

Pomset semantics

The semantics of a g-choreography G

The basic idea

is a set of pomsets

each pomset in the set corresponds to
a branch of G

is defined by induction on the
structure of G

J(o)K = {ε}

JA−→B: mK =
{

[A B!m A B?m]
}

Jrepeat GK = JGK
q

G | G′y = {par(r , r ′)
∣∣ (r , r ′) ∈ JGK ×

q
G′y}

q
G; G′y = {seq(r , r ′)

∣∣ (r , r ′) ∈ JGK ×
q

G′y}
q

G + G′y = JGK ∪
q

G′y

JGK = · · · ,
[

...

]
, · · · JG′K = · · · ,

[
...

]
, · · ·

JG; G′K = · · · ,
[

...→
...

]
, · · ·

Pomset semantics

The semantics of a g-choreography G

The basic idea

is a set of pomsets

each pomset in the set corresponds to
a branch of G

is defined by induction on the
structure of G

J(o)K = {ε}

JA−→B: mK =
{

[A B!m A B?m]
}

Jrepeat GK = JGK
q

G | G′y = {par(r , r ′)
∣∣ (r , r ′) ∈ JGK ×

q
G′y}

q
G; G′y = {seq(r , r ′)

∣∣ (r , r ′) ∈ JGK ×
q

G′y}
q

G + G′y = JGK ∪
q

G′y

JGK = · · · ,
[

...

]
, · · · JG′K = · · · ,

[
...

]
, · · ·

JG + G′K = · · · ,
[

...

]
, · · · · · · ,

[
...

]
, · · ·

Some examples

Choice & Sequential

u

wwwwwww
v

A−→B: x

B−→C: z

A−→C: y

C−→B: w

+

+

}

�������
~

=




A B!x

A B?x

B C!z

B C?z

 ,


A C!y

A C?y

C B!w

C B?w





Some examples

Parallel & choice

u

wwwwwwwwwwww
v

A−→B: x C−→B: x

+

+

A−→B: z

A−→B: y

C−→B: y

A−→B: z

|

|

}

������������
~

=



 A B!y

A B!z

A B?y

C B?y

A B?z

C B!y A B!x A B?x

A B!z A B?z

 ,

 A B!y

A B!z

A B?y

C B?y

A B?z

C B!y C B!x C B?x

A B?z

A B!z





Realisability

Put simply...

A set of pomsets R is realizable if there is a deadlock-freea communicating system
whose language is L(R).

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.

Trivial non-realisability

A B?m B C?n

Communicating systems “start”
with outputs!

Non-trivial non-realisability [Alur et al., 2003]

Realisability

Put simply...

A set of pomsets R is realizable if there is a deadlock-freea communicating system
whose language is L(R).

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.

Trivial non-realisability

A B?m B C?n

Communicating systems “start”
with outputs!

Non-trivial non-realisability [Alur et al., 2003]

A taxonomy of global views

“Choreographic”

Pomsets

CC?

WF

G-Choreographies

Closures

A C!l1

A B!x

B C!l2

A B?x

B C!l3

B C?l2

A C?l1

A C?l3

A C!r1

A B!x

B C!r2

A B?x

B C!r3

B C?r2

A C?r1

A C?r3



CC*-POM

Take a set of pomsets R

Choose a pomset r̄A ∈ R for each participant

Def. R is CC2-POM if ∀r ∈ �((rA�A)A∈P) : ∃r ′ ∈ R : r v r ′

less permissive

Choose a prefix r̄A of a pomset in R for each participant A

Def. R is CC3-POM if ∀r̄ ∈ �((r̄A�A)A∈P) : ∃r ′ ∈ R, r̄ ′ prefix of r ′ : r̄ v r̄ ′

Closures

A C!l1

A B!x

B C!l2

A B?x

B C!l3

B C?l2

A C?l1

A C?l3

A C!r1

A B!x

B C!r2

A B?x

B C!r3

B C?r2

A C?r1

A C?r3


A C!l1

A B!x

A C!r1

A B!x

B C!l2

A B?x

B C!l3

B C!r2

A B?x

B C!r3

B C?l2

A C?l1

A C?l3

B C?r2

A C?r1

A C?r3

CC*-POM

Take a set of pomsets R

Choose a pomset r̄A ∈ R for each participant

Def. R is CC2-POM if ∀r ∈ �((rA�A)A∈P) : ∃r ′ ∈ R : r v r ′

less permissive

Choose a prefix r̄A of a pomset in R for each participant A

Def. R is CC3-POM if ∀r̄ ∈ �((r̄A�A)A∈P) : ∃r ′ ∈ R, r̄ ′ prefix of r ′ : r̄ v r̄ ′

Closures

A C!l1

A B!x

B C!l2

A B?x

B C!l3

B C?l2

A C?l1

A C?l3

A C!r1

A B!x

B C!r2

A B?x

B C!r3

B C?r2

A C?r1

A C?r3


A C!l1

A B!x

A C!r1

A B!x

B C!l2

A B?x

B C!l3

B C!r2

A B?x

B C!r3

B C?l2

A C?l1

A C?l3

B C?r2

A C?r1

A C?r3

CC*-POM

Take a set of pomsets R

Choose a pomset r̄A ∈ R for each participant

Def. R is CC2-POM if ∀r ∈ �((rA�A)A∈P) : ∃r ′ ∈ R : r v r ′

less permissive

Choose a prefix r̄A of a pomset in R for each participant A

Def. R is CC3-POM if ∀r̄ ∈ �((r̄A�A)A∈P) : ∃r ′ ∈ R, r̄ ′ prefix of r ′ : r̄ v r̄ ′

Closures

A C!l1

A B!x

B C!l2

A B?x

B C!l3

B C?l2

A C?l1

A C?l3

A C!r1

A B!x

B C!r2

A B?x

B C!r3

B C?r2

A C?r1

A C?r3


A C!l1

A B!x

A C!r1

A B!x

B C!l2

A B?x

B C!l3

B C!r2

A B?x

B C!r3

B C?l2

A C?l1

A C?l3

B C?r2

A C?r1

A C?r3

CC*-POM

Take a set of pomsets R

Choose a pomset r̄A ∈ R for each participant

Def. R is CC2-POM if ∀r ∈ �((rA�A)A∈P) : ∃r ′ ∈ R : r v r ′

less permissive

Choose a prefix r̄A of a pomset in R for each participant A

Def. R is CC3-POM if ∀r̄ ∈ �((r̄A�A)A∈P) : ∃r ′ ∈ R, r̄ ′ prefix of r ′ : r̄ v r̄ ′

Closures

A C!l1

A B!x

B C!l2

A B?x

B C!l3

B C?l2

A C?l1

A C?l3

A C!r1

A B!x

B C!r2

A B?x

B C!r3

B C?r2

A C?r1

A C?r3


A C!l1

A B!x

A C!r1

A B!x

B C!l2

A B?x

B C!l3

B C!r2

A B?x

B C!r3

B C?l2

A C?l1

A C?l3

B C?r2

A C?r1

A C?r3

CC*-POM

Take a set of pomsets R

Choose a pomset r̄A ∈ R for each participant

Def. R is CC2-POM if ∀r ∈ �((rA�A)A∈P) : ∃r ′ ∈ R : r v r ′

less permissive

Choose a prefix r̄A of a pomset in R for each participant A

Def. R is CC3-POM if ∀r̄ ∈ �((r̄A�A)A∈P) : ∃r ′ ∈ R, r̄ ′ prefix of r ′ : r̄ v r̄ ′

Closures

A C!l1

A B!x

B C!l2

A B?x

B C!l3

B C?l2

A C?l1

A C?l3

A C!r1

A B!x

B C!r2

A B?x

B C!r3

B C?r2

A C?r1

A C?r3


A C!l1

A B!x

A C!r1

A B!x

B C!l2

A B?x

B C!l3

B C!r2

A B?x

B C!r3

B C?l2

A C?l1

A C?l3

B C?r2

A C?r1

A C?r3

CC*-POM

Take a set of pomsets R

Choose a pomset r̄A ∈ R for each participant

Def. R is CC2-POM if ∀r ∈ �((rA�A)A∈P) : ∃r ′ ∈ R : r v r ′

less permissive

Choose a prefix r̄A of a pomset in R for each participant A

Def. R is CC3-POM if ∀r̄ ∈ �((r̄A�A)A∈P) : ∃r ′ ∈ R, r̄ ′ prefix of r ′ : r̄ v r̄ ′

Class test : solutions

Which of the following g-choreographies is well-branched?

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + 0

G3 = A−→B: int + A−→C: str

G4 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool



Find out which closure conditions the non well-branched properties violate

Class test : solutions

Which of the following g-choreographies is well-branched?

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + 0

G3 = A−→B: int + A−→C: str

G4 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool



Find out which closure conditions the non well-branched properties violate

Class test : solutions

Which of the following g-choreographies is well-branched?

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + 0

G3 = A−→B: int + A−→C: str

G4 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool



Find out which closure conditions the non well-branched properties violate

Class test : solutions

Which of the following g-choreographies is well-branched?

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + 0

G3 = A−→B: int + A−→C: str

G4 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool



Find out which closure conditions the non well-branched properties violate

Class test : solutions

Which of the following g-choreographies is well-branched?

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + 0

G3 = A−→B: int + A−→C: str

G4 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool



Find out which closure conditions the non well-branched properties violate

Class test : solutions

Which of the following g-choreographies is well-branched?

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + 0

G3 = A−→B: int + A−→C: str

G4 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool



Find out which closure conditions the non well-branched properties violate

– Act II –

[An exercise: prototype tool support]

The ChorGram prototype [Coto et al., , Guanciale and Tuosto, 2020, Guanciale, 2019, Lange et al., 2017]

Supporting well-formedness analysis

P
re

se
n

ta
ti

o
n

la
ye

r
T

ra
n

sf
or

m
a

ti
o

n
la

ye
r

GUI

Legend. Compon-

ents connect to

each other either

via some files

(dashed lines) or

by invoking each

others’ function-

alities (doubled

lines)

PNG

GraphViz

Global

DOT

Local

DOT

Pomset

DOT

Tmap

DOT

Local

GML

gg2gml

gg2pom

pom2gg

Global

GML

Pomset

GML

sgg

SGG

+

rgg2erl Erlang

cfsm

ChorGram

+

export

termination

CC2-POM

CC3-POM DirPoms

diff gml2fsa

A Simple Exercise in BehAPI

Given B, a bank’s API s.t.

GET authReq :: authenticate; return authFail or granted

GET authWithdrawal :: request cash; return allow or deny

GET getBalance :: get balance; return balance

Develop A, the sw for an ATM machine

GET auth :: authentication request; return authFail or granted

GET withdraw :: request cash; return money or bye

GET checkBalance :: check balance request; return balance

...

Modelling C, a fictional customer
...

A Simple Exercise in BehAPI

Given B, a bank’s API s.t.

GET authReq :: authenticate; return authFail or granted

GET authWithdrawal :: request cash; return allow or deny

GET getBalance :: get balance; return balance

Develop A, the sw for an ATM machine

GET auth :: authentication request; return authFail or granted

GET withdraw :: request cash; return money or bye

GET checkBalance :: check balance request; return balance

...

Modelling C, a fictional customer
...

A Simple Exercise in BehAPI

Given B, a bank’s API s.t.

GET authReq :: authenticate; return authFail or granted

GET authWithdrawal :: request cash; return allow or deny

GET getBalance :: get balance; return balance

Develop A, the sw for an ATM machine

GET auth :: authentication request; return authFail or granted

GET withdraw :: request cash; return money or bye

GET checkBalance :: check balance request; return balance

...

Modelling C, a fictional customer
...

Define the global view

Is this
g-choreography
well-branched?
Let’s try
ChorGram

Define the global view

Is this
g-choreography
well-branched?

Let’s try
ChorGram

Define the global view

Is this
g-choreography
well-branched?
Let’s try
ChorGram

– Epilogue –

[Work in progress]

The missing bits

What we didn’t show

Going bottom-up

Termination awareness

Run-time support (code & monitor generation)

An experimental “debugging” mechanism

The missing bits

What we didn’t show

Going bottom-up

Termination awareness

Run-time support (code & monitor generation)

An experimental “debugging” mechanism

The missing bits

What we didn’t show

Going bottom-up

Termination awareness

Run-time support (code & monitor generation)

An experimental “debugging” mechanism

The missing bits

What we didn’t show

Going bottom-up

Termination awareness

Run-time support (code & monitor generation)

An experimental “debugging” mechanism

What we are doing

Theory

Choreographic Testing
Alex & Roberto: see Alex’s talk@ICE this Fri

(De-)Composition of choreographies
Mariangiola, Franco, & Ivan: see Franco’s

talk@COORDINATION this Tue

New communication frameworks
Hernán: see my talk@COORDINATION this Tue

Refinement of choreographies
Hernán & Ugo: see Ugo’s talk@ICE this Fri

Practice

Better integration of top-down &
bottom-up

Code generation / Code testing

Keep working on ChorGram
existing features (e.g., “debugging”,
pom2gg,...)
new features (e.g., test generation,
modularity,...)
usability (the most boring yet
important part)

What we are doing

Theory

Choreographic Testing
Alex & Roberto: see Alex’s talk@ICE this Fri

(De-)Composition of choreographies
Mariangiola, Franco, & Ivan: see Franco’s

talk@COORDINATION this Tue

New communication frameworks
Hernán: see my talk@COORDINATION this Tue

Refinement of choreographies
Hernán & Ugo: see Ugo’s talk@ICE this Fri

Practice

Better integration of top-down &
bottom-up

Code generation / Code testing

Keep working on ChorGram
existing features (e.g., “debugging”,
pom2gg,...)
new features (e.g., test generation,
modularity,...)
usability (the most boring yet
important part)

Thank you

References

1 Alur, R., Etessami, K., and Yannakakis, M. (2003). Inference of Message Sequence Charts. IEEE Trans.
Software Eng., 29(7):623–633.

2 Brand, D. and Zafiropulo, P. (1983). On Communicating Finite-State Machines. JACM, 30(2):323–342.

3 Coto, A., Guanciale, R., Lange, J., and Tuosto, E. ChorGram: tool support for choreographic
deveelopment. Available at https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home.

4 Guanciale, R. (2019). Dirpoms: Automatic checker of distributed realizability of pomsets. In Coordination
2019

5 Guanciale, R. and Tuosto, E. (2016). An abstract semantics of the global view of choreographies. In ICE
2016

6 Guanciale, R. and Tuosto, E. (2020). Pomcho: a tool chain for choreographic design. OSP. To appear.

7 Lange, J., Tuosto, E., and Yoshida, N. (2015). From Communicating Machines to Graphical
Choreographies. In POPL15.

8 Lange, J., Tuosto, E., and Yoshida, N. (2017). A tool for choreography-based analysis of message-passing
software. In Behavioural Types: from Theory to Tools

9 Pratt, V. (1986). Modeling concurrency with partial orders. International Journal of Parallel
Programming, 15(1):33–71.

10 Tuosto, E. and Guanciale, R. (2018). Semantics of global view of choreographies. JLAMP, 95:17–40.

https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home

